]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/x86/mm/fault.c
x86: Clean up dump_pagetable()
[net-next-2.6.git] / arch / x86 / mm / fault.c
CommitLineData
1da177e4 1/*
1da177e4 2 * Copyright (C) 1995 Linus Torvalds
2d4a7167 3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
f8eeb2e6 4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
1da177e4 5 */
a2bcd473
IM
6#include <linux/magic.h> /* STACK_END_MAGIC */
7#include <linux/sched.h> /* test_thread_flag(), ... */
8#include <linux/kdebug.h> /* oops_begin/end, ... */
9#include <linux/module.h> /* search_exception_table */
10#include <linux/bootmem.h> /* max_low_pfn */
11#include <linux/kprobes.h> /* __kprobes, ... */
12#include <linux/mmiotrace.h> /* kmmio_handler, ... */
940010c5 13#include <linux/perf_counter.h> /* perf_swcounter_event */
2d4a7167 14
a2bcd473
IM
15#include <asm/traps.h> /* dotraplinkage, ... */
16#include <asm/pgalloc.h> /* pgd_*(), ... */
f8561296 17#include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
1da177e4 18
33cb5243 19/*
2d4a7167
IM
20 * Page fault error code bits:
21 *
22 * bit 0 == 0: no page found 1: protection fault
23 * bit 1 == 0: read access 1: write access
24 * bit 2 == 0: kernel-mode access 1: user-mode access
25 * bit 3 == 1: use of reserved bit detected
26 * bit 4 == 1: fault was an instruction fetch
33cb5243 27 */
2d4a7167
IM
28enum x86_pf_error_code {
29
30 PF_PROT = 1 << 0,
31 PF_WRITE = 1 << 1,
32 PF_USER = 1 << 2,
33 PF_RSVD = 1 << 3,
34 PF_INSTR = 1 << 4,
35};
66c58156 36
b814d41f 37/*
b319eed0
IM
38 * Returns 0 if mmiotrace is disabled, or if the fault is not
39 * handled by mmiotrace:
b814d41f 40 */
0fd0e3da 41static inline int kmmio_fault(struct pt_regs *regs, unsigned long addr)
86069782 42{
0fd0e3da
PP
43 if (unlikely(is_kmmio_active()))
44 if (kmmio_handler(regs, addr) == 1)
45 return -1;
0fd0e3da 46 return 0;
86069782
PP
47}
48
74a0b576 49static inline int notify_page_fault(struct pt_regs *regs)
1bd858a5 50{
74a0b576
CH
51 int ret = 0;
52
53 /* kprobe_running() needs smp_processor_id() */
b1801812 54 if (kprobes_built_in() && !user_mode_vm(regs)) {
74a0b576
CH
55 preempt_disable();
56 if (kprobe_running() && kprobe_fault_handler(regs, 14))
57 ret = 1;
58 preempt_enable();
59 }
1bd858a5 60
74a0b576 61 return ret;
33cb5243 62}
1bd858a5 63
1dc85be0 64/*
2d4a7167
IM
65 * Prefetch quirks:
66 *
67 * 32-bit mode:
68 *
69 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
70 * Check that here and ignore it.
1dc85be0 71 *
2d4a7167 72 * 64-bit mode:
1dc85be0 73 *
2d4a7167
IM
74 * Sometimes the CPU reports invalid exceptions on prefetch.
75 * Check that here and ignore it.
76 *
77 * Opcode checker based on code by Richard Brunner.
1dc85be0 78 */
107a0367
IM
79static inline int
80check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
81 unsigned char opcode, int *prefetch)
82{
83 unsigned char instr_hi = opcode & 0xf0;
84 unsigned char instr_lo = opcode & 0x0f;
85
86 switch (instr_hi) {
87 case 0x20:
88 case 0x30:
89 /*
90 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
91 * In X86_64 long mode, the CPU will signal invalid
92 * opcode if some of these prefixes are present so
93 * X86_64 will never get here anyway
94 */
95 return ((instr_lo & 7) == 0x6);
96#ifdef CONFIG_X86_64
97 case 0x40:
98 /*
99 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
100 * Need to figure out under what instruction mode the
101 * instruction was issued. Could check the LDT for lm,
102 * but for now it's good enough to assume that long
103 * mode only uses well known segments or kernel.
