]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/x86/kernel/cpu/cpufreq/powernow-k8.c
Update email addresses.
[net-next-2.6.git] / arch / x86 / kernel / cpu / cpufreq / powernow-k8.c
CommitLineData
1da177e4 1/*
1f729e06 2 * (c) 2003-2006 Advanced Micro Devices, Inc.
1da177e4
LT
3 * Your use of this code is subject to the terms and conditions of the
4 * GNU general public license version 2. See "COPYING" or
5 * http://www.gnu.org/licenses/gpl.html
6 *
065b807c 7 * Support : mark.langsdorf@amd.com
1da177e4
LT
8 *
9 * Based on the powernow-k7.c module written by Dave Jones.
f4432c5c 10 * (C) 2003 Dave Jones on behalf of SuSE Labs
1da177e4
LT
11 * (C) 2004 Dominik Brodowski <linux@brodo.de>
12 * (C) 2004 Pavel Machek <pavel@suse.cz>
13 * Licensed under the terms of the GNU GPL License version 2.
14 * Based upon datasheets & sample CPUs kindly provided by AMD.
15 *
16 * Valuable input gratefully received from Dave Jones, Pavel Machek,
1f729e06 17 * Dominik Brodowski, Jacob Shin, and others.
065b807c 18 * Originally developed by Paul Devriendt.
1da177e4
LT
19 * Processor information obtained from Chapter 9 (Power and Thermal Management)
20 * of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
21 * Opteron Processors" available for download from www.amd.com
22 *
2e3f8faa 23 * Tables for specific CPUs can be inferred from
065b807c 24 * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
1da177e4
LT
25 */
26
27#include <linux/kernel.h>
28#include <linux/smp.h>
29#include <linux/module.h>
30#include <linux/init.h>
31#include <linux/cpufreq.h>
32#include <linux/slab.h>
33#include <linux/string.h>
065b807c 34#include <linux/cpumask.h>
4e57b681 35#include <linux/sched.h> /* for current / set_cpus_allowed() */
1da177e4
LT
36
37#include <asm/msr.h>
38#include <asm/io.h>
39#include <asm/delay.h>
40
41#ifdef CONFIG_X86_POWERNOW_K8_ACPI
42#include <linux/acpi.h>
14cc3e2b 43#include <linux/mutex.h>
1da177e4
LT
44#include <acpi/processor.h>
45#endif
46
47#define PFX "powernow-k8: "
48#define BFX PFX "BIOS error: "
c5829cd0 49#define VERSION "version 2.20.00"
1da177e4
LT
50#include "powernow-k8.h"
51
52/* serialize freq changes */
14cc3e2b 53static DEFINE_MUTEX(fidvid_mutex);
1da177e4 54
2c6b8c03 55static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
1da177e4 56
1f729e06
DJ
57static int cpu_family = CPU_OPTERON;
58
065b807c 59#ifndef CONFIG_SMP
08357611 60DEFINE_PER_CPU(cpumask_t, cpu_core_map);
065b807c
DJ
61#endif
62
1da177e4
LT
63/* Return a frequency in MHz, given an input fid */
64static u32 find_freq_from_fid(u32 fid)
65{
66 return 800 + (fid * 100);
67}
68
69/* Return a frequency in KHz, given an input fid */
70static u32 find_khz_freq_from_fid(u32 fid)
71{
72 return 1000 * find_freq_from_fid(fid);
73}
74
c5829cd0 75static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data, u32 pstate)
1f729e06 76{
c5829cd0 77 return data[pstate].frequency;
1f729e06
DJ
78}
79
1da177e4
LT
80/* Return the vco fid for an input fid
81 *
82 * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
83 * only from corresponding high fids. This returns "high" fid corresponding to
84 * "low" one.
85 */
86static u32 convert_fid_to_vco_fid(u32 fid)
87{
32ee8c3e 88 if (fid < HI_FID_TABLE_BOTTOM)
1da177e4 89 return 8 + (2 * fid);
32ee8c3e 90 else
1da177e4 91 return fid;
1da177e4
LT
92}
93
94/*
95 * Return 1 if the pending bit is set. Unless we just instructed the processor
96 * to transition to a new state, seeing this bit set is really bad news.
97 */
98static int pending_bit_stuck(void)
99{
100 u32 lo, hi;
101
e7bdd7a5 102 if (cpu_family == CPU_HW_PSTATE)
1f729e06
DJ
103 return 0;
104
1da177e4
LT
105 rdmsr(MSR_FIDVID_STATUS, lo, hi);
106 return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
107}
108
109/*
110 * Update the global current fid / vid values from the status msr.
111 * Returns 1 on error.
