]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/x86/kvm/i8254.c
KVM: unify part of generic timer handling
[net-next-2.6.git] / arch / x86 / kvm / i8254.c
CommitLineData
7837699f
SY
1/*
2 * 8253/8254 interval timer emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2006 Intel Corporation
6 * Copyright (c) 2007 Keir Fraser, XenSource Inc
7 * Copyright (c) 2008 Intel Corporation
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a copy
10 * of this software and associated documentation files (the "Software"), to deal
11 * in the Software without restriction, including without limitation the rights
12 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13 * copies of the Software, and to permit persons to whom the Software is
14 * furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included in
17 * all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 * THE SOFTWARE.
26 *
27 * Authors:
28 * Sheng Yang <sheng.yang@intel.com>
29 * Based on QEMU and Xen.
30 */
31
32#include <linux/kvm_host.h>
33
34#include "irq.h"
35#include "i8254.h"
36
37#ifndef CONFIG_X86_64
6f6d6a1a 38#define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
7837699f
SY
39#else
40#define mod_64(x, y) ((x) % (y))
41#endif
42
43#define RW_STATE_LSB 1
44#define RW_STATE_MSB 2
45#define RW_STATE_WORD0 3
46#define RW_STATE_WORD1 4
47
48/* Compute with 96 bit intermediate result: (a*b)/c */
49static u64 muldiv64(u64 a, u32 b, u32 c)
50{
51 union {
52 u64 ll;
53 struct {
54 u32 low, high;
55 } l;
56 } u, res;
57 u64 rl, rh;
58
59 u.ll = a;
60 rl = (u64)u.l.low * (u64)b;
61 rh = (u64)u.l.high * (u64)b;
62 rh += (rl >> 32);
6f6d6a1a
RZ
63 res.l.high = div64_u64(rh, c);
64 res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
7837699f
SY
65 return res.ll;
66}
67
68static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
69{
70 struct kvm_kpit_channel_state *c =
71 &kvm->arch.vpit->pit_state.channels[channel];
72
73 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
74
75 switch (c->mode) {
76 default:
77 case 0:
78 case 4:
79 /* XXX: just disable/enable counting */
80 break;
81 case 1:
82 case 2:
83 case 3:
84 case 5:
85 /* Restart counting on rising edge. */
86 if (c->gate < val)
87 c->count_load_time = ktime_get();
88 break;
89 }
90
91 c->gate = val;
92}
93
8b2cf73c 94static int pit_get_gate(struct kvm *kvm, int channel)
7837699f
SY
95{
96 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
97
98 return kvm->arch.vpit->pit_state.channels[channel].gate;
99}
100
fd668423
MT
101static s64 __kpit_elapsed(struct kvm *kvm)
102{
103 s64 elapsed;
104 ktime_t remaining;
105 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
106
107 remaining = hrtimer_expires_remaining(&ps->pit_timer.timer);
108 if (ktime_to_ns(remaining) < 0)
109 remaining = ktime_set(0, 0);
110
111 elapsed = ps->pit_timer.period;
112 if (ktime_to_ns(remaining) <= ps->pit_timer.period)
113 elapsed = ps->pit_timer.period - ktime_to_ns(remaining);
114
115 return elapsed;
116}
117
118static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c,
119 int channel)
120{
121 if (channel == 0)
122 return __kpit_elapsed(kvm);
123
124 return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
125}
126
7837699f
SY
127static int pit_get_count(struct kvm *kvm, int channel)
128{
129 struct kvm_kpit_channel_state *c =
130 &kvm->arch.vpit->pit_state.channels[channel];
131 s64 d, t;
132 int counter;
133
134 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
135
fd668423 136 t = kpit_elapsed(kvm, c, channel);
7837699f
SY
137 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
138
139 switch (c->mode) {
140 case 0:
141 case 1:
142 case 4:
143 case 5:
144 counter = (c->count - d) & 0xffff;
145 break;
146 case 3:
147 /* XXX: may be incorrect for odd counts */
148 counter = c->count - (mod_64((2 * d), c->count));
149 break;
150 default:
151 counter = c->count - mod_64(d, c->count);
152 break;
153 }
154 return counter;
155}
156
157static int pit_get_out(struct kvm *kvm, int channel)
158{
159 struct kvm_kpit_channel_state *c =
160 &kvm->arch.vpit->pit_state.channels[channel];
161 s64 d, t;
162 int out;
163