104 */
105 return (!user_mode(regs)) || (regs->cs == __USER_CS);
106#endif
107 case 0x60:
108 /* 0x64 thru 0x67 are valid prefixes in all modes. */
109 return (instr_lo & 0xC) == 0x4;
110 case 0xF0:
111 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
112 return !instr_lo || (instr_lo>>1) == 1;
113 case 0x00:
114 /* Prefetch instruction is 0x0F0D or 0x0F18 */
115 if (probe_kernel_address(instr, opcode))
116 return 0;
117
118 *prefetch = (instr_lo == 0xF) &&
119 (opcode == 0x0D || opcode == 0x18);
120 return 0;
121 default:
122 return 0;
123 }
124}
125
2d4a7167
IM
126static int
127is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
33cb5243 128{
2d4a7167 129 unsigned char *max_instr;
ab2bf0c1 130 unsigned char *instr;
33cb5243 131 int prefetch = 0;
1da177e4 132
3085354d
IM
133 /*
134 * If it was a exec (instruction fetch) fault on NX page, then
135 * do not ignore the fault:
136 */
66c58156 137 if (error_code & PF_INSTR)
1da177e4 138 return 0;
1dc85be0 139
107a0367 140 instr = (void *)convert_ip_to_linear(current, regs);
f1290ec9 141 max_instr = instr + 15;
1da177e4 142
76381fee 143 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
1da177e4
LT
144 return 0;
145
107a0367 146 while (instr < max_instr) {
2d4a7167 147 unsigned char opcode;
1da177e4 148
ab2bf0c1 149 if (probe_kernel_address(instr, opcode))
33cb5243 150 break;
1da177e4 151
1da177e4
LT
152 instr++;
153
107a0367 154 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
1da177e4 155 break;
1da177e4
LT
156 }
157 return prefetch;
158}
159
2d4a7167
IM
160static void
161force_sig_info_fault(int si_signo, int si_code, unsigned long address,
162 struct task_struct *tsk)
c4aba4a8
HH
163{
164 siginfo_t info;
165
2d4a7167
IM
166 info.si_signo = si_signo;
167 info.si_errno = 0;
168 info.si_code = si_code;
169 info.si_addr = (void __user *)address;
170
c4aba4a8
HH
171 force_sig_info(si_signo, &info, tsk);
172}
173
f2f13a85
IM
174DEFINE_SPINLOCK(pgd_lock);
175LIST_HEAD(pgd_list);
176
177#ifdef CONFIG_X86_32
178static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
33cb5243 179{
f2f13a85
IM
180 unsigned index = pgd_index(address);
181 pgd_t *pgd_k;
182 pud_t *pud, *pud_k;
183 pmd_t *pmd, *pmd_k;
2d4a7167 184
f2f13a85
IM
185 pgd += index;
186 pgd_k = init_mm.pgd + index;
187
188 if (!pgd_present(*pgd_k))
189 return NULL;
190
191 /*
192 * set_pgd(pgd, *pgd_k); here would be useless on PAE
193 * and redundant with the set_pmd() on non-PAE. As would
194 * set_pud.
195 */
196 pud = pud_offset(pgd, address);
197 pud_k = pud_offset(pgd_k, address);
198 if (!pud_present(*pud_k))
199 return NULL;
200
201 pmd = pmd_offset(pud, address);
202 pmd_k = pmd_offset(pud_k, address);
203 if (!pmd_present(*pmd_k))
204 return NULL;
205
b8bcfe99 206 if (!pmd_present(*pmd))
f2f13a85 207 set_pmd(pmd, *pmd_k);
b8bcfe99 208 else
f2f13a85 209 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
f2f13a85
IM
210
211 return pmd_k;
212}
213
214void vmalloc_sync_all(void)
215{
216 unsigned long address;
217
218 if (SHARED_KERNEL_PMD)
219 return;
220
221 for (address = VMALLOC_START & PMD_MASK;
222 address >= TASK_SIZE && address < FIXADDR_TOP;
223 address += PMD_SIZE) {
224
225 unsigned long flags;
226 struct page *page;
227
228 spin_lock_irqsave(&pgd_lock, flags);
229 list_for_each_entry(page, &pgd_list, lru) {
230 if (!vmalloc_sync_one(page_address(page), address))
231 break;
232 }
233 spin_unlock_irqrestore(&pgd_lock, flags);
234 }
235}
236
237/*
238 * 32-bit:
239 *
240 * Handle a fault on the vmalloc or module mapping area
241 */
242static noinline int vmalloc_fault(unsigned long address)
243{
244 unsigned long pgd_paddr;
245 pmd_t *pmd_k;
246 pte_t *pte_k;
247
248 /* Make sure we are in vmalloc area: */
249 if (!(address >= VMALLOC_START && address < VMALLOC_END))
250 return -1;
251
252 /*
253 * Synchronize this task's top level page-table
254 * with the 'reference' page table.
255 *
256 * Do _not_ use "current" here. We might be inside
257 * an interrupt in the middle of a task switch..
258 */
259 pgd_paddr = read_cr3();
260 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
261 if (!pmd_k)
262 return -1;
263
264 pte_k = pte_offset_kernel(pmd_k, address);
265 if (!pte_present(*pte_k))
266 return -1;
267
268 return 0;
269}
270
271/*
272 * Did it hit the DOS screen memory VA from vm86 mode?
