]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/x86/kernel/tsc.c
x86, voyager: fix smp_intr_init() compile breakage
[net-next-2.6.git] / arch / x86 / kernel / tsc.c
CommitLineData
bfc0f594 1#include <linux/kernel.h>
0ef95533
AK
2#include <linux/sched.h>
3#include <linux/init.h>
4#include <linux/module.h>
5#include <linux/timer.h>
bfc0f594 6#include <linux/acpi_pmtmr.h>
2dbe06fa 7#include <linux/cpufreq.h>
8fbbc4b4
AK
8#include <linux/dmi.h>
9#include <linux/delay.h>
10#include <linux/clocksource.h>
11#include <linux/percpu.h>
bfc0f594
AK
12
13#include <asm/hpet.h>
8fbbc4b4
AK
14#include <asm/timer.h>
15#include <asm/vgtod.h>
16#include <asm/time.h>
17#include <asm/delay.h>
0ef95533
AK
18
19unsigned int cpu_khz; /* TSC clocks / usec, not used here */
20EXPORT_SYMBOL(cpu_khz);
21unsigned int tsc_khz;
22EXPORT_SYMBOL(tsc_khz);
23
24/*
25 * TSC can be unstable due to cpufreq or due to unsynced TSCs
26 */
8fbbc4b4 27static int tsc_unstable;
0ef95533
AK
28
29/* native_sched_clock() is called before tsc_init(), so
30 we must start with the TSC soft disabled to prevent
31 erroneous rdtsc usage on !cpu_has_tsc processors */
8fbbc4b4 32static int tsc_disabled = -1;
0ef95533
AK
33
34/*
35 * Scheduler clock - returns current time in nanosec units.
36 */
37u64 native_sched_clock(void)
38{
39 u64 this_offset;
40
41 /*
42 * Fall back to jiffies if there's no TSC available:
43 * ( But note that we still use it if the TSC is marked
44 * unstable. We do this because unlike Time Of Day,
45 * the scheduler clock tolerates small errors and it's
46 * very important for it to be as fast as the platform
47 * can achive it. )
48 */
49 if (unlikely(tsc_disabled)) {
50 /* No locking but a rare wrong value is not a big deal: */
51 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
52 }
53
54 /* read the Time Stamp Counter: */
55 rdtscll(this_offset);
56
57 /* return the value in ns */
58 return cycles_2_ns(this_offset);
59}
60
61/* We need to define a real function for sched_clock, to override the
62 weak default version */
63#ifdef CONFIG_PARAVIRT
64unsigned long long sched_clock(void)
65{
66 return paravirt_sched_clock();
67}
68#else
69unsigned long long
70sched_clock(void) __attribute__((alias("native_sched_clock")));
71#endif
72
73int check_tsc_unstable(void)
74{
75 return tsc_unstable;
76}
77EXPORT_SYMBOL_GPL(check_tsc_unstable);
78
79#ifdef CONFIG_X86_TSC
80int __init notsc_setup(char *str)
81{
82 printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
83 "cannot disable TSC completely.\n");
84 tsc_disabled = 1;
85 return 1;
86}
87#else
88/*
89 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
90 * in cpu/common.c
91 */
92int __init notsc_setup(char *str)
93{
94 setup_clear_cpu_cap(X86_FEATURE_TSC);
95 return 1;
96}
97#endif
98
99__setup("notsc", notsc_setup);
bfc0f594
AK
100
101#define MAX_RETRIES 5
102#define SMI_TRESHOLD 50000
103
104/*
105 * Read TSC and the reference counters. Take care of SMI disturbance
106 */
827014be 107static u64 tsc_read_refs(u64 *p, int hpet)
bfc0f594
AK
108{
109 u64 t1, t2;
110 int i;
111
112 for (i = 0; i < MAX_RETRIES; i++) {
113 t1 = get_cycles();
114 if (hpet)
827014be 115 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
bfc0f594 116 else
827014be 117 *p = acpi_pm_read_early();
bfc0f594
AK
118 t2 = get_cycles();
119 if ((t2 - t1) < SMI_TRESHOLD)
120 return t2;
121 }
