]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/x86/kernel/hpet.c
Merge branch 'for-rmk' of git://git.pengutronix.de/git/imx/linux-2.6
[net-next-2.6.git] / arch / x86 / kernel / hpet.c
CommitLineData
5d0cf410 1#include <linux/clocksource.h>
e9e2cdb4 2#include <linux/clockchips.h>
4588c1f0
IM
3#include <linux/interrupt.h>
4#include <linux/sysdev.h>
28769149 5#include <linux/delay.h>
5d0cf410 6#include <linux/errno.h>
5a0e3ad6 7#include <linux/slab.h>
5d0cf410
JS
8#include <linux/hpet.h>
9#include <linux/init.h>
58ac1e76 10#include <linux/cpu.h>
4588c1f0
IM
11#include <linux/pm.h>
12#include <linux/io.h>
5d0cf410 13
28769149 14#include <asm/fixmap.h>
06a24dec 15#include <asm/i8253.h>
4588c1f0 16#include <asm/hpet.h>
5d0cf410 17
4588c1f0 18#define HPET_MASK CLOCKSOURCE_MASK(32)
5d0cf410 19
b10db7f0
PM
20/* FSEC = 10^-15
21 NSEC = 10^-9 */
4588c1f0 22#define FSEC_PER_NSEC 1000000L
5d0cf410 23
26afe5f2 24#define HPET_DEV_USED_BIT 2
25#define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
26#define HPET_DEV_VALID 0x8
27#define HPET_DEV_FSB_CAP 0x1000
28#define HPET_DEV_PERI_CAP 0x2000
29
30#define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
31
e9e2cdb4
TG
32/*
33 * HPET address is set in acpi/boot.c, when an ACPI entry exists
34 */
4588c1f0 35unsigned long hpet_address;
c8bc6f3c 36u8 hpet_blockid; /* OS timer block num */
73472a46
PV
37u8 hpet_msi_disable;
38
e951e4af 39#ifdef CONFIG_PCI_MSI
3b71e9e3 40static unsigned long hpet_num_timers;
e951e4af 41#endif
4588c1f0 42static void __iomem *hpet_virt_address;
e9e2cdb4 43
58ac1e76 44struct hpet_dev {
4588c1f0
IM
45 struct clock_event_device evt;
46 unsigned int num;
47 int cpu;
48 unsigned int irq;
49 unsigned int flags;
50 char name[10];
58ac1e76 51};
52
5946fa3d 53inline unsigned int hpet_readl(unsigned int a)
e9e2cdb4
TG
54{
55 return readl(hpet_virt_address + a);
56}
57
5946fa3d 58static inline void hpet_writel(unsigned int d, unsigned int a)
e9e2cdb4
TG
59{
60 writel(d, hpet_virt_address + a);
61}
62
28769149 63#ifdef CONFIG_X86_64
28769149 64#include <asm/pgtable.h>
2387ce57 65#endif
28769149 66
06a24dec
TG
67static inline void hpet_set_mapping(void)
68{
69 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
2387ce57
YL
70#ifdef CONFIG_X86_64
71 __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
72#endif
06a24dec
TG
73}
74
75static inline void hpet_clear_mapping(void)
76{
77 iounmap(hpet_virt_address);
78 hpet_virt_address = NULL;
79}
80
e9e2cdb4
TG
81/*
82 * HPET command line enable / disable
83 */
84static int boot_hpet_disable;
b17530bd 85int hpet_force_user;
b98103a5 86static int hpet_verbose;
e9e2cdb4 87
4588c1f0 88static int __init hpet_setup(char *str)
e9e2cdb4
TG
89{
90 if (str) {
91 if (!strncmp("disable", str, 7))
92 boot_hpet_disable = 1;
b17530bd
TG
93 if (!strncmp("force", str, 5))
94 hpet_force_user = 1;
b98103a5
AH
95 if (!strncmp("verbose", str, 7))
96 hpet_verbose = 1;
e9e2cdb4
TG
97 }
98 return 1;
99}
100__setup("hpet=", hpet_setup);
101
28769149
TG
102static int __init disable_hpet(char *str)
103{
104 boot_hpet_disable = 1;
105 return 1;
106}
107__setup("nohpet", disable_hpet);
108
e9e2cdb4
TG
109static inline int is_hpet_capable(void)
110{
4588c1f0 111 return !boot_hpet_disable && hpet_address;
e9e2cdb4
TG
112}
113
114/*
115 * HPET timer interrupt enable / disable
116 */
117static int hpet_legacy_int_enabled;
118
119/**
120 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
121 */
122int is_hpet_enabled(void)
123{
124 return is_hpet_capable() && hpet_legacy_int_enabled;
125}
1bdbdaac 126EXPORT_SYMBOL_GPL(is_hpet_enabled);
e9e2cdb4 127
b98103a5
AH
128static void _hpet_print_config(const char *function, int line)
129{
130 u32 i, timers, l, h;
131 printk(KERN_INFO "hpet: %s(%d):\n", function, line);
132 l = hpet_readl(HPET_ID);
133 h = hpet_readl(HPET_PERIOD);
134 timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
135 printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
136 l = hpet_readl(HPET_CFG);
137 h = hpet_readl(HPET_STATUS);
138 printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
139 l = hpet_readl(HPET_COUNTER);
140 h = hpet_readl(HPET_COUNTER+4);
141 printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
142
143 for (i = 0; i < timers; i++) {
144 l = hpet_readl(HPET_Tn_CFG(i));
145 h = hpet_readl(HPET_Tn_CFG(i)+4);
146 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
147 i, l, h);
148 l = hpet_readl(HPET_Tn_CMP(i));
149 h = hpet_readl(HPET_Tn_CMP(i)+4);
150 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
151 i, l, h);
152 l = hpet_readl(HPET_Tn_ROUTE(i));
153 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
154 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
155 i, l, h);
156 }
157}
158
159#define hpet_print_config() \
160do { \
161 if (hpet_verbose) \
162 _hpet_print_config(__FUNCTION__, __LINE__); \
163} while (0)
164
e9e2cdb4
TG
165/*
166 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
167 * timer 0 and timer 1 in case of RTC emulation.