112 */
113static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
114{
115 u32 lo, hi;
116 u32 i = 0;
117
e7bdd7a5 118 if (cpu_family == CPU_HW_PSTATE) {
1f729e06
DJ
119 rdmsr(MSR_PSTATE_STATUS, lo, hi);
120 i = lo & HW_PSTATE_MASK;
c5829cd0 121 data->currpstate = i;
1f729e06
DJ
122 return 0;
123 }
7153d961 124 do {
0213df74
DJ
125 if (i++ > 10000) {
126 dprintk("detected change pending stuck\n");
1da177e4
LT
127 return 1;
128 }
129 rdmsr(MSR_FIDVID_STATUS, lo, hi);
7153d961 130 } while (lo & MSR_S_LO_CHANGE_PENDING);
1da177e4
LT
131
132 data->currvid = hi & MSR_S_HI_CURRENT_VID;
133 data->currfid = lo & MSR_S_LO_CURRENT_FID;
134
135 return 0;
136}
137
138/* the isochronous relief time */
139static void count_off_irt(struct powernow_k8_data *data)
140{
141 udelay((1 << data->irt) * 10);
142 return;
143}
144
27b46d76 145/* the voltage stabilization time */
1da177e4
LT
146static void count_off_vst(struct powernow_k8_data *data)
147{
148 udelay(data->vstable * VST_UNITS_20US);
149 return;
150}
151
152/* need to init the control msr to a safe value (for each cpu) */
153static void fidvid_msr_init(void)
154{
155 u32 lo, hi;
156 u8 fid, vid;
157
158 rdmsr(MSR_FIDVID_STATUS, lo, hi);
159 vid = hi & MSR_S_HI_CURRENT_VID;
160 fid = lo & MSR_S_LO_CURRENT_FID;
161 lo = fid | (vid << MSR_C_LO_VID_SHIFT);
162 hi = MSR_C_HI_STP_GNT_BENIGN;
163 dprintk("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
164 wrmsr(MSR_FIDVID_CTL, lo, hi);
165}
166
1da177e4
LT
167/* write the new fid value along with the other control fields to the msr */
168static int write_new_fid(struct powernow_k8_data *data, u32 fid)
169{
170 u32 lo;
171 u32 savevid = data->currvid;
0213df74 172 u32 i = 0;
1da177e4
LT
173
174 if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
175 printk(KERN_ERR PFX "internal error - overflow on fid write\n");
176 return 1;
177 }
178
179 lo = fid | (data->currvid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID;
180
181 dprintk("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
182 fid, lo, data->plllock * PLL_LOCK_CONVERSION);
183
0213df74
DJ
184 do {
185 wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
186 if (i++ > 100) {
1f729e06 187 printk(KERN_ERR PFX "Hardware error - pending bit very stuck - no further pstate changes possible\n");
63172cb3 188 return 1;
32ee8c3e 189 }
0213df74 190 } while (query_current_values_with_pending_wait(data));
1da177e4
LT
191
192 count_off_irt(data);
193
194 if (savevid != data->currvid) {
195 printk(KERN_ERR PFX "vid change on fid trans, old 0x%x, new 0x%x\n",
196 savevid, data->currvid);
197 return 1;
198 }
199
200 if (fid != data->currfid) {
201 printk(KERN_ERR PFX "fid trans failed, fid 0x%x, curr 0x%x\n", fid,
202 data->currfid);
203 return 1;
204 }
205
206 return 0;
207}
208
209/* Write a new vid to the hardware */
210static int write_new_vid(struct powernow_k8_data *data, u32 vid)
211{
212 u32 lo;
213 u32 savefid = data->currfid;
0213df74 214 int i = 0;
1da177e4
LT
215
216 if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
217 printk(KERN_ERR PFX "internal error - overflow on vid write\n");
218 return 1;
219 }
220
221 lo = data->currfid | (vid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID;
222
223 dprintk("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
224 vid, lo, STOP_GRANT_5NS);
225
0213df74
DJ
226 do {
227 wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
6df89006
DJ
228 if (i++ > 100) {
229 printk(KERN_ERR PFX "internal error - pending bit very stuck - no further pstate changes possible\n");
230 return 1;
231 }
0213df74 232 } while (query_current_values_with_pending_wait(data));
1da177e4
LT
233
234 if (savefid != data->currfid) {
235 printk(KERN_ERR PFX "fid changed on vid trans, old 0x%x new 0x%x\n",
236 savefid, data->currfid);
237 return 1;
238 }
239
240 if (vid != data->currvid) {
241 printk(KERN_ERR PFX "vid trans failed, vid 0x%x, curr 0x%x\n", vid,
242 data->currvid);
243 return 1;
244 }
245
246 return 0;
247}
248
249/*
250 * Reduce the vid by the max of step or reqvid.