122 return ULLONG_MAX;
123}
124
d683ef7a
TG
125/*
126 * Calculate the TSC frequency from HPET reference
bfc0f594 127 */
d683ef7a 128static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
bfc0f594 129{
d683ef7a 130 u64 tmp;
bfc0f594 131
d683ef7a
TG
132 if (hpet2 < hpet1)
133 hpet2 += 0x100000000ULL;
134 hpet2 -= hpet1;
135 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
136 do_div(tmp, 1000000);
137 do_div(deltatsc, tmp);
138
139 return (unsigned long) deltatsc;
140}
141
142/*
143 * Calculate the TSC frequency from PMTimer reference
144 */
145static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
146{
147 u64 tmp;
bfc0f594 148
d683ef7a
TG
149 if (!pm1 && !pm2)
150 return ULONG_MAX;
151
152 if (pm2 < pm1)
153 pm2 += (u64)ACPI_PM_OVRRUN;
154 pm2 -= pm1;
155 tmp = pm2 * 1000000000LL;
156 do_div(tmp, PMTMR_TICKS_PER_SEC);
157 do_div(deltatsc, tmp);
158
159 return (unsigned long) deltatsc;
160}
161
a977c400 162#define CAL_MS 10
cce3e057 163#define CAL_LATCH (CLOCK_TICK_RATE / (1000 / CAL_MS))
a977c400
TG
164#define CAL_PIT_LOOPS 1000
165
166#define CAL2_MS 50
167#define CAL2_LATCH (CLOCK_TICK_RATE / (1000 / CAL2_MS))
168#define CAL2_PIT_LOOPS 5000
169
cce3e057 170
ec0c15af
LT
171/*
172 * Try to calibrate the TSC against the Programmable
173 * Interrupt Timer and return the frequency of the TSC
174 * in kHz.
175 *
176 * Return ULONG_MAX on failure to calibrate.
177 */
a977c400 178static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
ec0c15af
LT
179{
180 u64 tsc, t1, t2, delta;
181 unsigned long tscmin, tscmax;
182 int pitcnt;
183
184 /* Set the Gate high, disable speaker */
185 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
186
187 /*
188 * Setup CTC channel 2* for mode 0, (interrupt on terminal
189 * count mode), binary count. Set the latch register to 50ms
190 * (LSB then MSB) to begin countdown.
191 */
192 outb(0xb0, 0x43);
a977c400
TG
193 outb(latch & 0xff, 0x42);
194 outb(latch >> 8, 0x42);
ec0c15af
LT
195
196 tsc = t1 = t2 = get_cycles();
197
198 pitcnt = 0;
199 tscmax = 0;
200 tscmin = ULONG_MAX;
201 while ((inb(0x61) & 0x20) == 0) {
202 t2 = get_cycles();
203 delta = t2 - tsc;
204 tsc = t2;
205 if ((unsigned long) delta < tscmin)
206 tscmin = (unsigned int) delta;
207 if ((unsigned long) delta > tscmax)
208 tscmax = (unsigned int) delta;
209 pitcnt++;
210 }
211
212 /*
213 * Sanity checks:
214 *
a977c400 215 * If we were not able to read the PIT more than loopmin
ec0c15af
LT
216 * times, then we have been hit by a massive SMI
217 *
218 * If the maximum is 10 times larger than the minimum,
219 * then we got hit by an SMI as well.
220 */
a977c400 221 if (pitcnt < loopmin || tscmax > 10 * tscmin)
ec0c15af
LT
222 return ULONG_MAX;
223
224 /* Calculate the PIT value */
225 delta = t2 - t1;
a977c400 226 do_div(delta, ms);
ec0c15af
LT
227 return delta;
228}
229
6ac40ed0
LT
230/*
231 * This reads the current MSB of the PIT counter, and
232 * checks if we are running on sufficiently fast and
233 * non-virtualized hardware.
234 *
235 * Our expectations are:
236 *
237 * - the PIT is running at roughly 1.19MHz
238 *
239 * - each IO is going to take about 1us on real hardware,
240 * but we allow it to be much faster (by a factor of 10) or
241 * _slightly_ slower (ie we allow up to a 2us read+counter
242 * update - anything else implies a unacceptably slow CPU
243 * or PIT for the fast calibration to work.