164 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
165
fd668423 166 t = kpit_elapsed(kvm, c, channel);
7837699f
SY
167 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
168
169 switch (c->mode) {
170 default:
171 case 0:
172 out = (d >= c->count);
173 break;
174 case 1:
175 out = (d < c->count);
176 break;
177 case 2:
178 out = ((mod_64(d, c->count) == 0) && (d != 0));
179 break;
180 case 3:
181 out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
182 break;
183 case 4:
184 case 5:
185 out = (d == c->count);
186 break;
187 }
188
189 return out;
190}
191
192static void pit_latch_count(struct kvm *kvm, int channel)
193{
194 struct kvm_kpit_channel_state *c =
195 &kvm->arch.vpit->pit_state.channels[channel];
196
197 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
198
199 if (!c->count_latched) {
200 c->latched_count = pit_get_count(kvm, channel);
201 c->count_latched = c->rw_mode;
202 }
203}
204
205static void pit_latch_status(struct kvm *kvm, int channel)
206{
207 struct kvm_kpit_channel_state *c =
208 &kvm->arch.vpit->pit_state.channels[channel];
209
210 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
211
212 if (!c->status_latched) {
213 /* TODO: Return NULL COUNT (bit 6). */
214 c->status = ((pit_get_out(kvm, channel) << 7) |
215 (c->rw_mode << 4) |
216 (c->mode << 1) |
217 c->bcd);
218 c->status_latched = 1;
219 }
220}
221
3d80840d
MT
222int pit_has_pending_timer(struct kvm_vcpu *vcpu)
223{
224 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
225
3cf57fed 226 if (pit && vcpu->vcpu_id == 0 && pit->pit_state.irq_ack)
3d80840d 227 return atomic_read(&pit->pit_state.pit_timer.pending);
3d80840d
MT
228 return 0;
229}
230
ee032c99 231static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
3cf57fed
MT
232{
233 struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
234 irq_ack_notifier);
235 spin_lock(&ps->inject_lock);
236 if (atomic_dec_return(&ps->pit_timer.pending) < 0)
dc7404ce 237 atomic_inc(&ps->pit_timer.pending);
3cf57fed
MT
238 ps->irq_ack = 1;
239 spin_unlock(&ps->inject_lock);
240}
241
2f599714
MT
242void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
243{
244 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
245 struct hrtimer *timer;
246
247 if (vcpu->vcpu_id != 0 || !pit)
248 return;
249
250 timer = &pit->pit_state.pit_timer.timer;
251 if (hrtimer_cancel(timer))
beb20d52 252 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
2f599714
MT
253}
254
d3c7b77d 255static void destroy_pit_timer(struct kvm_timer *pt)
7837699f
SY
256{
257 pr_debug("pit: execute del timer!\n");
258 hrtimer_cancel(&pt->timer);
259}
260
d3c7b77d
MT
261static bool kpit_is_periodic(struct kvm_timer *ktimer)
262{
263 struct kvm_kpit_state *ps = container_of(ktimer, struct kvm_kpit_state,
264 pit_timer);
265 return ps->is_periodic;
266}
267
268struct kvm_timer_ops kpit_ops = {
269 .is_periodic = kpit_is_periodic,
270};
271
3cf57fed 272static void create_pit_timer(struct kvm_kpit_state *ps, u32 val, int is_period)
7837699f 273{
d3c7b77d 274 struct kvm_timer *pt = &ps->pit_timer;
7837699f
SY
275 s64 interval;
276
277 interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
278
279 pr_debug("pit: create pit timer, interval is %llu nsec\n", interval);
280
281 /* TODO The new value only affected after the retriggered */
282 hrtimer_cancel(&pt->timer);
283 pt->period = (is_period == 0) ? 0 : interval;
d3c7b77d
MT
284 ps->is_periodic = is_period;
285
286 pt->timer.function = kvm_timer_fn;
287 pt->t_ops = &kpit_ops;
288 pt->kvm = ps->pit->kvm;
289 pt->vcpu_id = 0;
290
7837699f 291 atomic_set(&pt->pending, 0);
3cf57fed 292 ps->irq_ack = 1;
7837699f
SY
293
294 hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
295 HRTIMER_MODE_ABS);
296}
297
298static void pit_load_count(struct kvm *kvm, int channel, u32 val)
299{
300 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
301
302 WARN_ON(!mutex_is_locked(&ps->lock));
303
304 pr_debug("pit: load_count val is %d, channel is %d\n", val, channel);
305
306 /*
307 * Though spec said the state of 8254 is undefined after power-up,
308 * seems some tricky OS like Windows XP depends on IRQ0 interrupt
309 * when booting up.