168 */
169#ifdef CONFIG_HPET
f0ed4e69 170
5f79f2f2 171static void hpet_reserve_msi_timers(struct hpet_data *hd);
f0ed4e69 172
5946fa3d 173static void hpet_reserve_platform_timers(unsigned int id)
e9e2cdb4
TG
174{
175 struct hpet __iomem *hpet = hpet_virt_address;
37a47db8
BR
176 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
177 unsigned int nrtimers, i;
e9e2cdb4
TG
178 struct hpet_data hd;
179
180 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
181
4588c1f0
IM
182 memset(&hd, 0, sizeof(hd));
183 hd.hd_phys_address = hpet_address;
184 hd.hd_address = hpet;
185 hd.hd_nirqs = nrtimers;
e9e2cdb4
TG
186 hpet_reserve_timer(&hd, 0);
187
188#ifdef CONFIG_HPET_EMULATE_RTC
189 hpet_reserve_timer(&hd, 1);
190#endif
5761d64b 191
64a76f66
DB
192 /*
193 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
194 * is wrong for i8259!) not the output IRQ. Many BIOS writers
195 * don't bother configuring *any* comparator interrupts.
196 */
e9e2cdb4
TG
197 hd.hd_irq[0] = HPET_LEGACY_8254;
198 hd.hd_irq[1] = HPET_LEGACY_RTC;
199
fc3fbc45 200 for (i = 2; i < nrtimers; timer++, i++) {
4588c1f0
IM
201 hd.hd_irq[i] = (readl(&timer->hpet_config) &
202 Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
fc3fbc45 203 }
5761d64b 204
f0ed4e69 205 hpet_reserve_msi_timers(&hd);
26afe5f2 206
e9e2cdb4 207 hpet_alloc(&hd);
5761d64b 208
e9e2cdb4
TG
209}
210#else
5946fa3d 211static void hpet_reserve_platform_timers(unsigned int id) { }
e9e2cdb4
TG
212#endif
213
214/*
215 * Common hpet info
216 */
217static unsigned long hpet_period;
218
610bf2f1 219static void hpet_legacy_set_mode(enum clock_event_mode mode,
e9e2cdb4 220 struct clock_event_device *evt);
610bf2f1 221static int hpet_legacy_next_event(unsigned long delta,
e9e2cdb4
TG
222 struct clock_event_device *evt);
223
224/*
225 * The hpet clock event device
226 */
227static struct clock_event_device hpet_clockevent = {
228 .name = "hpet",
229 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
610bf2f1
VP
230 .set_mode = hpet_legacy_set_mode,
231 .set_next_event = hpet_legacy_next_event,
e9e2cdb4
TG
232 .shift = 32,
233 .irq = 0,
59c69f2a 234 .rating = 50,
e9e2cdb4
TG
235};
236
8d6f0c82 237static void hpet_stop_counter(void)
e9e2cdb4
TG
238{
239 unsigned long cfg = hpet_readl(HPET_CFG);
e9e2cdb4
TG
240 cfg &= ~HPET_CFG_ENABLE;
241 hpet_writel(cfg, HPET_CFG);
7a6f9cbb
AH
242}
243
244static void hpet_reset_counter(void)
245{
e9e2cdb4
TG
246 hpet_writel(0, HPET_COUNTER);
247 hpet_writel(0, HPET_COUNTER + 4);
8d6f0c82
AH
248}
249
250static void hpet_start_counter(void)
251{
5946fa3d 252 unsigned int cfg = hpet_readl(HPET_CFG);
e9e2cdb4
TG
253 cfg |= HPET_CFG_ENABLE;
254 hpet_writel(cfg, HPET_CFG);
255}
256
8d6f0c82
AH
257static void hpet_restart_counter(void)
258{
259 hpet_stop_counter();
7a6f9cbb 260 hpet_reset_counter();
8d6f0c82
AH
261 hpet_start_counter();
262}
263
59c69f2a
VP
264static void hpet_resume_device(void)
265{
bfe0c1cc 266 force_hpet_resume();
59c69f2a
VP
267}
268
17622339 269static void hpet_resume_counter(struct clocksource *cs)
59c69f2a
VP
270{
271 hpet_resume_device();
8d6f0c82 272 hpet_restart_counter();
59c69f2a
VP
273}
274
610bf2f1 275static void hpet_enable_legacy_int(void)
e9e2cdb4 276{
5946fa3d 277 unsigned int cfg = hpet_readl(HPET_CFG);
e9e2cdb4
TG
278
279 cfg |= HPET_CFG_LEGACY;
280 hpet_writel(cfg, HPET_CFG);
281 hpet_legacy_int_enabled = 1;
282}
283
610bf2f1
VP
284static void hpet_legacy_clockevent_register(void)
285{
610bf2f1
VP
286 /* Start HPET legacy interrupts */
287 hpet_enable_legacy_int();
288
289 /*
6fd592da
CM
290 * The mult factor is defined as (include/linux/clockchips.h)
291 * mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
292 * hpet_period is in units of femtoseconds (per cycle), so
293 * mult/2^shift = cyc/ns = 10^6/hpet_period
294 * mult = (10^6 * 2^shift)/hpet_period
295 * mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
610bf2f1 296 */
6fd592da
CM
297 hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
298 hpet_period, hpet_clockevent.shift);
610bf2f1
VP
299 /* Calculate the min / max delta */
300 hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
301 &hpet_clockevent);
7cfb0435
TG
302 /* 5 usec minimum reprogramming delta. */
303 hpet_clockevent.min_delta_ns = 5000;
610bf2f1
VP
304
305 /*
306 * Start hpet with the boot cpu mask and make it
307 * global after the IO_APIC has been initialized.