244 *
245 * - with 256 PIT ticks to read the value, we have 214us to
246 * see the same MSB (and overhead like doing a single TSC
247 * read per MSB value etc).
248 *
249 * - We're doing 2 reads per loop (LSB, MSB), and we expect
250 * them each to take about a microsecond on real hardware.
251 * So we expect a count value of around 100. But we'll be
252 * generous, and accept anything over 50.
253 *
254 * - if the PIT is stuck, and we see *many* more reads, we
255 * return early (and the next caller of pit_expect_msb()
256 * then consider it a failure when they don't see the
257 * next expected value).
258 *
259 * These expectations mean that we know that we have seen the
260 * transition from one expected value to another with a fairly
261 * high accuracy, and we didn't miss any events. We can thus
262 * use the TSC value at the transitions to calculate a pretty
263 * good value for the TSC frequencty.
264 */
265static inline int pit_expect_msb(unsigned char val)
266{
267 int count = 0;
bfc0f594 268
6ac40ed0
LT
269 for (count = 0; count < 50000; count++) {
270 /* Ignore LSB */
271 inb(0x42);
272 if (inb(0x42) != val)
273 break;
274 }
275 return count > 50;
276}
277
278/*
279 * How many MSB values do we want to see? We aim for a
280 * 15ms calibration, which assuming a 2us counter read
281 * error should give us roughly 150 ppm precision for
282 * the calibration.
283 */
284#define QUICK_PIT_MS 15
285#define QUICK_PIT_ITERATIONS (QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
bfc0f594 286
6ac40ed0
LT
287static unsigned long quick_pit_calibrate(void)
288{
289 /* Set the Gate high, disable speaker */
bfc0f594
AK
290 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
291
6ac40ed0
LT
292 /*
293 * Counter 2, mode 0 (one-shot), binary count
294 *
295 * NOTE! Mode 2 decrements by two (and then the
296 * output is flipped each time, giving the same
297 * final output frequency as a decrement-by-one),
298 * so mode 0 is much better when looking at the
299 * individual counts.
300 */
bfc0f594 301 outb(0xb0, 0x43);
bfc0f594 302
6ac40ed0
LT
303 /* Start at 0xffff */
304 outb(0xff, 0x42);
305 outb(0xff, 0x42);
306
307 if (pit_expect_msb(0xff)) {
308 int i;
309 u64 t1, t2, delta;
310 unsigned char expect = 0xfe;
311
312 t1 = get_cycles();
313 for (i = 0; i < QUICK_PIT_ITERATIONS; i++, expect--) {
314 if (!pit_expect_msb(expect))
315 goto failed;
316 }
317 t2 = get_cycles();
318
4156e9a8
IM
319 /*
320 * Make sure we can rely on the second TSC timestamp:
321 */
5df45515 322 if (!pit_expect_msb(expect))
4156e9a8
IM
323 goto failed;
324
6ac40ed0
LT
325 /*
326 * Ok, if we get here, then we've seen the
327 * MSB of the PIT decrement QUICK_PIT_ITERATIONS
328 * times, and each MSB had many hits, so we never
329 * had any sudden jumps.
330 *
331 * As a result, we can depend on there not being
332 * any odd delays anywhere, and the TSC reads are
333 * reliable.
334 *
335 * kHz = ticks / time-in-seconds / 1000;
336 * kHz = (t2 - t1) / (QPI * 256 / PIT_TICK_RATE) / 1000
337 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (QPI * 256 * 1000)
338 */
339 delta = (t2 - t1)*PIT_TICK_RATE;
340 do_div(delta, QUICK_PIT_ITERATIONS*256*1000);
341 printk("Fast TSC calibration using PIT\n");
342 return delta;
343 }
344failed:
345 return 0;
346}
ec0c15af 347
bfc0f594 348/**
e93ef949 349 * native_calibrate_tsc - calibrate the tsc on boot
bfc0f594 350 */
e93ef949 351unsigned long native_calibrate_tsc(void)
bfc0f594 352{
827014be 353 u64 tsc1, tsc2, delta, ref1, ref2;
fbb16e24 354 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
6ac40ed0 355 unsigned long flags, latch, ms, fast_calibrate;
a977c400 356 int hpet = is_hpet_enabled(), i, loopmin;
bfc0f594 357
6ac40ed0
LT
358 local_irq_save(flags);
359 fast_calibrate = quick_pit_calibrate();
bfc0f594 360 local_irq_restore(flags);
6ac40ed0
LT
361 if (fast_calibrate)
362 return fast_calibrate;
bfc0f594 363
fbb16e24
TG
364 /*
365 * Run 5 calibration loops to get the lowest frequency value
366 * (the best estimate). We use two different calibration modes
367 * here:
368 *
369 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
370 * load a timeout of 50ms. We read the time right after we
371 * started the timer and wait until the PIT count down reaches
372 * zero. In each wait loop iteration we read the TSC and check
373 * the delta to the previous read. We keep track of the min
374 * and max values of that delta. The delta is mostly defined
375 * by the IO time of the PIT access, so we can detect when a
376 * SMI/SMM disturbance happend between the two reads. If the
377 * maximum time is significantly larger than the minimum time,
378 * then we discard the result and have another try.