251 * Decreasing vid codes represent increasing voltages:
841e40b3 252 * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
1da177e4
LT
253 */
254static int decrease_vid_code_by_step(struct powernow_k8_data *data, u32 reqvid, u32 step)
255{
256 if ((data->currvid - reqvid) > step)
257 reqvid = data->currvid - step;
258
259 if (write_new_vid(data, reqvid))
260 return 1;
261
262 count_off_vst(data);
263
264 return 0;
265}
266
1f729e06
DJ
267/* Change hardware pstate by single MSR write */
268static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
269{
270 wrmsr(MSR_PSTATE_CTRL, pstate, 0);
c5829cd0 271 data->currpstate = pstate;
1f729e06
DJ
272 return 0;
273}
274
275/* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
1da177e4
LT
276static int transition_fid_vid(struct powernow_k8_data *data, u32 reqfid, u32 reqvid)
277{
278 if (core_voltage_pre_transition(data, reqvid))
279 return 1;
280
281 if (core_frequency_transition(data, reqfid))
282 return 1;
283
284 if (core_voltage_post_transition(data, reqvid))
285 return 1;
286
287 if (query_current_values_with_pending_wait(data))
288 return 1;
289
290 if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
291 printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, curr 0x%x 0x%x\n",
292 smp_processor_id(),
293 reqfid, reqvid, data->currfid, data->currvid);
294 return 1;
295 }
296
297 dprintk("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
298 smp_processor_id(), data->currfid, data->currvid);
299
300 return 0;
301}
302
303/* Phase 1 - core voltage transition ... setup voltage */
304static int core_voltage_pre_transition(struct powernow_k8_data *data, u32 reqvid)
305{
306 u32 rvosteps = data->rvo;
307 u32 savefid = data->currfid;
065b807c 308 u32 maxvid, lo;
1da177e4
LT
309
310 dprintk("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, reqvid 0x%x, rvo 0x%x\n",
311 smp_processor_id(),
312 data->currfid, data->currvid, reqvid, data->rvo);
313
065b807c
DJ
314 rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
315 maxvid = 0x1f & (maxvid >> 16);
316 dprintk("ph1 maxvid=0x%x\n", maxvid);
317 if (reqvid < maxvid) /* lower numbers are higher voltages */
318 reqvid = maxvid;
319
1da177e4
LT
320 while (data->currvid > reqvid) {
321 dprintk("ph1: curr 0x%x, req vid 0x%x\n",
322 data->currvid, reqvid);
323 if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
324 return 1;
325 }
326
065b807c
DJ
327 while ((rvosteps > 0) && ((data->rvo + data->currvid) > reqvid)) {
328 if (data->currvid == maxvid) {
1da177e4
LT
329 rvosteps = 0;
330 } else {
331 dprintk("ph1: changing vid for rvo, req 0x%x\n",
332 data->currvid - 1);
333 if (decrease_vid_code_by_step(data, data->currvid - 1, 1))
334 return 1;
335 rvosteps--;
336 }
337 }
338
339 if (query_current_values_with_pending_wait(data))
340 return 1;
341
342 if (savefid != data->currfid) {
343 printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n", data->currfid);
344 return 1;
345 }
346
347 dprintk("ph1 complete, currfid 0x%x, currvid 0x%x\n",
348 data->currfid, data->currvid);
349
350 return 0;
351}
352
353/* Phase 2 - core frequency transition */
354static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
355{
019a61b9 356 u32 vcoreqfid, vcocurrfid, vcofiddiff, fid_interval, savevid = data->currvid;
1da177e4
LT
357
358 if ((reqfid < HI_FID_TABLE_BOTTOM) && (data->currfid < HI_FID_TABLE_BOTTOM)) {
359 printk(KERN_ERR PFX "ph2: illegal lo-lo transition 0x%x 0x%x\n",
360 reqfid, data->currfid);
361 return 1;
362 }
363
364 if (data->currfid == reqfid) {
365 printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n", data->currfid);
366 return 0;
367 }
368
369 dprintk("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, reqfid 0x%x\n",
370 smp_processor_id(),
371 data->currfid, data->currvid, reqfid);
372
373 vcoreqfid = convert_fid_to_vco_fid(reqfid);
374 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
375 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
376 : vcoreqfid - vcocurrfid;
377
378 while (vcofiddiff > 2) {
019a61b9
LM
379 (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
380
1da177e4
LT
381 if (reqfid > data->currfid) {
382 if (data->currfid > LO_FID_TABLE_TOP) {
019a61b9 383 if (write_new_fid(data, data->currfid + fid_interval)) {
1da177e4
LT
384 return 1;
385 }
386 } else {
387 if (write_new_fid
388 (data, 2 + convert_fid_to_vco_fid(data->currfid))) {
389 return 1;
390 }
391 }
392 } else {
019a61b9 393 if (write_new_fid(data, data->currfid - fid_interval))
1da177e4
LT
394 return 1;
395 }
396
397 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
398 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
399 : vcoreqfid - vcocurrfid;
400 }
401
402 if (write_new_fid(data, reqfid))
403 return 1;
404
405 if (query_current_values_with_pending_wait(data))
406 return 1;
407
408 if (data->currfid != reqfid) {
409 printk(KERN_ERR PFX
410 "ph2: mismatch, failed fid transition, curr 0x%x, req 0x%x\n",