308 */
320ab2b0 309 hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
610bf2f1
VP
310 clockevents_register_device(&hpet_clockevent);
311 global_clock_event = &hpet_clockevent;
312 printk(KERN_DEBUG "hpet clockevent registered\n");
313}
314
26afe5f2 315static int hpet_setup_msi_irq(unsigned int irq);
316
b40d575b 317static void hpet_set_mode(enum clock_event_mode mode,
318 struct clock_event_device *evt, int timer)
e9e2cdb4 319{
5946fa3d 320 unsigned int cfg, cmp, now;
e9e2cdb4
TG
321 uint64_t delta;
322
4588c1f0 323 switch (mode) {
e9e2cdb4 324 case CLOCK_EVT_MODE_PERIODIC:
c23e253e 325 hpet_stop_counter();
b40d575b 326 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
327 delta >>= evt->shift;
7a6f9cbb 328 now = hpet_readl(HPET_COUNTER);
5946fa3d 329 cmp = now + (unsigned int) delta;
b40d575b 330 cfg = hpet_readl(HPET_Tn_CFG(timer));
b13e2464
JS
331 /* Make sure we use edge triggered interrupts */
332 cfg &= ~HPET_TN_LEVEL;
e9e2cdb4
TG
333 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
334 HPET_TN_SETVAL | HPET_TN_32BIT;
b40d575b 335 hpet_writel(cfg, HPET_Tn_CFG(timer));
7a6f9cbb
AH
336 hpet_writel(cmp, HPET_Tn_CMP(timer));
337 udelay(1);
338 /*
339 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
340 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
341 * bit is automatically cleared after the first write.
342 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
343 * Publication # 24674)
344 */
5946fa3d 345 hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
c23e253e 346 hpet_start_counter();
b98103a5 347 hpet_print_config();
e9e2cdb4
TG
348 break;
349
350 case CLOCK_EVT_MODE_ONESHOT:
b40d575b 351 cfg = hpet_readl(HPET_Tn_CFG(timer));
e9e2cdb4
TG
352 cfg &= ~HPET_TN_PERIODIC;
353 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
b40d575b 354 hpet_writel(cfg, HPET_Tn_CFG(timer));
e9e2cdb4
TG
355 break;
356
357 case CLOCK_EVT_MODE_UNUSED:
358 case CLOCK_EVT_MODE_SHUTDOWN:
b40d575b 359 cfg = hpet_readl(HPET_Tn_CFG(timer));
e9e2cdb4 360 cfg &= ~HPET_TN_ENABLE;
b40d575b 361 hpet_writel(cfg, HPET_Tn_CFG(timer));
e9e2cdb4 362 break;
18de5bc4
TG
363
364 case CLOCK_EVT_MODE_RESUME:
26afe5f2 365 if (timer == 0) {
366 hpet_enable_legacy_int();
367 } else {
368 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
369 hpet_setup_msi_irq(hdev->irq);
370 disable_irq(hdev->irq);
0de26520 371 irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
26afe5f2 372 enable_irq(hdev->irq);
373 }
b98103a5 374 hpet_print_config();
18de5bc4 375 break;
e9e2cdb4
TG
376 }
377}
378
b40d575b 379static int hpet_next_event(unsigned long delta,
380 struct clock_event_device *evt, int timer)
e9e2cdb4 381{
f7676254 382 u32 cnt;
e9e2cdb4
TG
383
384 cnt = hpet_readl(HPET_COUNTER);
f7676254 385 cnt += (u32) delta;
b40d575b 386 hpet_writel(cnt, HPET_Tn_CMP(timer));
e9e2cdb4 387
72d43d9b 388 /*
18ed61da
TG
389 * We need to read back the CMP register on certain HPET
390 * implementations (ATI chipsets) which seem to delay the
391 * transfer of the compare register into the internal compare
392 * logic. With small deltas this might actually be too late as
393 * the counter could already be higher than the compare value
394 * at that point and we would wait for the next hpet interrupt
395 * forever. We found out that reading the CMP register back
396 * forces the transfer so we can rely on the comparison with
54ff7e59
TG
397 * the counter register below. If the read back from the
398 * compare register does not match the value we programmed
399 * then we might have a real hardware problem. We can not do
400 * much about it here, but at least alert the user/admin with
401 * a prominent warning.
30a564be 402 *
54ff7e59
TG
403 * An erratum on some chipsets (ICH9,..), results in
404 * comparator read immediately following a write returning old
405 * value. Workaround for this is to read this value second
406 * time, when first read returns old value.