379 *
380 * 2) Reference counter. If available we use the HPET or the
381 * PMTIMER as a reference to check the sanity of that value.
382 * We use separate TSC readouts and check inside of the
383 * reference read for a SMI/SMM disturbance. We dicard
384 * disturbed values here as well. We do that around the PIT
385 * calibration delay loop as we have to wait for a certain
386 * amount of time anyway.
387 */
a977c400
TG
388
389 /* Preset PIT loop values */
390 latch = CAL_LATCH;
391 ms = CAL_MS;
392 loopmin = CAL_PIT_LOOPS;
393
394 for (i = 0; i < 3; i++) {
ec0c15af 395 unsigned long tsc_pit_khz;
fbb16e24
TG
396
397 /*
398 * Read the start value and the reference count of
ec0c15af
LT
399 * hpet/pmtimer when available. Then do the PIT
400 * calibration, which will take at least 50ms, and
401 * read the end value.
fbb16e24 402 */
ec0c15af 403 local_irq_save(flags);
827014be 404 tsc1 = tsc_read_refs(&ref1, hpet);
a977c400 405 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
827014be 406 tsc2 = tsc_read_refs(&ref2, hpet);
fbb16e24
TG
407 local_irq_restore(flags);
408
ec0c15af
LT
409 /* Pick the lowest PIT TSC calibration so far */
410 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
fbb16e24
TG
411
412 /* hpet or pmtimer available ? */
827014be 413 if (!hpet && !ref1 && !ref2)
fbb16e24
TG
414 continue;
415
416 /* Check, whether the sampling was disturbed by an SMI */
417 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
418 continue;
419
420 tsc2 = (tsc2 - tsc1) * 1000000LL;
d683ef7a 421 if (hpet)
827014be 422 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
d683ef7a 423 else
827014be 424 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
fbb16e24 425
fbb16e24 426 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
a977c400
TG
427
428 /* Check the reference deviation */
429 delta = ((u64) tsc_pit_min) * 100;
430 do_div(delta, tsc_ref_min);
431
432 /*
433 * If both calibration results are inside a 10% window
434 * then we can be sure, that the calibration
435 * succeeded. We break out of the loop right away. We
436 * use the reference value, as it is more precise.
437 */
438 if (delta >= 90 && delta <= 110) {
439 printk(KERN_INFO
440 "TSC: PIT calibration matches %s. %d loops\n",
441 hpet ? "HPET" : "PMTIMER", i + 1);
442 return tsc_ref_min;
fbb16e24
TG
443 }
444
a977c400
TG
445 /*
446 * Check whether PIT failed more than once. This
447 * happens in virtualized environments. We need to
448 * give the virtual PC a slightly longer timeframe for
449 * the HPET/PMTIMER to make the result precise.