310 * So here setting initialize rate for it, and not a specific number
311 */
312 if (val == 0)
313 val = 0x10000;
314
7837699f
SY
315 ps->channels[channel].count = val;
316
fd668423
MT
317 if (channel != 0) {
318 ps->channels[channel].count_load_time = ktime_get();
7837699f 319 return;
fd668423 320 }
7837699f
SY
321
322 /* Two types of timer
323 * mode 1 is one shot, mode 2 is period, otherwise del timer */
324 switch (ps->channels[0].mode) {
325 case 1:
ece15bab
MT
326 /* FIXME: enhance mode 4 precision */
327 case 4:
3cf57fed 328 create_pit_timer(ps, val, 0);
7837699f
SY
329 break;
330 case 2:
f6975545 331 case 3:
3cf57fed 332 create_pit_timer(ps, val, 1);
7837699f
SY
333 break;
334 default:
335 destroy_pit_timer(&ps->pit_timer);
336 }
337}
338
e0f63cb9
SY
339void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val)
340{
341 mutex_lock(&kvm->arch.vpit->pit_state.lock);
342 pit_load_count(kvm, channel, val);
343 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
344}
345
7837699f
SY
346static void pit_ioport_write(struct kvm_io_device *this,
347 gpa_t addr, int len, const void *data)
348{
349 struct kvm_pit *pit = (struct kvm_pit *)this->private;
350 struct kvm_kpit_state *pit_state = &pit->pit_state;
351 struct kvm *kvm = pit->kvm;
352 int channel, access;
353 struct kvm_kpit_channel_state *s;
354 u32 val = *(u32 *) data;
355
356 val &= 0xff;
357 addr &= KVM_PIT_CHANNEL_MASK;
358
359 mutex_lock(&pit_state->lock);
360
361 if (val != 0)
362 pr_debug("pit: write addr is 0x%x, len is %d, val is 0x%x\n",
363 (unsigned int)addr, len, val);
364
365 if (addr == 3) {
366 channel = val >> 6;
367 if (channel == 3) {
368 /* Read-Back Command. */
369 for (channel = 0; channel < 3; channel++) {
370 s = &pit_state->channels[channel];
371 if (val & (2 << channel)) {
372 if (!(val & 0x20))
373 pit_latch_count(kvm, channel);
374 if (!(val & 0x10))
375 pit_latch_status(kvm, channel);
376 }
377 }
378 } else {
379 /* Select Counter <channel>. */
380 s = &pit_state->channels[channel];
381 access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
382 if (access == 0) {
383 pit_latch_count(kvm, channel);
384 } else {
385 s->rw_mode = access;
386 s->read_state = access;
387 s->write_state = access;
388 s->mode = (val >> 1) & 7;
389 if (s->mode > 5)
390 s->mode -= 4;
391 s->bcd = val & 1;
392 }
393 }
394 } else {
395 /* Write Count. */
396 s = &pit_state->channels[addr];
397 switch (s->write_state) {
398 default:
399 case RW_STATE_LSB:
400 pit_load_count(kvm, addr, val);
401 break;
402 case RW_STATE_MSB:
403 pit_load_count(kvm, addr, val << 8);
404 break;
405 case RW_STATE_WORD0:
406 s->write_latch = val;
407 s->write_state = RW_STATE_WORD1;
408 break;
409 case RW_STATE_WORD1:
410 pit_load_count(kvm, addr, s->write_latch | (val << 8));
411 s->write_state = RW_STATE_WORD0;
412 break;
413 }
414 }
415
416 mutex_unlock(&pit_state->lock);
417}
418
419static void pit_ioport_read(struct kvm_io_device *this,
420 gpa_t addr, int len, void *data)
421{
422 struct kvm_pit *pit = (struct kvm_pit *)this->private;
423 struct kvm_kpit_state *pit_state = &pit->pit_state;
424 struct kvm *kvm = pit->kvm;
425 int ret, count;
426 struct kvm_kpit_channel_state *s;
427
428 addr &= KVM_PIT_CHANNEL_MASK;
429 s = &pit_state->channels[addr];
430
431 mutex_lock(&pit_state->lock);
432
433 if (s->status_latched) {
434 s->status_latched = 0;
435 ret = s->status;
436 } else if (s->count_latched) {
437 switch (s->count_latched) {
438 default:
439 case RW_STATE_LSB:
440 ret = s->latched_count & 0xff;
441 s->count_latched = 0;
442 break;