273 */
274static inline void
275check_v8086_mode(struct pt_regs *regs, unsigned long address,
276 struct task_struct *tsk)
277{
278 unsigned long bit;
279
280 if (!v8086_mode(regs))
281 return;
282
283 bit = (address - 0xA0000) >> PAGE_SHIFT;
284 if (bit < 32)
285 tsk->thread.screen_bitmap |= 1 << bit;
33cb5243 286}
1da177e4 287
087975b0 288static bool low_pfn(unsigned long pfn)
1da177e4 289{
087975b0
AM
290 return pfn < max_low_pfn;
291}
1156e098 292
087975b0
AM
293static void dump_pagetable(unsigned long address)
294{
295 pgd_t *base = __va(read_cr3());
296 pgd_t *pgd = &base[pgd_index(address)];
297 pmd_t *pmd;
298 pte_t *pte;
2d4a7167 299
1156e098 300#ifdef CONFIG_X86_PAE
087975b0
AM
301 printk("*pdpt = %016Lx ", pgd_val(*pgd));
302 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
303 goto out;
1156e098 304#endif
087975b0
AM
305 pmd = pmd_offset(pud_offset(pgd, address), address);
306 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
1156e098
HH
307
308 /*
309 * We must not directly access the pte in the highpte
310 * case if the page table is located in highmem.
311 * And let's rather not kmap-atomic the pte, just in case
2d4a7167 312 * it's allocated already:
1156e098 313 */
087975b0
AM
314 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
315 goto out;
1156e098 316
087975b0
AM
317 pte = pte_offset_kernel(pmd, address);
318 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
319out:
1156e098 320 printk("\n");
f2f13a85
IM
321}
322
323#else /* CONFIG_X86_64: */
324
325void vmalloc_sync_all(void)
326{
327 unsigned long address;
328
329 for (address = VMALLOC_START & PGDIR_MASK; address <= VMALLOC_END;
330 address += PGDIR_SIZE) {
331
332 const pgd_t *pgd_ref = pgd_offset_k(address);
333 unsigned long flags;
334 struct page *page;
335
336 if (pgd_none(*pgd_ref))
337 continue;
338
339 spin_lock_irqsave(&pgd_lock, flags);
340 list_for_each_entry(page, &pgd_list, lru) {
341 pgd_t *pgd;
342 pgd = (pgd_t *)page_address(page) + pgd_index(address);
343 if (pgd_none(*pgd))
344 set_pgd(pgd, *pgd_ref);
345 else
346 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
347 }
348 spin_unlock_irqrestore(&pgd_lock, flags);
349 }
350}
351
352/*
353 * 64-bit:
354 *
355 * Handle a fault on the vmalloc area
356 *
357 * This assumes no large pages in there.
358 */
359static noinline int vmalloc_fault(unsigned long address)
360{
361 pgd_t *pgd, *pgd_ref;
362 pud_t *pud, *pud_ref;
363 pmd_t *pmd, *pmd_ref;
364 pte_t *pte, *pte_ref;
365
366 /* Make sure we are in vmalloc area: */
367 if (!(address >= VMALLOC_START && address < VMALLOC_END))
368 return -1;
369
370 /*
371 * Copy kernel mappings over when needed. This can also
372 * happen within a race in page table update. In the later
373 * case just flush:
374 */
375 pgd = pgd_offset(current->active_mm, address);
376 pgd_ref = pgd_offset_k(address);
377 if (pgd_none(*pgd_ref))
378 return -1;
379
380 if (pgd_none(*pgd))
381 set_pgd(pgd, *pgd_ref);
382 else
383 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
384
385 /*
386 * Below here mismatches are bugs because these lower tables
387 * are shared:
388 */
389
390 pud = pud_offset(pgd, address);
391 pud_ref = pud_offset(pgd_ref, address);
392 if (pud_none(*pud_ref))
393 return -1;
394
395 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
396 BUG();
397
398 pmd = pmd_offset(pud, address);
399 pmd_ref = pmd_offset(pud_ref, address);
400 if (pmd_none(*pmd_ref))
401 return -1;
402
403 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
404 BUG();
405
406 pte_ref = pte_offset_kernel(pmd_ref, address);
407 if (!pte_present(*pte_ref))
408 return -1;
409
410 pte = pte_offset_kernel(pmd, address);
411
412 /*
413 * Don't use pte_page here, because the mappings can point
414 * outside mem_map, and the NUMA hash lookup cannot handle
415 * that:
416 */
417 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
418 BUG();
419
420 return 0;
421}
422
423static const char errata93_warning[] =
424KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
425KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
426KERN_ERR "******* Please consider a BIOS update.\n"
427KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
428
429/*
430 * No vm86 mode in 64-bit mode:
431 */
432static inline void
433check_v8086_mode(struct pt_regs *regs, unsigned long address,
434 struct task_struct *tsk)
435{
436}
437
438static int bad_address(void *p)
439{
440 unsigned long dummy;
441
442 return probe_kernel_address((unsigned long *)p, dummy);