30a564be 407 *
54ff7e59
TG
408 * In fact the write to the comparator register is delayed up
409 * to two HPET cycles so the workaround we tried to restrict
410 * the readback to those known to be borked ATI chipsets
411 * failed miserably. So we give up on optimizations forever
412 * and penalize all HPET incarnations unconditionally.
72d43d9b 413 */
54ff7e59
TG
414 if (unlikely((u32)hpet_readl(HPET_Tn_CMP(timer)) != cnt)) {
415 if (hpet_readl(HPET_Tn_CMP(timer)) != cnt)
30a564be 416 printk_once(KERN_WARNING
54ff7e59 417 "hpet: compare register read back failed.\n");
8da854cb 418 }
72d43d9b 419
5946fa3d 420 return (s32)(hpet_readl(HPET_COUNTER) - cnt) >= 0 ? -ETIME : 0;
e9e2cdb4
TG
421}
422
b40d575b 423static void hpet_legacy_set_mode(enum clock_event_mode mode,
424 struct clock_event_device *evt)
425{
426 hpet_set_mode(mode, evt, 0);
427}
428
429static int hpet_legacy_next_event(unsigned long delta,
430 struct clock_event_device *evt)
431{
432 return hpet_next_event(delta, evt, 0);
433}
434
58ac1e76 435/*
436 * HPET MSI Support
437 */
26afe5f2 438#ifdef CONFIG_PCI_MSI
5f79f2f2
VP
439
440static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
441static struct hpet_dev *hpet_devs;
442
58ac1e76 443void hpet_msi_unmask(unsigned int irq)
444{
445 struct hpet_dev *hdev = get_irq_data(irq);
5946fa3d 446 unsigned int cfg;
58ac1e76 447
448 /* unmask it */
449 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
450 cfg |= HPET_TN_FSB;
451 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
452}
453
454void hpet_msi_mask(unsigned int irq)
455{
5946fa3d 456 unsigned int cfg;
58ac1e76 457 struct hpet_dev *hdev = get_irq_data(irq);
458
459 /* mask it */
460 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
461 cfg &= ~HPET_TN_FSB;
462 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
463}
464
465void hpet_msi_write(unsigned int irq, struct msi_msg *msg)
466{
467 struct hpet_dev *hdev = get_irq_data(irq);
468
469 hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
470 hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
471}
472
473void hpet_msi_read(unsigned int irq, struct msi_msg *msg)
474{
475 struct hpet_dev *hdev = get_irq_data(irq);
476
477 msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
478 msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
479 msg->address_hi = 0;
480}
481
26afe5f2 482static void hpet_msi_set_mode(enum clock_event_mode mode,
483 struct clock_event_device *evt)
484{
485 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
486 hpet_set_mode(mode, evt, hdev->num);
487}
488
489static int hpet_msi_next_event(unsigned long delta,
490 struct clock_event_device *evt)
491{
492 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
493 return hpet_next_event(delta, evt, hdev->num);
494}
495
496static int hpet_setup_msi_irq(unsigned int irq)
497{
c8bc6f3c 498 if (arch_setup_hpet_msi(irq, hpet_blockid)) {
26afe5f2 499 destroy_irq(irq);
500 return -EINVAL;
501 }
502 return 0;
503}
504
505static int hpet_assign_irq(struct hpet_dev *dev)
506{
507 unsigned int irq;
508
02198962 509 irq = create_irq_nr(0, -1);
26afe5f2 510 if (!irq)
511 return -EINVAL;
512
513 set_irq_data(irq, dev);
514
515 if (hpet_setup_msi_irq(irq))
516 return -EINVAL;
517
518 dev->irq = irq;
519 return 0;
520}
521
522static irqreturn_t hpet_interrupt_handler(int irq, void *data)
523{
524 struct hpet_dev *dev = (struct hpet_dev *)data;
525 struct clock_event_device *hevt = &dev->evt;
526
527 if (!hevt->event_handler) {
528 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
529 dev->num);
530 return IRQ_HANDLED;
531 }
532
533 hevt->event_handler(hevt);
534 return IRQ_HANDLED;
535}
536
537static int hpet_setup_irq(struct hpet_dev *dev)
538{
539
540 if (request_irq(dev->irq, hpet_interrupt_handler,
507fa3a3
TG
541 IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
542 dev->name, dev))
26afe5f2 543 return -1;
544
545 disable_irq(dev->irq);
0de26520 546 irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
26afe5f2 547 enable_irq(dev->irq);
548
c81bba49
YL
549 printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
550 dev->name, dev->irq);
551
26afe5f2 552 return 0;
553}
554
555/* This should be called in specific @cpu */
556static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
557{
558 struct clock_event_device *evt = &hdev->evt;
559 uint64_t hpet_freq;
560
561 WARN_ON(cpu != smp_processor_id());
562 if (!(hdev->flags & HPET_DEV_VALID))
563 return;
564
565 if (hpet_setup_msi_irq(hdev->irq))
566 return;
567
568 hdev->cpu = cpu;
569 per_cpu(cpu_hpet_dev, cpu) = hdev;
570 evt->name = hdev->name;
571 hpet_setup_irq(hdev);
572 evt->irq = hdev->irq;
573
574 evt->rating = 110;
575 evt->features = CLOCK_EVT_FEAT_ONESHOT;
576 if (hdev->flags & HPET_DEV_PERI_CAP)
577 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
578
579 evt->set_mode = hpet_msi_set_mode;
580 evt->set_next_event = hpet_msi_next_event;
581 evt->shift = 32;
582
583 /*
584 * The period is a femto seconds value. We need to calculate the
585 * scaled math multiplication factor for nanosecond to hpet tick
586 * conversion.