411 data->currfid, reqfid);
412 return 1;
413 }
414
415 if (savevid != data->currvid) {
416 printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
417 savevid, data->currvid);
418 return 1;
419 }
420
421 dprintk("ph2 complete, currfid 0x%x, currvid 0x%x\n",
422 data->currfid, data->currvid);
423
424 return 0;
425}
426
427/* Phase 3 - core voltage transition flow ... jump to the final vid. */
428static int core_voltage_post_transition(struct powernow_k8_data *data, u32 reqvid)
429{
430 u32 savefid = data->currfid;
431 u32 savereqvid = reqvid;
432
433 dprintk("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
434 smp_processor_id(),
435 data->currfid, data->currvid);
436
437 if (reqvid != data->currvid) {
438 if (write_new_vid(data, reqvid))
439 return 1;
440
441 if (savefid != data->currfid) {
442 printk(KERN_ERR PFX
443 "ph3: bad fid change, save 0x%x, curr 0x%x\n",
444 savefid, data->currfid);
445 return 1;
446 }
447
448 if (data->currvid != reqvid) {
449 printk(KERN_ERR PFX
450 "ph3: failed vid transition\n, req 0x%x, curr 0x%x",
451 reqvid, data->currvid);
452 return 1;
453 }
454 }
455
456 if (query_current_values_with_pending_wait(data))
457 return 1;
458
459 if (savereqvid != data->currvid) {
460 dprintk("ph3 failed, currvid 0x%x\n", data->currvid);
461 return 1;
462 }
463
464 if (savefid != data->currfid) {
465 dprintk("ph3 failed, currfid changed 0x%x\n",
466 data->currfid);
467 return 1;
468 }
469
470 dprintk("ph3 complete, currfid 0x%x, currvid 0x%x\n",
471 data->currfid, data->currvid);
472
473 return 0;
474}
475
476static int check_supported_cpu(unsigned int cpu)
477{
fc0e4748 478 cpumask_t oldmask;
1da177e4
LT
479 u32 eax, ebx, ecx, edx;
480 unsigned int rc = 0;
481
482 oldmask = current->cpus_allowed;
0bc3cc03 483 set_cpus_allowed_ptr(current, &cpumask_of_cpu(cpu));
1da177e4
LT
484
485 if (smp_processor_id() != cpu) {
8aae8284 486 printk(KERN_ERR PFX "limiting to cpu %u failed\n", cpu);
1da177e4
LT
487 goto out;
488 }
489
490 if (current_cpu_data.x86_vendor != X86_VENDOR_AMD)
491 goto out;
492
493 eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
1f729e06
DJ
494 if (((eax & CPUID_XFAM) != CPUID_XFAM_K8) &&
495 ((eax & CPUID_XFAM) < CPUID_XFAM_10H))
2c906ae6
DJ
496 goto out;
497
1f729e06
DJ
498 if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
499 if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
99fbe1ac 500 ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
1f729e06
DJ
501 printk(KERN_INFO PFX "Processor cpuid %x not supported\n", eax);
502 goto out;
503 }
1da177e4 504
1f729e06
DJ
505 eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
506 if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
507 printk(KERN_INFO PFX
508 "No frequency change capabilities detected\n");
509 goto out;
510 }
1da177e4 511
1f729e06
DJ
512 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
513 if ((edx & P_STATE_TRANSITION_CAPABLE) != P_STATE_TRANSITION_CAPABLE) {
514 printk(KERN_INFO PFX "Power state transitions not supported\n");
515 goto out;
516 }
517 } else { /* must be a HW Pstate capable processor */
518 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
519 if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
520 cpu_family = CPU_HW_PSTATE;
521 else
522 goto out;
1da177e4
LT
523 }
524
525 rc = 1;
526
527out:
fc0e4748 528 set_cpus_allowed_ptr(current, &oldmask);
1da177e4 529 return rc;
1da177e4
LT
530}
531
532static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid)
533{
534 unsigned int j;
535 u8 lastfid = 0xff;
536
537 for (j = 0; j < data->numps; j++) {
538 if (pst[j].vid > LEAST_VID) {
539 printk(KERN_ERR PFX "vid %d invalid : 0x%x\n", j, pst[j].vid);
540 return -EINVAL;
541 }
542 if (pst[j].vid < data->rvo) { /* vid + rvo >= 0 */
543 printk(KERN_ERR BFX "0 vid exceeded with pstate %d\n", j);
544 return -ENODEV;
545 }
546 if (pst[j].vid < maxvid + data->rvo) { /* vid + rvo >= maxvid */
547 printk(KERN_ERR BFX "maxvid exceeded with pstate %d\n", j);
548 return -ENODEV;
549 }
8aae8284
JS
550 if (pst[j].fid > MAX_FID) {
551 printk(KERN_ERR BFX "maxfid exceeded with pstate %d\n", j);
552 return -ENODEV;
553 }
8aae8284 554 if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
1da177e4 555 /* Only first fid is allowed to be in "low" range */
8aae8284 556 printk(KERN_ERR BFX "two low fids - %d : 0x%x\n", j, pst[j].fid);
1da177e4
LT
557 return -EINVAL;
558 }
559 if (pst[j].fid < lastfid)
560 lastfid = pst[j].fid;
561 }
562 if (lastfid & 1) {
8aae8284 563 printk(KERN_ERR BFX "lastfid invalid\n");
1da177e4
LT
564 return -EINVAL;
565 }
566 if (lastfid > LO_FID_TABLE_TOP)
8aae8284 567 printk(KERN_INFO BFX "first fid not from lo freq table\n");
1da177e4
LT
568
569 return 0;
570}
571
572static void print_basics(struct powernow_k8_data *data)
573{
574 int j;
575 for (j = 0; j < data->numps; j++) {
1f729e06 576 if (data->powernow_table[j].frequency != CPUFREQ_ENTRY_INVALID) {