450 */
451 if (i == 1 && tsc_pit_min == ULONG_MAX) {
452 latch = CAL2_LATCH;
453 ms = CAL2_MS;
454 loopmin = CAL2_PIT_LOOPS;
455 }
fbb16e24 456 }
bfc0f594
AK
457
458 /*
fbb16e24 459 * Now check the results.
bfc0f594 460 */
fbb16e24
TG
461 if (tsc_pit_min == ULONG_MAX) {
462 /* PIT gave no useful value */
de014d61 463 printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n");
fbb16e24
TG
464
465 /* We don't have an alternative source, disable TSC */
827014be 466 if (!hpet && !ref1 && !ref2) {
fbb16e24
TG
467 printk("TSC: No reference (HPET/PMTIMER) available\n");
468 return 0;
469 }
470
471 /* The alternative source failed as well, disable TSC */
472 if (tsc_ref_min == ULONG_MAX) {
473 printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
a977c400 474 "failed.\n");
fbb16e24
TG
475 return 0;
476 }
477
478 /* Use the alternative source */
479 printk(KERN_INFO "TSC: using %s reference calibration\n",
480 hpet ? "HPET" : "PMTIMER");
481
482 return tsc_ref_min;
483 }
bfc0f594 484
fbb16e24 485 /* We don't have an alternative source, use the PIT calibration value */
827014be 486 if (!hpet && !ref1 && !ref2) {
fbb16e24
TG
487 printk(KERN_INFO "TSC: Using PIT calibration value\n");
488 return tsc_pit_min;
bfc0f594
AK
489 }
490
fbb16e24
TG
491 /* The alternative source failed, use the PIT calibration value */
492 if (tsc_ref_min == ULONG_MAX) {
a977c400
TG
493 printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. "
494 "Using PIT calibration\n");
fbb16e24 495 return tsc_pit_min;
bfc0f594
AK
496 }
497
fbb16e24
TG
498 /*
499 * The calibration values differ too much. In doubt, we use
500 * the PIT value as we know that there are PMTIMERs around
a977c400 501 * running at double speed. At least we let the user know:
fbb16e24 502 */
a977c400
TG
503 printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
504 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
fbb16e24
TG
505 printk(KERN_INFO "TSC: Using PIT calibration value\n");
506 return tsc_pit_min;
bfc0f594
AK
507}
508
bfc0f594
AK
509#ifdef CONFIG_X86_32
510/* Only called from the Powernow K7 cpu freq driver */
511int recalibrate_cpu_khz(void)
512{
513#ifndef CONFIG_SMP
514 unsigned long cpu_khz_old = cpu_khz;
515
516 if (cpu_has_tsc) {
e93ef949
AK
517 tsc_khz = calibrate_tsc();
518 cpu_khz = tsc_khz;
bfc0f594
AK
519 cpu_data(0).loops_per_jiffy =
520 cpufreq_scale(cpu_data(0).loops_per_jiffy,
521 cpu_khz_old, cpu_khz);
522 return 0;
523 } else
524 return -ENODEV;
525#else
526 return -ENODEV;
527#endif
528}
529
530EXPORT_SYMBOL(recalibrate_cpu_khz);
531
532#endif /* CONFIG_X86_32 */
2dbe06fa
AK
533
534/* Accelerators for sched_clock()
535 * convert from cycles(64bits) => nanoseconds (64bits)
536 * basic equation:
537 * ns = cycles / (freq / ns_per_sec)
538 * ns = cycles * (ns_per_sec / freq)
539 * ns = cycles * (10^9 / (cpu_khz * 10^3))
540 * ns = cycles * (10^6 / cpu_khz)
541 *
542 * Then we use scaling math (suggested by george@mvista.com) to get:
543 * ns = cycles * (10^6 * SC / cpu_khz) / SC
544 * ns = cycles * cyc2ns_scale / SC
545 *
546 * And since SC is a constant power of two, we can convert the div
547 * into a shift.
548 *
549 * We can use khz divisor instead of mhz to keep a better precision, since
550 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
551 * (mathieu.desnoyers@polymtl.ca)
552 *
553 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
554 */
555
556DEFINE_PER_CPU(unsigned long, cyc2ns);
557
8fbbc4b4 558static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
2dbe06fa
AK
559{
560 unsigned long long tsc_now, ns_now;
561 unsigned long flags, *scale;
562
563 local_irq_save(flags);
564 sched_clock_idle_sleep_event();
565
566 scale = &per_cpu(cyc2ns, cpu);
567
568 rdtscll(tsc_now);
569 ns_now = __cycles_2_ns(tsc_now);
570
571 if (cpu_khz)
572 *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
573
574 sched_clock_idle_wakeup_event(0);
575 local_irq_restore(flags);
576}
577
578#ifdef CONFIG_CPU_FREQ
579
580/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
581 * changes.