587 */
4936a3b9 588 hpet_freq = FSEC_PER_SEC;
26afe5f2 589 do_div(hpet_freq, hpet_period);
590 evt->mult = div_sc((unsigned long) hpet_freq,
591 NSEC_PER_SEC, evt->shift);
592 /* Calculate the max delta */
593 evt->max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, evt);
594 /* 5 usec minimum reprogramming delta. */
595 evt->min_delta_ns = 5000;
596
320ab2b0 597 evt->cpumask = cpumask_of(hdev->cpu);
26afe5f2 598 clockevents_register_device(evt);
599}
600
601#ifdef CONFIG_HPET
602/* Reserve at least one timer for userspace (/dev/hpet) */
603#define RESERVE_TIMERS 1
604#else
605#define RESERVE_TIMERS 0
606#endif
5f79f2f2
VP
607
608static void hpet_msi_capability_lookup(unsigned int start_timer)
26afe5f2 609{
610 unsigned int id;
611 unsigned int num_timers;
612 unsigned int num_timers_used = 0;
613 int i;
614
73472a46
PV
615 if (hpet_msi_disable)
616 return;
617
39fe05e5
SL
618 if (boot_cpu_has(X86_FEATURE_ARAT))
619 return;
26afe5f2 620 id = hpet_readl(HPET_ID);
621
622 num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
623 num_timers++; /* Value read out starts from 0 */
b98103a5 624 hpet_print_config();
26afe5f2 625
626 hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
627 if (!hpet_devs)
628 return;
629
630 hpet_num_timers = num_timers;
631
632 for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
633 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
5946fa3d 634 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
26afe5f2 635
636 /* Only consider HPET timer with MSI support */
637 if (!(cfg & HPET_TN_FSB_CAP))
638 continue;
639
640 hdev->flags = 0;
641 if (cfg & HPET_TN_PERIODIC_CAP)
642 hdev->flags |= HPET_DEV_PERI_CAP;
643 hdev->num = i;
644
645 sprintf(hdev->name, "hpet%d", i);
646 if (hpet_assign_irq(hdev))
647 continue;
648
649 hdev->flags |= HPET_DEV_FSB_CAP;
650 hdev->flags |= HPET_DEV_VALID;
651 num_timers_used++;
652 if (num_timers_used == num_possible_cpus())
653 break;
654 }
655
656 printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
657 num_timers, num_timers_used);
658}
659
5f79f2f2
VP
660#ifdef CONFIG_HPET
661static void hpet_reserve_msi_timers(struct hpet_data *hd)
662{
663 int i;
664
665 if (!hpet_devs)
666 return;
667
668 for (i = 0; i < hpet_num_timers; i++) {
669 struct hpet_dev *hdev = &hpet_devs[i];
670
671 if (!(hdev->flags & HPET_DEV_VALID))
672 continue;
673
674 hd->hd_irq[hdev->num] = hdev->irq;
675 hpet_reserve_timer(hd, hdev->num);
676 }
677}
678#endif
679
26afe5f2 680static struct hpet_dev *hpet_get_unused_timer(void)
681{
682 int i;
683
684 if (!hpet_devs)
685 return NULL;
686
687 for (i = 0; i < hpet_num_timers; i++) {
688 struct hpet_dev *hdev = &hpet_devs[i];
689
690 if (!(hdev->flags & HPET_DEV_VALID))
691 continue;
692 if (test_and_set_bit(HPET_DEV_USED_BIT,
693 (unsigned long *)&hdev->flags))
694 continue;
695 return hdev;
696 }
697 return NULL;
698}
699
700struct hpet_work_struct {
701 struct delayed_work work;
702 struct completion complete;
703};
704
705static void hpet_work(struct work_struct *w)
706{
707 struct hpet_dev *hdev;
708 int cpu = smp_processor_id();
709 struct hpet_work_struct *hpet_work;
710
711 hpet_work = container_of(w, struct hpet_work_struct, work.work);
712
713 hdev = hpet_get_unused_timer();
714 if (hdev)
715 init_one_hpet_msi_clockevent(hdev, cpu);
716
717 complete(&hpet_work->complete);
718}
719
720static int hpet_cpuhp_notify(struct notifier_block *n,
721 unsigned long action, void *hcpu)
722{
723 unsigned long cpu = (unsigned long)hcpu;
724 struct hpet_work_struct work;
725 struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
726
727 switch (action & 0xf) {
728 case CPU_ONLINE:
336f6c32 729 INIT_DELAYED_WORK_ON_STACK(&work.work, hpet_work);
26afe5f2 730 init_completion(&work.complete);
731 /* FIXME: add schedule_work_on() */
732 schedule_delayed_work_on(cpu, &work.work, 0);
733 wait_for_completion(&work.complete);
336f6c32 734 destroy_timer_on_stack(&work.work.timer);
26afe5f2 735 break;
736 case CPU_DEAD:
737 if (hdev) {
738 free_irq(hdev->irq, hdev);
739 hdev->flags &= ~HPET_DEV_USED;
740 per_cpu(cpu_hpet_dev, cpu) = NULL;
741 }
742 break;
743 }
744 return NOTIFY_OK;
745}
746#else
747
ba374c9b
SN
748static int hpet_setup_msi_irq(unsigned int irq)
749{
750 return 0;
751}
5f79f2f2
VP
752static void hpet_msi_capability_lookup(unsigned int start_timer)
753{
754 return;
755}
756
757#ifdef CONFIG_HPET
758static void hpet_reserve_msi_timers(struct hpet_data *hd)
26afe5f2 759{
760 return;
761}
5f79f2f2 762#endif
26afe5f2 763
764static int hpet_cpuhp_notify(struct notifier_block *n,