e7bdd7a5 577 if (cpu_family == CPU_HW_PSTATE) {
4ae5c49f 578 printk(KERN_INFO PFX " %d : pstate %d (%d MHz)\n",
9a60ddbc 579 j,
4ae5c49f 580 data->powernow_table[j].index,
9a60ddbc 581 data->powernow_table[j].frequency/1000);
1f729e06 582 } else {
9a60ddbc
DJ
583 printk(KERN_INFO PFX " %d : fid 0x%x (%d MHz), vid 0x%x\n",
584 j,
585 data->powernow_table[j].index & 0xff,
586 data->powernow_table[j].frequency/1000,
587 data->powernow_table[j].index >> 8);
1f729e06
DJ
588 }
589 }
1da177e4
LT
590 }
591 if (data->batps)
592 printk(KERN_INFO PFX "Only %d pstates on battery\n", data->batps);
593}
594
595static int fill_powernow_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid)
596{
597 struct cpufreq_frequency_table *powernow_table;
598 unsigned int j;
599
600 if (data->batps) { /* use ACPI support to get full speed on mains power */
601 printk(KERN_WARNING PFX "Only %d pstates usable (use ACPI driver for full range\n", data->batps);
602 data->numps = data->batps;
603 }
604
605 for ( j=1; j<data->numps; j++ ) {
606 if (pst[j-1].fid >= pst[j].fid) {
607 printk(KERN_ERR PFX "PST out of sequence\n");
608 return -EINVAL;
609 }
610 }
611
612 if (data->numps < 2) {
613 printk(KERN_ERR PFX "no p states to transition\n");
614 return -ENODEV;
615 }
616
617 if (check_pst_table(data, pst, maxvid))
618 return -EINVAL;
619
620 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
621 * (data->numps + 1)), GFP_KERNEL);
622 if (!powernow_table) {
623 printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
624 return -ENOMEM;
625 }
626
627 for (j = 0; j < data->numps; j++) {
628 powernow_table[j].index = pst[j].fid; /* lower 8 bits */
629 powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
630 powernow_table[j].frequency = find_khz_freq_from_fid(pst[j].fid);
631 }
632 powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
633 powernow_table[data->numps].index = 0;
634
635 if (query_current_values_with_pending_wait(data)) {
636 kfree(powernow_table);
637 return -EIO;
638 }
639
640 dprintk("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
641 data->powernow_table = powernow_table;
08357611 642 if (first_cpu(per_cpu(cpu_core_map, data->cpu)) == data->cpu)
2e497620 643 print_basics(data);
1da177e4
LT
644
645 for (j = 0; j < data->numps; j++)
646 if ((pst[j].fid==data->currfid) && (pst[j].vid==data->currvid))
647 return 0;
648
649 dprintk("currfid/vid do not match PST, ignoring\n");
650 return 0;
651}
652
653/* Find and validate the PSB/PST table in BIOS. */
654static int find_psb_table(struct powernow_k8_data *data)
655{
656 struct psb_s *psb;
657 unsigned int i;
658 u32 mvs;
659 u8 maxvid;
660 u32 cpst = 0;
661 u32 thiscpuid;
662
663 for (i = 0xc0000; i < 0xffff0; i += 0x10) {
664 /* Scan BIOS looking for the signature. */
665 /* It can not be at ffff0 - it is too big. */
666
667 psb = phys_to_virt(i);
668 if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
669 continue;
670
671 dprintk("found PSB header at 0x%p\n", psb);
672
673 dprintk("table vers: 0x%x\n", psb->tableversion);
674 if (psb->tableversion != PSB_VERSION_1_4) {
cc6e8de8 675 printk(KERN_ERR BFX "PSB table is not v1.4\n");
1da177e4
LT
676 return -ENODEV;
677 }
678
679 dprintk("flags: 0x%x\n", psb->flags1);
680 if (psb->flags1) {
681 printk(KERN_ERR BFX "unknown flags\n");
682 return -ENODEV;
683 }
684
685 data->vstable = psb->vstable;
686 dprintk("voltage stabilization time: %d(*20us)\n", data->vstable);
687
688 dprintk("flags2: 0x%x\n", psb->flags2);
689 data->rvo = psb->flags2 & 3;
690 data->irt = ((psb->flags2) >> 2) & 3;
691 mvs = ((psb->flags2) >> 4) & 3;
692 data->vidmvs = 1 << mvs;
693 data->batps = ((psb->flags2) >> 6) & 3;
694
695 dprintk("ramp voltage offset: %d\n", data->rvo);
696 dprintk("isochronous relief time: %d\n", data->irt);
697 dprintk("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
698
699 dprintk("numpst: 0x%x\n", psb->num_tables);
700 cpst = psb->num_tables;
701 if ((psb->cpuid == 0x00000fc0) || (psb->cpuid == 0x00000fe0) ){
702 thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
703 if ((thiscpuid == 0x00000fc0) || (thiscpuid == 0x00000fe0) ) {
704 cpst = 1;
705 }
706 }
707 if (cpst != 1) {
708 printk(KERN_ERR BFX "numpst must be 1\n");
709 return -ENODEV;
710 }
711
712 data->plllock = psb->plllocktime;
713 dprintk("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
714 dprintk("maxfid: 0x%x\n", psb->maxfid);
715 dprintk("maxvid: 0x%x\n", psb->maxvid);
716 maxvid = psb->maxvid;
717
718 data->numps = psb->numps;
719 dprintk("numpstates: 0x%x\n", data->numps);
720 return fill_powernow_table(data, (struct pst_s *)(psb+1), maxvid);
721 }
722 /*
723 * If you see this message, complain to BIOS manufacturer. If
724 * he tells you "we do not support Linux" or some similar
725 * nonsense, remember that Windows 2000 uses the same legacy
726 * mechanism that the old Linux PSB driver uses. Tell them it
727 * is broken with Windows 2000.