443 case RW_STATE_MSB:
444 ret = s->latched_count >> 8;
445 s->count_latched = 0;
446 break;
447 case RW_STATE_WORD0:
448 ret = s->latched_count & 0xff;
449 s->count_latched = RW_STATE_MSB;
450 break;
451 }
452 } else {
453 switch (s->read_state) {
454 default:
455 case RW_STATE_LSB:
456 count = pit_get_count(kvm, addr);
457 ret = count & 0xff;
458 break;
459 case RW_STATE_MSB:
460 count = pit_get_count(kvm, addr);
461 ret = (count >> 8) & 0xff;
462 break;
463 case RW_STATE_WORD0:
464 count = pit_get_count(kvm, addr);
465 ret = count & 0xff;
466 s->read_state = RW_STATE_WORD1;
467 break;
468 case RW_STATE_WORD1:
469 count = pit_get_count(kvm, addr);
470 ret = (count >> 8) & 0xff;
471 s->read_state = RW_STATE_WORD0;
472 break;
473 }
474 }
475
476 if (len > sizeof(ret))
477 len = sizeof(ret);
478 memcpy(data, (char *)&ret, len);
479
480 mutex_unlock(&pit_state->lock);
481}
482
92760499
LV
483static int pit_in_range(struct kvm_io_device *this, gpa_t addr,
484 int len, int is_write)
7837699f
SY
485{
486 return ((addr >= KVM_PIT_BASE_ADDRESS) &&
487 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
488}
489
490static void speaker_ioport_write(struct kvm_io_device *this,
491 gpa_t addr, int len, const void *data)
492{
493 struct kvm_pit *pit = (struct kvm_pit *)this->private;
494 struct kvm_kpit_state *pit_state = &pit->pit_state;
495 struct kvm *kvm = pit->kvm;
496 u32 val = *(u32 *) data;
497
498 mutex_lock(&pit_state->lock);
499 pit_state->speaker_data_on = (val >> 1) & 1;
500 pit_set_gate(kvm, 2, val & 1);
501 mutex_unlock(&pit_state->lock);
502}
503
504static void speaker_ioport_read(struct kvm_io_device *this,
505 gpa_t addr, int len, void *data)
506{
507 struct kvm_pit *pit = (struct kvm_pit *)this->private;
508 struct kvm_kpit_state *pit_state = &pit->pit_state;
509 struct kvm *kvm = pit->kvm;
510 unsigned int refresh_clock;
511 int ret;
512
513 /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
514 refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
515
516 mutex_lock(&pit_state->lock);
517 ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
518 (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
519 if (len > sizeof(ret))
520 len = sizeof(ret);
521 memcpy(data, (char *)&ret, len);
522 mutex_unlock(&pit_state->lock);
523}
524
92760499
LV
525static int speaker_in_range(struct kvm_io_device *this, gpa_t addr,
526 int len, int is_write)
7837699f
SY
527{
528 return (addr == KVM_SPEAKER_BASE_ADDRESS);
529}
530
308b0f23 531void kvm_pit_reset(struct kvm_pit *pit)
7837699f
SY
532{
533 int i;
308b0f23
SY
534 struct kvm_kpit_channel_state *c;
535
536 mutex_lock(&pit->pit_state.lock);
537 for (i = 0; i < 3; i++) {
538 c = &pit->pit_state.channels[i];
539 c->mode = 0xff;
540 c->gate = (i != 2);
541 pit_load_count(pit->kvm, i, 0);
542 }
543 mutex_unlock(&pit->pit_state.lock);
544
545 atomic_set(&pit->pit_state.pit_timer.pending, 0);
3cf57fed 546 pit->pit_state.irq_ack = 1;
308b0f23
SY
547}
548
4780c659
AK
549static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
550{
551 struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
552
553 if (!mask) {
554 atomic_set(&pit->pit_state.pit_timer.pending, 0);
555 pit->pit_state.irq_ack = 1;
556 }
557}
558
308b0f23
SY
559struct kvm_pit *kvm_create_pit(struct kvm *kvm)
560{
7837699f
SY
561 struct kvm_pit *pit;
562 struct kvm_kpit_state *pit_state;
7837699f
SY
563
564 pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
565 if (!pit)
566 return NULL;
567
5550af4d 568 pit->irq_source_id = kvm_request_irq_source_id(kvm);
e17d1dc0
AK
569 if (pit->irq_source_id < 0) {