443}
444
445static void dump_pagetable(unsigned long address)
446{
087975b0
AM
447 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
448 pgd_t *pgd = base + pgd_index(address);
1da177e4
LT
449 pud_t *pud;
450 pmd_t *pmd;
451 pte_t *pte;
452
2d4a7167
IM
453 if (bad_address(pgd))
454 goto bad;
455
d646bce4 456 printk("PGD %lx ", pgd_val(*pgd));
2d4a7167
IM
457
458 if (!pgd_present(*pgd))
459 goto out;
1da177e4 460
d2ae5b5f 461 pud = pud_offset(pgd, address);
2d4a7167
IM
462 if (bad_address(pud))
463 goto bad;
464
1da177e4 465 printk("PUD %lx ", pud_val(*pud));
b5360222 466 if (!pud_present(*pud) || pud_large(*pud))
2d4a7167 467 goto out;
1da177e4
LT
468
469 pmd = pmd_offset(pud, address);
2d4a7167
IM
470 if (bad_address(pmd))
471 goto bad;
472
1da177e4 473 printk("PMD %lx ", pmd_val(*pmd));
2d4a7167
IM
474 if (!pmd_present(*pmd) || pmd_large(*pmd))
475 goto out;
1da177e4
LT
476
477 pte = pte_offset_kernel(pmd, address);
2d4a7167
IM
478 if (bad_address(pte))
479 goto bad;
480
33cb5243 481 printk("PTE %lx", pte_val(*pte));
2d4a7167 482out:
1da177e4
LT
483 printk("\n");
484 return;
485bad:
486 printk("BAD\n");
8c938f9f
IM
487}
488
f2f13a85 489#endif /* CONFIG_X86_64 */
1da177e4 490
2d4a7167
IM
491/*
492 * Workaround for K8 erratum #93 & buggy BIOS.
493 *
494 * BIOS SMM functions are required to use a specific workaround
495 * to avoid corruption of the 64bit RIP register on C stepping K8.
496 *
497 * A lot of BIOS that didn't get tested properly miss this.
498 *
499 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
500 * Try to work around it here.
501 *
502 * Note we only handle faults in kernel here.
503 * Does nothing on 32-bit.
fdfe8aa8 504 */
33cb5243 505static int is_errata93(struct pt_regs *regs, unsigned long address)
1da177e4 506{
fdfe8aa8 507#ifdef CONFIG_X86_64
65ea5b03 508 if (address != regs->ip)
1da177e4 509 return 0;
2d4a7167 510
33cb5243 511 if ((address >> 32) != 0)
1da177e4 512 return 0;
2d4a7167 513
1da177e4 514 address |= 0xffffffffUL << 32;
33cb5243
HH
515 if ((address >= (u64)_stext && address <= (u64)_etext) ||
516 (address >= MODULES_VADDR && address <= MODULES_END)) {
a454ab31 517 printk_once(errata93_warning);
65ea5b03 518 regs->ip = address;
1da177e4
LT
519 return 1;
520 }
fdfe8aa8 521#endif
1da177e4 522 return 0;
33cb5243 523}
1da177e4 524
35f3266f 525/*
2d4a7167
IM
526 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
527 * to illegal addresses >4GB.
528 *
529 * We catch this in the page fault handler because these addresses
530 * are not reachable. Just detect this case and return. Any code
35f3266f
HH
531 * segment in LDT is compatibility mode.
532 */
533static int is_errata100(struct pt_regs *regs, unsigned long address)
534{
535#ifdef CONFIG_X86_64
2d4a7167 536 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
35f3266f
HH
537 return 1;
538#endif
539 return 0;
540}
541
29caf2f9
HH
542static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
543{
544#ifdef CONFIG_X86_F00F_BUG
545 unsigned long nr;
2d4a7167 546
29caf2f9 547 /*
2d4a7167 548 * Pentium F0 0F C7 C8 bug workaround:
29caf2f9
HH
549 */
550 if (boot_cpu_data.f00f_bug) {
551 nr = (address - idt_descr.address) >> 3;
552
553 if (nr == 6) {
554 do_invalid_op(regs, 0);
555 return 1;
556 }
557 }
558#endif
559 return 0;
560}
561
8f766149
IM
562static const char nx_warning[] = KERN_CRIT
563"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
564
2d4a7167
IM
565static void
566show_fault_oops(struct pt_regs *regs, unsigned long error_code,
567 unsigned long address)
b3279c7f 568{
1156e098
HH
569 if (!oops_may_print())
570 return;
571
1156e098 572 if (error_code & PF_INSTR) {
93809be8 573 unsigned int level;
2d4a7167 574
1156e098
HH
575 pte_t *pte = lookup_address(address, &level);
576
8f766149
IM
577 if (pte && pte_present(*pte) && !pte_exec(*pte))
578 printk(nx_warning, current_uid());
1156e098 579 }
1156e098 580
19f0dda9 581 printk(KERN_ALERT "BUG: unable to handle kernel ");
b3279c7f 582 if (address < PAGE_SIZE)
19f0dda9 583 printk(KERN_CONT "NULL pointer dereference");
b3279c7f 584 else
19f0dda9 585 printk(KERN_CONT "paging request");
2d4a7167 586
f294a8ce 587 printk(KERN_CONT " at %p\n", (void *) address);
19f0dda9 588 printk(KERN_ALERT "IP:");
b3279c7f 589 printk_address(regs->ip, 1);
2d4a7167 590
b3279c7f
HH
591 dump_pagetable(address);
592}
593
2d4a7167
IM
594static noinline void
595pgtable_bad(struct pt_regs *regs, unsigned long error_code,
596 unsigned long address)
1da177e4 597{
2d4a7167
IM