728 *
729 * The reference to the AMD documentation is chapter 9 in the
730 * BIOS and Kernel Developer's Guide, which is available on
731 * www.amd.com
732 */
cc6e8de8 733 printk(KERN_ERR PFX "BIOS error - no PSB or ACPI _PSS objects\n");
1da177e4
LT
734 return -ENODEV;
735}
736
737#ifdef CONFIG_X86_POWERNOW_K8_ACPI
738static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index)
739{
f607e3a0 740 if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE))
1da177e4
LT
741 return;
742
f607e3a0
LT
743 data->irt = (data->acpi_data.states[index].control >> IRT_SHIFT) & IRT_MASK;
744 data->rvo = (data->acpi_data.states[index].control >> RVO_SHIFT) & RVO_MASK;
745 data->exttype = (data->acpi_data.states[index].control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
746 data->plllock = (data->acpi_data.states[index].control >> PLL_L_SHIFT) & PLL_L_MASK;
747 data->vidmvs = 1 << ((data->acpi_data.states[index].control >> MVS_SHIFT) & MVS_MASK);
748 data->vstable = (data->acpi_data.states[index].control >> VST_SHIFT) & VST_MASK;
1da177e4
LT
749}
750
751static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
752{
1da177e4 753 struct cpufreq_frequency_table *powernow_table;
1f729e06 754 int ret_val;
1da177e4 755
f607e3a0 756 if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
065b807c 757 dprintk("register performance failed: bad ACPI data\n");
1da177e4
LT
758 return -EIO;
759 }
760
761 /* verify the data contained in the ACPI structures */
f607e3a0 762 if (data->acpi_data.state_count <= 1) {
1da177e4
LT
763 dprintk("No ACPI P-States\n");
764 goto err_out;
765 }
766
f607e3a0
LT
767 if ((data->acpi_data.control_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
768 (data->acpi_data.status_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
1da177e4 769 dprintk("Invalid control/status registers (%x - %x)\n",
f607e3a0
LT
770 data->acpi_data.control_register.space_id,
771 data->acpi_data.status_register.space_id);
1da177e4
LT
772 goto err_out;
773 }
774
775 /* fill in data->powernow_table */
776 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
f607e3a0 777 * (data->acpi_data.state_count + 1)), GFP_KERNEL);
1da177e4
LT
778 if (!powernow_table) {
779 dprintk("powernow_table memory alloc failure\n");
780 goto err_out;
781 }
782
e7bdd7a5 783 if (cpu_family == CPU_HW_PSTATE)
1f729e06
DJ
784 ret_val = fill_powernow_table_pstate(data, powernow_table);
785 else
786 ret_val = fill_powernow_table_fidvid(data, powernow_table);
787 if (ret_val)
788 goto err_out_mem;
789
f607e3a0
LT
790 powernow_table[data->acpi_data.state_count].frequency = CPUFREQ_TABLE_END;
791 powernow_table[data->acpi_data.state_count].index = 0;
1f729e06
DJ
792 data->powernow_table = powernow_table;
793
794 /* fill in data */
f607e3a0 795 data->numps = data->acpi_data.state_count;
08357611 796 if (first_cpu(per_cpu(cpu_core_map, data->cpu)) == data->cpu)
2e497620 797 print_basics(data);
1f729e06
DJ
798 powernow_k8_acpi_pst_values(data, 0);
799
800 /* notify BIOS that we exist */
801 acpi_processor_notify_smm(THIS_MODULE);
802
803 return 0;
804
805err_out_mem:
806 kfree(powernow_table);
807
808err_out:
f607e3a0 809 acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
1f729e06
DJ
810
811 /* data->acpi_data.state_count informs us at ->exit() whether ACPI was used */
f607e3a0 812 data->acpi_data.state_count = 0;
1f729e06
DJ
813
814 return -ENODEV;
815}
816
817static int fill_powernow_table_pstate(struct powernow_k8_data *data, struct cpufreq_frequency_table *powernow_table)
818{
819 int i;
c5829cd0
ML
820 u32 hi = 0, lo = 0;
821 rdmsr(MSR_PSTATE_CUR_LIMIT, hi, lo);
822 data->max_hw_pstate = (hi & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT;
1f729e06 823
f607e3a0 824 for (i = 0; i < data->acpi_data.state_count; i++) {
1f729e06 825 u32 index;
1f729e06 826
f607e3a0 827 index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
c5829cd0 828 if (index > data->max_hw_pstate) {
1f729e06
DJ
829 printk(KERN_ERR PFX "invalid pstate %d - bad value %d.\n", i, index);
830 printk(KERN_ERR PFX "Please report to BIOS manufacturer\n");
c5829cd0
ML