765 unsigned long action, void *hcpu)
766{
767 return NOTIFY_OK;
768}
769
770#endif
771
6bb74df4
JS
772/*
773 * Clock source related code
774 */
8e19608e 775static cycle_t read_hpet(struct clocksource *cs)
6bb74df4
JS
776{
777 return (cycle_t)hpet_readl(HPET_COUNTER);
778}
779
28769149
TG
780#ifdef CONFIG_X86_64
781static cycle_t __vsyscall_fn vread_hpet(void)
782{
783 return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
784}
785#endif
786
6bb74df4
JS
787static struct clocksource clocksource_hpet = {
788 .name = "hpet",
789 .rating = 250,
790 .read = read_hpet,
791 .mask = HPET_MASK,
6bb74df4 792 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
8d6f0c82 793 .resume = hpet_resume_counter,
28769149
TG
794#ifdef CONFIG_X86_64
795 .vread = vread_hpet,
796#endif
6bb74df4
JS
797};
798
610bf2f1 799static int hpet_clocksource_register(void)
e9e2cdb4 800{
6fd592da 801 u64 start, now;
f12a15be 802 u64 hpet_freq;
075bcd1f 803 cycle_t t1;
e9e2cdb4 804
e9e2cdb4 805 /* Start the counter */
8d6f0c82 806 hpet_restart_counter();
e9e2cdb4 807
075bcd1f 808 /* Verify whether hpet counter works */
8e19608e 809 t1 = hpet_readl(HPET_COUNTER);
075bcd1f
TG
810 rdtscll(start);
811
812 /*
813 * We don't know the TSC frequency yet, but waiting for
814 * 200000 TSC cycles is safe:
815 * 4 GHz == 50us
816 * 1 GHz == 200us
817 */
818 do {
819 rep_nop();
820 rdtscll(now);
821 } while ((now - start) < 200000UL);
822
8e19608e 823 if (t1 == hpet_readl(HPET_COUNTER)) {
075bcd1f
TG
824 printk(KERN_WARNING
825 "HPET counter not counting. HPET disabled\n");
610bf2f1 826 return -ENODEV;
075bcd1f
TG
827 }
828
6fd592da
CM
829 /*
830 * The definition of mult is (include/linux/clocksource.h)
831 * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
832 * so we first need to convert hpet_period to ns/cyc units:
833 * mult/2^shift = ns/cyc = hpet_period/10^6
834 * mult = (hpet_period * 2^shift)/10^6
835 * mult = (hpet_period << shift)/FSEC_PER_NSEC
6bb74df4 836 */
6bb74df4 837
f12a15be
JS
838 /* Need to convert hpet_period (fsec/cyc) to cyc/sec:
839 *
840 * cyc/sec = FSEC_PER_SEC/hpet_period(fsec/cyc)
841 * cyc/sec = (FSEC_PER_NSEC * NSEC_PER_SEC)/hpet_period
842 */
4936a3b9 843 hpet_freq = FSEC_PER_SEC;
f12a15be
JS
844 do_div(hpet_freq, hpet_period);
845 clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
6bb74df4 846
610bf2f1
VP
847 return 0;
848}
849
b02a7f22
PM
850/**
851 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
610bf2f1
VP
852 */
853int __init hpet_enable(void)
854{
5946fa3d 855 unsigned int id;
a6825f1c 856 int i;
610bf2f1
VP
857
858 if (!is_hpet_capable())
859 return 0;
860
861 hpet_set_mapping();
862
863 /*
864 * Read the period and check for a sane value:
865 */
866 hpet_period = hpet_readl(HPET_PERIOD);
a6825f1c
TG
867
868 /*
869 * AMD SB700 based systems with spread spectrum enabled use a
870 * SMM based HPET emulation to provide proper frequency
871 * setting. The SMM code is initialized with the first HPET
872 * register access and takes some time to complete. During
873 * this time the config register reads 0xffffffff. We check
874 * for max. 1000 loops whether the config register reads a non
875 * 0xffffffff value to make sure that HPET is up and running
876 * before we go further. A counting loop is safe, as the HPET
877 * access takes thousands of CPU cycles. On non SB700 based
878 * machines this check is only done once and has no side
879 * effects.
880 */
881 for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
882 if (i == 1000) {
883 printk(KERN_WARNING
884 "HPET config register value = 0xFFFFFFFF. "
885 "Disabling HPET\n");
886 goto out_nohpet;
887 }
888 }
889
610bf2f1
VP
890 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
891 goto out_nohpet;
892
893 /*
894 * Read the HPET ID register to retrieve the IRQ routing
895 * information and the number of channels
896 */
897 id = hpet_readl(HPET_ID);
b98103a5 898 hpet_print_config();
610bf2f1
VP
899
900#ifdef CONFIG_HPET_EMULATE_RTC
901 /*
902 * The legacy routing mode needs at least two channels, tick timer
903 * and the rtc emulation channel.
904 */
905 if (!(id & HPET_ID_NUMBER))
906 goto out_nohpet;
907#endif
908
909 if (hpet_clocksource_register())
910 goto out_nohpet;
911
e9e2cdb4 912 if (id & HPET_ID_LEGSUP) {
610bf2f1 913 hpet_legacy_clockevent_register();
e9e2cdb4
TG
914 return 1;
915 }
916 return 0;
5d0cf410 917
e9e2cdb4 918out_nohpet:
06a24dec 919 hpet_clear_mapping();
bacbe999 920 hpet_address = 0;
e9e2cdb4
TG
921 return 0;
922}
923
28769149
TG
924/*
925 * Needs to be late, as the reserve_timer code calls kalloc !