598 struct task_struct *tsk;
599 unsigned long flags;
600 int sig;
601
602 flags = oops_begin();
603 tsk = current;
604 sig = SIGKILL;
1209140c 605
1da177e4 606 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
92181f19 607 tsk->comm, address);
1da177e4 608 dump_pagetable(address);
2d4a7167
IM
609
610 tsk->thread.cr2 = address;
611 tsk->thread.trap_no = 14;
612 tsk->thread.error_code = error_code;
613
22f5991c 614 if (__die("Bad pagetable", regs, error_code))
874d93d1 615 sig = 0;
2d4a7167 616
874d93d1 617 oops_end(flags, regs, sig);
1da177e4
LT
618}
619
2d4a7167
IM
620static noinline void
621no_context(struct pt_regs *regs, unsigned long error_code,
622 unsigned long address)
92181f19
NP
623{
624 struct task_struct *tsk = current;
19803078 625 unsigned long *stackend;
92181f19
NP
626 unsigned long flags;
627 int sig;
92181f19 628
2d4a7167 629 /* Are we prepared to handle this kernel fault? */
92181f19
NP
630 if (fixup_exception(regs))
631 return;
632
633 /*
2d4a7167
IM
634 * 32-bit:
635 *
636 * Valid to do another page fault here, because if this fault
637 * had been triggered by is_prefetch fixup_exception would have
638 * handled it.
639 *
640 * 64-bit:
92181f19 641 *
2d4a7167 642 * Hall of shame of CPU/BIOS bugs.
92181f19
NP
643 */
644 if (is_prefetch(regs, error_code, address))
645 return;
646
647 if (is_errata93(regs, address))
648 return;
649
650 /*
651 * Oops. The kernel tried to access some bad page. We'll have to
2d4a7167 652 * terminate things with extreme prejudice:
92181f19 653 */
92181f19 654 flags = oops_begin();
92181f19
NP
655
656 show_fault_oops(regs, error_code, address);
657
2d4a7167 658 stackend = end_of_stack(tsk);
19803078
IM
659 if (*stackend != STACK_END_MAGIC)
660 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
661
1cc99544
IM
662 tsk->thread.cr2 = address;
663 tsk->thread.trap_no = 14;
664 tsk->thread.error_code = error_code;
92181f19 665
92181f19
NP
666 sig = SIGKILL;
667 if (__die("Oops", regs, error_code))
668 sig = 0;
2d4a7167 669
92181f19
NP
670 /* Executive summary in case the body of the oops scrolled away */
671 printk(KERN_EMERG "CR2: %016lx\n", address);
2d4a7167 672
92181f19 673 oops_end(flags, regs, sig);
92181f19
NP
674}
675
2d4a7167
IM
676/*
677 * Print out info about fatal segfaults, if the show_unhandled_signals
678 * sysctl is set:
679 */
680static inline void
681show_signal_msg(struct pt_regs *regs, unsigned long error_code,
682 unsigned long address, struct task_struct *tsk)
683{
684 if (!unhandled_signal(tsk, SIGSEGV))
685 return;
686
687 if (!printk_ratelimit())
688 return;
689
690 printk(KERN_CONT "%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
691 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
692 tsk->comm, task_pid_nr(tsk), address,
693 (void *)regs->ip, (void *)regs->sp, error_code);
694
695 print_vma_addr(KERN_CONT " in ", regs->ip);
696
697 printk(KERN_CONT "\n");
698}
699
700static void
701__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
702 unsigned long address, int si_code)
92181f19
NP
703{
704 struct task_struct *tsk = current;
705
706 /* User mode accesses just cause a SIGSEGV */
707 if (error_code & PF_USER) {
708 /*
2d4a7167 709 * It's possible to have interrupts off here:
92181f19
NP
710 */
711 local_irq_enable();
712
713 /*
714 * Valid to do another page fault here because this one came
2d4a7167 715 * from user space:
92181f19
NP
716 */
717 if (is_prefetch(regs, error_code, address))
718 return;
719
720 if (is_errata100(regs, address))
721 return;
722
2d4a7167
IM
723 if (unlikely(show_unhandled_signals))
724 show_signal_msg(regs, error_code, address, tsk);
725
726 /* Kernel addresses are always protection faults: */
727 tsk->thread.cr2 = address;
728 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
729 tsk->thread.trap_no = 14;
92181f19 730
92181f19 731 force_sig_info_fault(SIGSEGV, si_code, address, tsk);
2d4a7167 732
92181f19
NP
733 return;
734 }
735
736 if (is_f00f_bug(regs, address))
737 return;
738
739 no_context(regs, error_code, address);
740}
741
2d4a7167
IM
742static noinline void
743bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
744 unsigned long address)
92181f19
NP
745{
746 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
747}
748
2d4a7167
IM
749static void
750__bad_area(struct pt_regs *regs, unsigned long error_code,
751 unsigned long address, int si_code)
92181f19
NP
752{
753 struct mm_struct *mm = current->mm;
754
755 /*
756 * Something tried to access memory that isn't in our memory map..