831 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
832 continue;
1f729e06
DJ
833 }
834 rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
835 if (!(hi & HW_PSTATE_VALID_MASK)) {
836 dprintk("invalid pstate %d, ignoring\n", index);
837 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
838 continue;
839 }
840
c5829cd0 841 powernow_table[i].index = index;
1f729e06 842
f607e3a0 843 powernow_table[i].frequency = data->acpi_data.states[i].core_frequency * 1000;
1f729e06
DJ
844 }
845 return 0;
846}
847
848static int fill_powernow_table_fidvid(struct powernow_k8_data *data, struct cpufreq_frequency_table *powernow_table)
849{
850 int i;
851 int cntlofreq = 0;
f607e3a0 852 for (i = 0; i < data->acpi_data.state_count; i++) {
094ce7fd
DJ
853 u32 fid;
854 u32 vid;
855
856 if (data->exttype) {
f607e3a0
LT
857 fid = data->acpi_data.states[i].status & EXT_FID_MASK;
858 vid = (data->acpi_data.states[i].status >> VID_SHIFT) & EXT_VID_MASK;
841e40b3 859 } else {
f607e3a0
LT
860 fid = data->acpi_data.states[i].control & FID_MASK;
861 vid = (data->acpi_data.states[i].control >> VID_SHIFT) & VID_MASK;
841e40b3 862 }
1da177e4
LT
863
864 dprintk(" %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
865
866 powernow_table[i].index = fid; /* lower 8 bits */
867 powernow_table[i].index |= (vid << 8); /* upper 8 bits */
868 powernow_table[i].frequency = find_khz_freq_from_fid(fid);
869
870 /* verify frequency is OK */
871 if ((powernow_table[i].frequency > (MAX_FREQ * 1000)) ||
872 (powernow_table[i].frequency < (MIN_FREQ * 1000))) {
873 dprintk("invalid freq %u kHz, ignoring\n", powernow_table[i].frequency);
874 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
875 continue;
876 }
877
878 /* verify voltage is OK - BIOSs are using "off" to indicate invalid */
841e40b3 879 if (vid == VID_OFF) {
1da177e4
LT
880 dprintk("invalid vid %u, ignoring\n", vid);
881 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
882 continue;
883 }
884
065b807c
DJ
885 /* verify only 1 entry from the lo frequency table */
886 if (fid < HI_FID_TABLE_BOTTOM) {
887 if (cntlofreq) {
32ee8c3e 888 /* if both entries are the same, ignore this one ... */
065b807c
DJ
889 if ((powernow_table[i].frequency != powernow_table[cntlofreq].frequency) ||
890 (powernow_table[i].index != powernow_table[cntlofreq].index)) {
891 printk(KERN_ERR PFX "Too many lo freq table entries\n");
1f729e06 892 return 1;
065b807c
DJ
893 }
894
895 dprintk("double low frequency table entry, ignoring it.\n");
896 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
897 continue;
898 } else
899 cntlofreq = i;
1da177e4
LT
900 }
901
f607e3a0 902 if (powernow_table[i].frequency != (data->acpi_data.states[i].core_frequency * 1000)) {
1da177e4
LT
903 printk(KERN_INFO PFX "invalid freq entries %u kHz vs. %u kHz\n",
904 powernow_table[i].frequency,
f607e3a0 905 (unsigned int) (data->acpi_data.states[i].core_frequency * 1000));
1da177e4
LT
906 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
907 continue;
908 }
909 }
1da177e4 910 return 0;
1da177e4
LT
911}
912
913static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
914{
f607e3a0
LT
915 if (data->acpi_data.state_count)
916 acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
1da177e4
LT
917}
918
919#else
920static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data) { return -ENODEV; }
921static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data) { return; }
922static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index) { return; }
923#endif /* CONFIG_X86_POWERNOW_K8_ACPI */
924
925/* Take a frequency, and issue the fid/vid transition command */
1f729e06 926static int transition_frequency_fidvid(struct powernow_k8_data *data, unsigned int index)
1da177e4 927{
1f729e06
DJ
928 u32 fid = 0;
929 u32 vid = 0;
065b807c 930 int res, i;
1da177e4
LT
931 struct cpufreq_freqs freqs;
932
933 dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
934
1f729e06 935 /* fid/vid correctness check for k8 */
1da177e4 936 /* fid are the lower 8 bits of the index we stored into
1f729e06
DJ
937 * the cpufreq frequency table in find_psb_table, vid
938 * are the upper 8 bits.