582 *
583 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
584 * not that important because current Opteron setups do not support
585 * scaling on SMP anyroads.
586 *
587 * Should fix up last_tsc too. Currently gettimeofday in the
588 * first tick after the change will be slightly wrong.
589 */
590
591static unsigned int ref_freq;
592static unsigned long loops_per_jiffy_ref;
593static unsigned long tsc_khz_ref;
594
595static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
596 void *data)
597{
598 struct cpufreq_freqs *freq = data;
599 unsigned long *lpj, dummy;
600
601 if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
602 return 0;
603
604 lpj = &dummy;
605 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
606#ifdef CONFIG_SMP
607 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
608#else
609 lpj = &boot_cpu_data.loops_per_jiffy;
610#endif
611
612 if (!ref_freq) {
613 ref_freq = freq->old;
614 loops_per_jiffy_ref = *lpj;
615 tsc_khz_ref = tsc_khz;
616 }
617 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
618 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
619 (val == CPUFREQ_RESUMECHANGE)) {
620 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
621
622 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
623 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
624 mark_tsc_unstable("cpufreq changes");
625 }
626
52a8968c 627 set_cyc2ns_scale(tsc_khz, freq->cpu);
2dbe06fa
AK
628
629 return 0;
630}
631
632static struct notifier_block time_cpufreq_notifier_block = {
633 .notifier_call = time_cpufreq_notifier
634};
635
636static int __init cpufreq_tsc(void)
637{
060700b5
LT
638 if (!cpu_has_tsc)
639 return 0;
640 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
641 return 0;
2dbe06fa
AK
642 cpufreq_register_notifier(&time_cpufreq_notifier_block,
643 CPUFREQ_TRANSITION_NOTIFIER);
644 return 0;
645}
646
647core_initcall(cpufreq_tsc);
648
649#endif /* CONFIG_CPU_FREQ */
8fbbc4b4
AK
650
651/* clocksource code */
652
653static struct clocksource clocksource_tsc;
654
655/*
656 * We compare the TSC to the cycle_last value in the clocksource
657 * structure to avoid a nasty time-warp. This can be observed in a
658 * very small window right after one CPU updated cycle_last under
659 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
660 * is smaller than the cycle_last reference value due to a TSC which
661 * is slighty behind. This delta is nowhere else observable, but in
662 * that case it results in a forward time jump in the range of hours
663 * due to the unsigned delta calculation of the time keeping core
664 * code, which is necessary to support wrapping clocksources like pm
665 * timer.
666 */
667static cycle_t read_tsc(void)
668{
669 cycle_t ret = (cycle_t)get_cycles();
670
671 return ret >= clocksource_tsc.cycle_last ?
672 ret : clocksource_tsc.cycle_last;
673}
674
431ceb83 675#ifdef CONFIG_X86_64
8fbbc4b4
AK
676static cycle_t __vsyscall_fn vread_tsc(void)
677{
678 cycle_t ret = (cycle_t)vget_cycles();
679
680 return ret >= __vsyscall_gtod_data.clock.cycle_last ?