757 * Fix it, but check if it's kernel or user first..
758 */
759 up_read(&mm->mmap_sem);
760
761 __bad_area_nosemaphore(regs, error_code, address, si_code);
762}
763
2d4a7167
IM
764static noinline void
765bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
92181f19
NP
766{
767 __bad_area(regs, error_code, address, SEGV_MAPERR);
768}
769
2d4a7167
IM
770static noinline void
771bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
772 unsigned long address)
92181f19
NP
773{
774 __bad_area(regs, error_code, address, SEGV_ACCERR);
775}
776
777/* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
2d4a7167
IM
778static void
779out_of_memory(struct pt_regs *regs, unsigned long error_code,
780 unsigned long address)
92181f19
NP
781{
782 /*
783 * We ran out of memory, call the OOM killer, and return the userspace
2d4a7167 784 * (which will retry the fault, or kill us if we got oom-killed):
92181f19
NP
785 */
786 up_read(&current->mm->mmap_sem);
2d4a7167 787
92181f19
NP
788 pagefault_out_of_memory();
789}
790
2d4a7167
IM
791static void
792do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address)
92181f19
NP
793{
794 struct task_struct *tsk = current;
795 struct mm_struct *mm = tsk->mm;
796
797 up_read(&mm->mmap_sem);
798
2d4a7167 799 /* Kernel mode? Handle exceptions or die: */
92181f19
NP
800 if (!(error_code & PF_USER))
801 no_context(regs, error_code, address);
2d4a7167 802
cd1b68f0 803 /* User-space => ok to do another page fault: */
92181f19
NP
804 if (is_prefetch(regs, error_code, address))
805 return;
2d4a7167
IM
806
807 tsk->thread.cr2 = address;
808 tsk->thread.error_code = error_code;
809 tsk->thread.trap_no = 14;
810
92181f19
NP
811 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
812}
813
2d4a7167
IM
814static noinline void
815mm_fault_error(struct pt_regs *regs, unsigned long error_code,
816 unsigned long address, unsigned int fault)
92181f19 817{
2d4a7167 818 if (fault & VM_FAULT_OOM) {
92181f19 819 out_of_memory(regs, error_code, address);
2d4a7167
IM
820 } else {
821 if (fault & VM_FAULT_SIGBUS)
822 do_sigbus(regs, error_code, address);
823 else
824 BUG();
825 }
92181f19
NP
826}
827
d8b57bb7
TG
828static int spurious_fault_check(unsigned long error_code, pte_t *pte)
829{
830 if ((error_code & PF_WRITE) && !pte_write(*pte))
831 return 0;
2d4a7167 832
d8b57bb7
TG
833 if ((error_code & PF_INSTR) && !pte_exec(*pte))
834 return 0;
835
836 return 1;
837}
838
5b727a3b 839/*
2d4a7167
IM
840 * Handle a spurious fault caused by a stale TLB entry.
841 *
842 * This allows us to lazily refresh the TLB when increasing the
843 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
844 * eagerly is very expensive since that implies doing a full
845 * cross-processor TLB flush, even if no stale TLB entries exist
846 * on other processors.
847 *
5b727a3b
JF
848 * There are no security implications to leaving a stale TLB when
849 * increasing the permissions on a page.
850 */
2d4a7167
IM
851static noinline int
852spurious_fault(unsigned long error_code, unsigned long address)
5b727a3b
JF
853{
854 pgd_t *pgd;
855 pud_t *pud;
856 pmd_t *pmd;
857 pte_t *pte;
3c3e5694 858 int ret;
5b727a3b
JF
859
860 /* Reserved-bit violation or user access to kernel space? */
861 if (error_code & (PF_USER | PF_RSVD))
862 return 0;
863
864 pgd = init_mm.pgd + pgd_index(address);
865 if (!pgd_present(*pgd))
866 return 0;
867
868 pud = pud_offset(pgd, address);
869 if (!pud_present(*pud))
870 return 0;
871
d8b57bb7
TG
872 if (pud_large(*pud))
873 return spurious_fault_check(error_code, (pte_t *) pud);
874
5b727a3b
JF
875 pmd = pmd_offset(pud, address);
876 if (!pmd_present(*pmd))
877 return 0;
878
d8b57bb7
TG
879 if (pmd_large(*pmd))
880 return spurious_fault_check(error_code, (pte_t *) pmd);
881
5b727a3b
JF
882 pte = pte_offset_kernel(pmd, address);
883 if (!pte_present(*pte))
884 return 0;
885
3c3e5694
SR
886 ret = spurious_fault_check(error_code, pte);
887 if (!ret)
888 return 0;
889
890 /*
2d4a7167
IM
891 * Make sure we have permissions in PMD.