570 kfree(pit);
5550af4d 571 return NULL;
e17d1dc0 572 }
5550af4d 573
7837699f
SY
574 mutex_init(&pit->pit_state.lock);
575 mutex_lock(&pit->pit_state.lock);
3cf57fed 576 spin_lock_init(&pit->pit_state.inject_lock);
7837699f
SY
577
578 /* Initialize PIO device */
579 pit->dev.read = pit_ioport_read;
580 pit->dev.write = pit_ioport_write;
581 pit->dev.in_range = pit_in_range;
582 pit->dev.private = pit;
583 kvm_io_bus_register_dev(&kvm->pio_bus, &pit->dev);
584
585 pit->speaker_dev.read = speaker_ioport_read;
586 pit->speaker_dev.write = speaker_ioport_write;
587 pit->speaker_dev.in_range = speaker_in_range;
588 pit->speaker_dev.private = pit;
589 kvm_io_bus_register_dev(&kvm->pio_bus, &pit->speaker_dev);
590
591 kvm->arch.vpit = pit;
592 pit->kvm = kvm;
593
594 pit_state = &pit->pit_state;
595 pit_state->pit = pit;
596 hrtimer_init(&pit_state->pit_timer.timer,
597 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
3cf57fed
MT
598 pit_state->irq_ack_notifier.gsi = 0;
599 pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
600 kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
52d939a0 601 pit_state->pit_timer.reinject = true;
7837699f
SY
602 mutex_unlock(&pit->pit_state.lock);
603
308b0f23 604 kvm_pit_reset(pit);
7837699f 605
4780c659
AK
606 pit->mask_notifier.func = pit_mask_notifer;
607 kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
608
7837699f
SY
609 return pit;
610}
611
612void kvm_free_pit(struct kvm *kvm)
613{
614 struct hrtimer *timer;
615
616 if (kvm->arch.vpit) {
4780c659
AK
617 kvm_unregister_irq_mask_notifier(kvm, 0,
618 &kvm->arch.vpit->mask_notifier);
7837699f
SY
619 mutex_lock(&kvm->arch.vpit->pit_state.lock);
620 timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
621 hrtimer_cancel(timer);
5550af4d 622 kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
7837699f
SY
623 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
624 kfree(kvm->arch.vpit);
625 }
626}
627
8b2cf73c 628static void __inject_pit_timer_intr(struct kvm *kvm)
7837699f 629{
23930f95
JK
630 struct kvm_vcpu *vcpu;
631 int i;
632
7837699f 633 mutex_lock(&kvm->lock);
5550af4d
SY
634 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1);
635 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0);
7837699f 636 mutex_unlock(&kvm->lock);
23930f95
JK
637
638 /*
8fdb2351
JK
639 * Provides NMI watchdog support via Virtual Wire mode.
640 * The route is: PIT -> PIC -> LVT0 in NMI mode.
641 *
642 * Note: Our Virtual Wire implementation is simplified, only
643 * propagating PIT interrupts to all VCPUs when they have set
644 * LVT0 to NMI delivery. Other PIC interrupts are just sent to
645 * VCPU0, and only if its LVT0 is in EXTINT mode.
23930f95 646 */
cc6e462c
JK
647 if (kvm->arch.vapics_in_nmi_mode > 0)
648 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
649 vcpu = kvm->vcpus[i];
650 if (vcpu)
651 kvm_apic_nmi_wd_deliver(vcpu);
652 }
7837699f
SY
653}
654
655void kvm_inject_pit_timer_irqs(struct kvm_vcpu *vcpu)
656{
657 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
658 struct kvm *kvm = vcpu->kvm;
659 struct kvm_kpit_state *ps;
660
661 if (vcpu && pit) {
3cf57fed 662 int inject = 0;
7837699f
SY
663 ps = &pit->pit_state;
664
3cf57fed
MT
665 /* Try to inject pending interrupts when
666 * last one has been acked.
667 */
668 spin_lock(&ps->inject_lock);
669 if (atomic_read(&ps->pit_timer.pending) && ps->irq_ack) {
670 ps->irq_ack = 0;
671 inject = 1;
7837699f 672 }
3cf57fed
MT
673 spin_unlock(&ps->inject_lock);
674 if (inject)
675 __inject_pit_timer_intr(kvm);
7837699f
SY
676 }
677}