681 ret : __vsyscall_gtod_data.clock.cycle_last;
682}
431ceb83 683#endif
8fbbc4b4
AK
684
685static struct clocksource clocksource_tsc = {
686 .name = "tsc",
687 .rating = 300,
688 .read = read_tsc,
689 .mask = CLOCKSOURCE_MASK(64),
690 .shift = 22,
691 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
692 CLOCK_SOURCE_MUST_VERIFY,
693#ifdef CONFIG_X86_64
694 .vread = vread_tsc,
695#endif
696};
697
698void mark_tsc_unstable(char *reason)
699{
700 if (!tsc_unstable) {
701 tsc_unstable = 1;
702 printk("Marking TSC unstable due to %s\n", reason);
703 /* Change only the rating, when not registered */
704 if (clocksource_tsc.mult)
705 clocksource_change_rating(&clocksource_tsc, 0);
706 else
707 clocksource_tsc.rating = 0;
708 }
709}
710
711EXPORT_SYMBOL_GPL(mark_tsc_unstable);
712
713static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d)
714{
715 printk(KERN_NOTICE "%s detected: marking TSC unstable.\n",
716 d->ident);
717 tsc_unstable = 1;
718 return 0;
719}
720
721/* List of systems that have known TSC problems */
722static struct dmi_system_id __initdata bad_tsc_dmi_table[] = {
723 {
724 .callback = dmi_mark_tsc_unstable,
725 .ident = "IBM Thinkpad 380XD",
726 .matches = {
727 DMI_MATCH(DMI_BOARD_VENDOR, "IBM"),
728 DMI_MATCH(DMI_BOARD_NAME, "2635FA0"),
729 },
730 },
731 {}
732};
733
734/*
735 * Geode_LX - the OLPC CPU has a possibly a very reliable TSC
736 */
737#ifdef CONFIG_MGEODE_LX
738/* RTSC counts during suspend */
739#define RTSC_SUSP 0x100
740
741static void __init check_geode_tsc_reliable(void)
742{
743 unsigned long res_low, res_high;
744
745 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
746 if (res_low & RTSC_SUSP)
747 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
748}
749#else
750static inline void check_geode_tsc_reliable(void) { }
751#endif
752
753/*
754 * Make an educated guess if the TSC is trustworthy and synchronized
755 * over all CPUs.
756 */
757__cpuinit int unsynchronized_tsc(void)
758{
759 if (!cpu_has_tsc || tsc_unstable)
760 return 1;
761
017d9d20 762#ifdef CONFIG_X86_SMP
8fbbc4b4
AK
763 if (apic_is_clustered_box())
764 return 1;
765#endif
766
767 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
768 return 0;
769 /*
770 * Intel systems are normally all synchronized.
771 * Exceptions must mark TSC as unstable:
772 */
773 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
774 /* assume multi socket systems are not synchronized: */
775 if (num_possible_cpus() > 1)
776 tsc_unstable = 1;
777 }
778
779 return tsc_unstable;
780}
781
782static void __init init_tsc_clocksource(void)
783{
784 clocksource_tsc.mult = clocksource_khz2mult(tsc_khz,
785 clocksource_tsc.shift);
786 /* lower the rating if we already know its unstable: */
787 if (check_tsc_unstable()) {
788 clocksource_tsc.rating = 0;
789 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
790 }
791 clocksource_register(&clocksource_tsc);
792}
793
794void __init tsc_init(void)
795{
796 u64 lpj;
797 int cpu;
798
799 if (!cpu_has_tsc)
800 return;
801
e93ef949
AK
802 tsc_khz = calibrate_tsc();
803 cpu_khz = tsc_khz;
8fbbc4b4 804
e93ef949 805 if (!tsc_khz) {
8fbbc4b4
AK
806 mark_tsc_unstable("could not calculate TSC khz");
807 return;
808 }
809
810#ifdef CONFIG_X86_64
811 if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) &&
812 (boot_cpu_data.x86_vendor == X86_VENDOR_AMD))
813 cpu_khz = calibrate_cpu();
814#endif
815
816 lpj = ((u64)tsc_khz * 1000);
817 do_div(lpj, HZ);
818 lpj_fine = lpj;
819
820 printk("Detected %lu.%03lu MHz processor.\n",
821 (unsigned long)cpu_khz / 1000,
822 (unsigned long)cpu_khz % 1000);
823
824 /*
825 * Secondary CPUs do not run through tsc_init(), so set up
826 * all the scale factors for all CPUs, assuming the same
827 * speed as the bootup CPU. (cpufreq notifiers will fix this
828 * up if their speed diverges)
829 */
830 for_each_possible_cpu(cpu)
831 set_cyc2ns_scale(cpu_khz, cpu);
832
833 if (tsc_disabled > 0)
834 return;
835
836 /* now allow native_sched_clock() to use rdtsc */
837 tsc_disabled = 0;
838
839 use_tsc_delay();
840 /* Check and install the TSC clocksource */
841 dmi_check_system(bad_tsc_dmi_table);
842
843 if (unsynchronized_tsc())
844 mark_tsc_unstable("TSCs unsynchronized");
845
846 check_geode_tsc_reliable();
847 init_tsc_clocksource();
848}
849