892 * If not, then there's a bug in the page tables:
3c3e5694
SR
893 */
894 ret = spurious_fault_check(error_code, (pte_t *) pmd);
895 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
2d4a7167 896
3c3e5694 897 return ret;
5b727a3b
JF
898}
899
abd4f750 900int show_unhandled_signals = 1;
1da177e4 901
2d4a7167
IM
902static inline int
903access_error(unsigned long error_code, int write, struct vm_area_struct *vma)
92181f19
NP
904{
905 if (write) {
2d4a7167 906 /* write, present and write, not present: */
92181f19
NP
907 if (unlikely(!(vma->vm_flags & VM_WRITE)))
908 return 1;
2d4a7167 909 return 0;
92181f19
NP
910 }
911
2d4a7167
IM
912 /* read, present: */
913 if (unlikely(error_code & PF_PROT))
914 return 1;
915
916 /* read, not present: */
917 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
918 return 1;
919
92181f19
NP
920 return 0;
921}
922
0973a06c
HS
923static int fault_in_kernel_space(unsigned long address)
924{
d9517346 925 return address >= TASK_SIZE_MAX;
0973a06c
HS
926}
927
1da177e4
LT
928/*
929 * This routine handles page faults. It determines the address,
930 * and the problem, and then passes it off to one of the appropriate
931 * routines.
1da177e4 932 */
c3731c68
IM
933dotraplinkage void __kprobes
934do_page_fault(struct pt_regs *regs, unsigned long error_code)
1da177e4 935{
2d4a7167 936 struct vm_area_struct *vma;
1da177e4 937 struct task_struct *tsk;
2d4a7167 938 unsigned long address;
1da177e4 939 struct mm_struct *mm;
92181f19 940 int write;
f8c2ee22 941 int fault;
1da177e4 942
a9ba9a3b
AV
943 tsk = current;
944 mm = tsk->mm;
2d4a7167 945
2d4a7167 946 /* Get the faulting address: */
f51c9452 947 address = read_cr2();
1da177e4 948
f8561296
VN
949 /*
950 * Detect and handle instructions that would cause a page fault for
951 * both a tracked kernel page and a userspace page.
952 */
953 if (kmemcheck_active(regs))
954 kmemcheck_hide(regs);
5dfaf90f 955 prefetchw(&mm->mmap_sem);
f8561296 956
0fd0e3da 957 if (unlikely(kmmio_fault(regs, address)))
86069782 958 return;
1da177e4
LT
959
960 /*
961 * We fault-in kernel-space virtual memory on-demand. The
962 * 'reference' page table is init_mm.pgd.
963 *
964 * NOTE! We MUST NOT take any locks for this case. We may
965 * be in an interrupt or a critical region, and should
966 * only copy the information from the master page table,
967 * nothing more.
968 *
969 * This verifies that the fault happens in kernel space
970 * (error_code & 4) == 0, and that the fault was not a
8b1bde93 971 * protection error (error_code & 9) == 0.
1da177e4 972 */
0973a06c 973 if (unlikely(fault_in_kernel_space(address))) {
f8561296
VN
974 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
975 if (vmalloc_fault(address) >= 0)
976 return;
977
978 if (kmemcheck_fault(regs, address, error_code))
979 return;
980 }
5b727a3b 981
2d4a7167 982 /* Can handle a stale RO->RW TLB: */
92181f19 983 if (spurious_fault(error_code, address))
5b727a3b
JF
984 return;
985
2d4a7167 986 /* kprobes don't want to hook the spurious faults: */
9be260a6
MH
987 if (notify_page_fault(regs))
988 return;
f8c2ee22
HH
989 /*
990 * Don't take the mm semaphore here. If we fixup a prefetch
2d4a7167 991 * fault we could otherwise deadlock:
f8c2ee22 992 */
92181f19 993 bad_area_nosemaphore(regs, error_code, address);
2d4a7167 994
92181f19 995 return;
f8c2ee22
HH
996 }
997
2d4a7167 998 /* kprobes don't want to hook the spurious faults: */
f8a6b2b9 999 if (unlikely(notify_page_fault(regs)))
9be260a6 1000 return;
f8c2ee22 1001 /*
891cffbd
LT
1002 * It's safe to allow irq's after cr2 has been saved and the
1003 * vmalloc fault has been handled.