926 *
927 * Not a problem on i386 as hpet_enable is called from late_time_init,
928 * but on x86_64 it is necessary !
929 */
930static __init int hpet_late_init(void)
931{
26afe5f2 932 int cpu;
933
59c69f2a 934 if (boot_hpet_disable)
28769149
TG
935 return -ENODEV;
936
59c69f2a
VP
937 if (!hpet_address) {
938 if (!force_hpet_address)
939 return -ENODEV;
940
941 hpet_address = force_hpet_address;
942 hpet_enable();
59c69f2a
VP
943 }
944
39c04b55
JF
945 if (!hpet_virt_address)
946 return -ENODEV;
947
39fe05e5
SL
948 if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
949 hpet_msi_capability_lookup(2);
950 else
951 hpet_msi_capability_lookup(0);
952
28769149 953 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
b98103a5 954 hpet_print_config();
59c69f2a 955
73472a46
PV
956 if (hpet_msi_disable)
957 return 0;
958
39fe05e5
SL
959 if (boot_cpu_has(X86_FEATURE_ARAT))
960 return 0;
961
26afe5f2 962 for_each_online_cpu(cpu) {
963 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
964 }
965
966 /* This notifier should be called after workqueue is ready */
967 hotcpu_notifier(hpet_cpuhp_notify, -20);
968
28769149
TG
969 return 0;
970}
971fs_initcall(hpet_late_init);
972
c86c7fbc
OH
973void hpet_disable(void)
974{
ff487808 975 if (is_hpet_capable() && hpet_virt_address) {
5946fa3d 976 unsigned int cfg = hpet_readl(HPET_CFG);
c86c7fbc
OH
977
978 if (hpet_legacy_int_enabled) {
979 cfg &= ~HPET_CFG_LEGACY;
980 hpet_legacy_int_enabled = 0;
981 }
982 cfg &= ~HPET_CFG_ENABLE;
983 hpet_writel(cfg, HPET_CFG);
984 }
985}
986
e9e2cdb4
TG
987#ifdef CONFIG_HPET_EMULATE_RTC
988
989/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
990 * is enabled, we support RTC interrupt functionality in software.
991 * RTC has 3 kinds of interrupts:
992 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
993 * is updated
994 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
995 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
996 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
997 * (1) and (2) above are implemented using polling at a frequency of
998 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
999 * overhead. (DEFAULT_RTC_INT_FREQ)
1000 * For (3), we use interrupts at 64Hz or user specified periodic
1001 * frequency, whichever is higher.
1002 */
1003#include <linux/mc146818rtc.h>
1004#include <linux/rtc.h>
1bdbdaac 1005#include <asm/rtc.h>
e9e2cdb4
TG
1006
1007#define DEFAULT_RTC_INT_FREQ 64
1008#define DEFAULT_RTC_SHIFT 6
1009#define RTC_NUM_INTS 1
1010
1011static unsigned long hpet_rtc_flags;
7e2a31da 1012static int hpet_prev_update_sec;
e9e2cdb4
TG
1013static struct rtc_time hpet_alarm_time;
1014static unsigned long hpet_pie_count;
ff08f76d 1015static u32 hpet_t1_cmp;
5946fa3d
JB
1016static u32 hpet_default_delta;
1017static u32 hpet_pie_delta;
e9e2cdb4
TG
1018static unsigned long hpet_pie_limit;
1019
1bdbdaac
BW
1020static rtc_irq_handler irq_handler;
1021
ff08f76d
PE
1022/*
1023 * Check that the hpet counter c1 is ahead of the c2
1024 */
1025static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1026{
1027 return (s32)(c2 - c1) < 0;
1028}
1029
1bdbdaac
BW
1030/*
1031 * Registers a IRQ handler.
1032 */
1033int hpet_register_irq_handler(rtc_irq_handler handler)
1034{
1035 if (!is_hpet_enabled())
1036 return -ENODEV;
1037 if (irq_handler)
1038 return -EBUSY;
1039
1040 irq_handler = handler;
1041
1042 return 0;
1043}
1044EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1045
1046/*
1047 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1048 * and does cleanup.
1049 */
1050void hpet_unregister_irq_handler(rtc_irq_handler handler)
1051{
1052 if (!is_hpet_enabled())
1053 return;
1054
1055 irq_handler = NULL;
1056 hpet_rtc_flags = 0;
1057}
1058EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1059
e9e2cdb4
TG
1060/*
1061 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1062 * is not supported by all HPET implementations for timer 1.
1063 *
1064 * hpet_rtc_timer_init() is called when the rtc is initialized.
1065 */
1066int hpet_rtc_timer_init(void)
1067{
5946fa3d
JB
1068 unsigned int cfg, cnt, delta;
1069 unsigned long flags;
e9e2cdb4
TG
1070
1071 if (!is_hpet_enabled())
1072 return 0;
1073
1074 if (!hpet_default_delta) {
1075 uint64_t clc;
1076
1077 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1078 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
5946fa3d 1079 hpet_default_delta = clc;
e9e2cdb4
TG
1080 }
1081
1082 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1083 delta = hpet_default_delta;
1084 else
1085 delta = hpet_pie_delta;
1086
1087 local_irq_save(flags);
1088
1089 cnt = delta + hpet_readl(HPET_COUNTER);
1090 hpet_writel(cnt, HPET_T1_CMP);
1091 hpet_t1_cmp = cnt;
1092
1093 cfg = hpet_readl(HPET_T1_CFG);
1094 cfg &= ~HPET_TN_PERIODIC;
1095 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1096 hpet_writel(cfg, HPET_T1_CFG);
1097
1098 local_irq_restore(flags);
1099
1100 return 1;
1101}
1bdbdaac 1102EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
e9e2cdb4
TG
1103
1104/*
1105 * The functions below are called from rtc driver.
1106 * Return 0 if HPET is not being used.
1107 * Otherwise do the necessary changes and return 1.
1108 */
1109int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1110{
1111 if (!is_hpet_enabled())
1112 return 0;
1113
1114 hpet_rtc_flags &= ~bit_mask;
1115 return 1;
1116}
1bdbdaac 1117EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
e9e2cdb4
TG
1118
1119int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1120{
1121 unsigned long oldbits = hpet_rtc_flags;
1122
1123 if (!is_hpet_enabled())
1124 return 0;
1125
1126 hpet_rtc_flags |= bit_mask;
1127
7e2a31da
DB
1128 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1129 hpet_prev_update_sec = -1;
1130
e9e2cdb4
TG
1131 if (!oldbits)
1132 hpet_rtc_timer_init();
1133
1134 return 1;
1135}
1bdbdaac 1136EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
e9e2cdb4
TG
1137
1138int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1139 unsigned char sec)
1140{
1141 if (!is_hpet_enabled())
1142 return 0;
1143
1144 hpet_alarm_time.tm_hour = hrs;
1145 hpet_alarm_time.tm_min = min;
1146 hpet_alarm_time.tm_sec = sec;
1147
1148 return 1;
1149}
1bdbdaac 1150EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
e9e2cdb4
TG
1151
1152int hpet_set_periodic_freq(unsigned long freq)
1153{
1154 uint64_t clc;
1155
1156 if (!is_hpet_enabled())
1157 return 0;
1158
1159 if (freq <= DEFAULT_RTC_INT_FREQ)
1160 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1161 else {
1162 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1163 do_div(clc, freq);
1164 clc >>= hpet_clockevent.shift;
5946fa3d 1165 hpet_pie_delta = clc;
b4a5e8a1 1166 hpet_pie_limit = 0;
e9e2cdb4
TG
1167 }
1168 return 1;
1169}
1bdbdaac 1170EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
e9e2cdb4
TG
1171
1172int hpet_rtc_dropped_irq(void)
1173{
1174 return is_hpet_enabled();
1175}
1bdbdaac 1176EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
e9e2cdb4
TG
1177
1178static void hpet_rtc_timer_reinit(void)
1179{
5946fa3d 1180 unsigned int cfg, delta;
e9e2cdb4
TG
1181 int lost_ints = -1;
1182
1183 if (unlikely(!hpet_rtc_flags)) {
1184 cfg = hpet_readl(HPET_T1_CFG);
1185 cfg &= ~HPET_TN_ENABLE;
1186 hpet_writel(cfg, HPET_T1_CFG);
1187 return;
1188 }
1189
1190 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1191 delta = hpet_default_delta;
1192 else
1193 delta = hpet_pie_delta;
1194
1195 /*
1196 * Increment the comparator value until we are ahead of the
1197 * current count.
1198 */
1199 do {
1200 hpet_t1_cmp += delta;
1201 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1202 lost_ints++;
ff08f76d 1203 } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
e9e2cdb4
TG
1204
1205 if (lost_ints) {
1206 if (hpet_rtc_flags & RTC_PIE)
1207 hpet_pie_count += lost_ints;
1208 if (printk_ratelimit())
7e2a31da 1209 printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
e9e2cdb4
TG
1210 lost_ints);
1211 }
1212}
1213
1214irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1215{
1216 struct rtc_time curr_time;
1217 unsigned long rtc_int_flag = 0;
1218
1219 hpet_rtc_timer_reinit();
1bdbdaac 1220 memset(&curr_time, 0, sizeof(struct rtc_time));
e9e2cdb4
TG
1221
1222 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1bdbdaac 1223 get_rtc_time(&curr_time);
e9e2cdb4
TG
1224
1225 if (hpet_rtc_flags & RTC_UIE &&
1226 curr_time.tm_sec != hpet_prev_update_sec) {
7e2a31da
DB
1227 if (hpet_prev_update_sec >= 0)
1228 rtc_int_flag = RTC_UF;
e9e2cdb4
TG
1229 hpet_prev_update_sec = curr_time.tm_sec;
1230 }
1231
1232 if (hpet_rtc_flags & RTC_PIE &&
1233 ++hpet_pie_count >= hpet_pie_limit) {
1234 rtc_int_flag |= RTC_PF;
1235 hpet_pie_count = 0;
1236 }
1237
8ee291f8 1238 if (hpet_rtc_flags & RTC_AIE &&
e9e2cdb4
TG
1239 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1240 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1241 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1242 rtc_int_flag |= RTC_AF;
1243
1244 if (rtc_int_flag) {
1245 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1bdbdaac
BW
1246 if (irq_handler)
1247 irq_handler(rtc_int_flag, dev_id);
e9e2cdb4
TG
1248 }
1249 return IRQ_HANDLED;
1250}
1bdbdaac 1251EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
e9e2cdb4 1252#endif