1004 *
1005 * User-mode registers count as a user access even for any
2d4a7167 1006 * potential system fault or CPU buglet:
f8c2ee22 1007 */
891cffbd
LT
1008 if (user_mode_vm(regs)) {
1009 local_irq_enable();
1010 error_code |= PF_USER;
2d4a7167
IM
1011 } else {
1012 if (regs->flags & X86_EFLAGS_IF)
1013 local_irq_enable();
1014 }
8c914cb7 1015
66c58156 1016 if (unlikely(error_code & PF_RSVD))
92181f19 1017 pgtable_bad(regs, error_code, address);
1da177e4 1018
f4dbfa8f 1019 perf_swcounter_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, address);
7dd1fcc2 1020
1da177e4 1021 /*
2d4a7167
IM
1022 * If we're in an interrupt, have no user context or are running
1023 * in an atomic region then we must not take the fault:
1da177e4 1024 */
92181f19
NP
1025 if (unlikely(in_atomic() || !mm)) {
1026 bad_area_nosemaphore(regs, error_code, address);
1027 return;
1028 }
1da177e4 1029
3a1dfe6e
IM
1030 /*
1031 * When running in the kernel we expect faults to occur only to
2d4a7167
IM
1032 * addresses in user space. All other faults represent errors in
1033 * the kernel and should generate an OOPS. Unfortunately, in the
1034 * case of an erroneous fault occurring in a code path which already
1035 * holds mmap_sem we will deadlock attempting to validate the fault
1036 * against the address space. Luckily the kernel only validly
1037 * references user space from well defined areas of code, which are
1038 * listed in the exceptions table.
1da177e4
LT
1039 *
1040 * As the vast majority of faults will be valid we will only perform
2d4a7167
IM
1041 * the source reference check when there is a possibility of a
1042 * deadlock. Attempt to lock the address space, if we cannot we then
1043 * validate the source. If this is invalid we can skip the address
1044 * space check, thus avoiding the deadlock:
1da177e4 1045 */
92181f19 1046 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
66c58156 1047 if ((error_code & PF_USER) == 0 &&
92181f19
NP
1048 !search_exception_tables(regs->ip)) {
1049 bad_area_nosemaphore(regs, error_code, address);
1050 return;
1051 }
1da177e4 1052 down_read(&mm->mmap_sem);
01006074
PZ
1053 } else {
1054 /*
2d4a7167
IM
1055 * The above down_read_trylock() might have succeeded in
1056 * which case we'll have missed the might_sleep() from
1057 * down_read():
01006074
PZ
1058 */
1059 might_sleep();
1da177e4
LT
1060 }
1061
1062 vma = find_vma(mm, address);
92181f19
NP
1063 if (unlikely(!vma)) {
1064 bad_area(regs, error_code, address);
1065 return;
1066 }
1067 if (likely(vma->vm_start <= address))
1da177e4 1068 goto good_area;
92181f19
NP
1069 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1070 bad_area(regs, error_code, address);
1071 return;
1072 }
33cb5243 1073 if (error_code & PF_USER) {
6f4d368e
HH
1074 /*
1075 * Accessing the stack below %sp is always a bug.
1076 * The large cushion allows instructions like enter
2d4a7167 1077 * and pusha to work. ("enter $65535, $31" pushes
6f4d368e 1078 * 32 pointers and then decrements %sp by 65535.)
03fdc2c2 1079 */
92181f19
NP
1080 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1081 bad_area(regs, error_code, address);
1082 return;
1083 }
1da177e4 1084 }
92181f19
NP
1085 if (unlikely(expand_stack(vma, address))) {
1086 bad_area(regs, error_code, address);
1087 return;
1088 }
1089
1090 /*
1091 * Ok, we have a good vm_area for this memory access, so
1092 * we can handle it..
1093 */
1da177e4 1094good_area:
92181f19 1095 write = error_code & PF_WRITE;
2d4a7167 1096
92181f19
NP
1097 if (unlikely(access_error(error_code, write, vma))) {
1098 bad_area_access_error(regs, error_code, address);
1099 return;
1da177e4
LT
1100 }
1101
1102 /*
1103 * If for any reason at all we couldn't handle the fault,
1104 * make sure we exit gracefully rather than endlessly redo
2d4a7167 1105 * the fault:
1da177e4 1106 */
d06063cc 1107 fault = handle_mm_fault(mm, vma, address, write ? FAULT_FLAG_WRITE : 0);
2d4a7167 1108
83c54070 1109 if (unlikely(fault & VM_FAULT_ERROR)) {
92181f19
NP
1110 mm_fault_error(regs, error_code, address, fault);
1111 return;
1da177e4 1112 }
2d4a7167 1113
ac17dc8e 1114 if (fault & VM_FAULT_MAJOR) {
83c54070 1115 tsk->maj_flt++;
f4dbfa8f 1116 perf_swcounter_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0,
78f13e95 1117 regs, address);
ac17dc8e 1118 } else {
83c54070 1119 tsk->min_flt++;
f4dbfa8f 1120 perf_swcounter_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0,
78f13e95 1121 regs, address);
ac17dc8e 1122 }
d729ab35 1123
8c938f9f
IM
1124 check_v8086_mode(regs, address, tsk);
1125
1da177e4 1126 up_read(&mm->mmap_sem);
1da177e4 1127}