1da177e4 939 */
1da177e4
LT
940 fid = data->powernow_table[index].index & 0xFF;
941 vid = (data->powernow_table[index].index & 0xFF00) >> 8;
942
943 dprintk("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
944
945 if (query_current_values_with_pending_wait(data))
946 return 1;
947
948 if ((data->currvid == vid) && (data->currfid == fid)) {
949 dprintk("target matches current values (fid 0x%x, vid 0x%x)\n",
950 fid, vid);
951 return 0;
952 }
953
954 if ((fid < HI_FID_TABLE_BOTTOM) && (data->currfid < HI_FID_TABLE_BOTTOM)) {
065b807c
DJ
955 printk(KERN_ERR PFX
956 "ignoring illegal change in lo freq table-%x to 0x%x\n",
1da177e4
LT
957 data->currfid, fid);
958 return 1;
959 }
960
961 dprintk("cpu %d, changing to fid 0x%x, vid 0x%x\n",
962 smp_processor_id(), fid, vid);
1da177e4
LT
963 freqs.old = find_khz_freq_from_fid(data->currfid);
964 freqs.new = find_khz_freq_from_fid(fid);
1f729e06 965
334ef7a7 966 for_each_cpu_mask_nr(i, *(data->available_cores)) {
065b807c
DJ
967 freqs.cpu = i;
968 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
969 }
1da177e4 970
1da177e4 971 res = transition_fid_vid(data, fid, vid);
1da177e4 972 freqs.new = find_khz_freq_from_fid(data->currfid);
1f729e06 973
334ef7a7 974 for_each_cpu_mask_nr(i, *(data->available_cores)) {
1f729e06
DJ
975 freqs.cpu = i;
976 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
977 }
978 return res;
979}
980
981/* Take a frequency, and issue the hardware pstate transition command */
982static int transition_frequency_pstate(struct powernow_k8_data *data, unsigned int index)
983{
1f729e06
DJ
984 u32 pstate = 0;
985 int res, i;
986 struct cpufreq_freqs freqs;
987
988 dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
989
c5829cd0 990 /* get MSR index for hardware pstate transition */
1f729e06 991 pstate = index & HW_PSTATE_MASK;
c5829cd0 992 if (pstate > data->max_hw_pstate)
1f729e06 993 return 0;
c5829cd0
ML
994 freqs.old = find_khz_freq_from_pstate(data->powernow_table, data->currpstate);
995 freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1f729e06 996
334ef7a7 997 for_each_cpu_mask_nr(i, *(data->available_cores)) {
1f729e06
DJ
998 freqs.cpu = i;
999 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1000 }
1001
1002 res = transition_pstate(data, pstate);
c5829cd0 1003 freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1f729e06 1004
334ef7a7 1005 for_each_cpu_mask_nr(i, *(data->available_cores)) {
065b807c
DJ
1006 freqs.cpu = i;
1007 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
2e3f8faa 1008 }
1da177e4
LT
1009 return res;
1010}
1011
1012/* Driver entry point to switch to the target frequency */
1013static int powernowk8_target(struct cpufreq_policy *pol, unsigned targfreq, unsigned relation)
1014{
fc0e4748 1015 cpumask_t oldmask;
2c6b8c03 1016 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
9180053c
AB
1017 u32 checkfid;
1018 u32 checkvid;
1da177e4
LT
1019 unsigned int newstate;
1020 int ret = -EIO;
1021
4211a303
JS
1022 if (!data)
1023 return -EINVAL;
1024
9180053c
AB
1025 checkfid = data->currfid;
1026 checkvid = data->currvid;
1027
1da177e4
LT
1028 /* only run on specific CPU from here on */
1029 oldmask = current->cpus_allowed;
0bc3cc03 1030 set_cpus_allowed_ptr(current, &cpumask_of_cpu(pol->cpu));
1da177e4
LT
1031
1032 if (smp_processor_id() != pol->cpu) {
8aae8284 1033 printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1da177e4
LT
1034 goto err_out;
1035 }
1036
1037 if (pending_bit_stuck()) {
1038 printk(KERN_ERR PFX "failing targ, change pending bit set\n");
1039 goto err_out;
1040 }
1041
1042 dprintk("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1043 pol->cpu, targfreq, pol->min, pol->max, relation);
1044
83844510 1045 if (query_current_values_with_pending_wait(data))
1da177e4 1046 goto err_out;
1da177e4 1047
c5829cd0 1048 if (cpu_family != CPU_HW_PSTATE) {
1f729e06 1049 dprintk("targ: curr fid 0x%x, vid 0x%x\n",
1da177e4
LT
1050 data->currfid, data->currvid);
1051
1f729e06
DJ
1052 if ((checkvid != data->currvid) || (checkfid != data->currfid)) {
1053 printk(KERN_INFO PFX
1054 "error - out of sync, fix 0x%x 0x%x, vid 0x%x 0x%x\n",
1055 checkfid, data->currfid, checkvid, data->currvid);
1056 }
1da177e4
LT
1057 }
1058
1059 if (cpufreq_frequency_table_target(pol, data->powernow_table, targfreq, relation, &newstate))
1060 goto err_out;
1061
14cc3e2b 1062 mutex_lock(&fidvid_mutex);
065b807c 1063
1da177e4
LT
1064 powernow_k8_acpi_pst_values(data, newstate);
1065
e7bdd7a5 1066 if (cpu_family == CPU_HW_PSTATE)
1f729e06
DJ
1067 ret = transition_frequency_pstate(data, newstate);
1068 else
1069 ret = transition_frequency_fidvid(data, newstate);
1070 if (ret) {
1da177e4
LT
1071 printk(KERN_ERR PFX "transition frequency failed\n");
1072 ret = 1;
14cc3e2b 1073 mutex_unlock(&fidvid_mutex);
1da177e4
LT
1074 goto err_out;
1075 }
14cc3e2b 1076 mutex_unlock(&fidvid_mutex);
065b807c 1077
e7bdd7a5 1078 if (cpu_family == CPU_HW_PSTATE)
c5829cd0 1079 pol->cur = find_khz_freq_from_pstate(data->powernow_table, newstate);
1f729e06
DJ
1080 else
1081 pol->cur = find_khz_freq_from_fid(data->currfid);
1da177e4
LT
1082 ret = 0;
1083
1084err_out:
fc0e4748 1085 set_cpus_allowed_ptr(current, &oldmask);
1da177e4
LT
1086 return ret;
1087}
1088
1089/* Driver entry point to verify the policy and range of frequencies */
1090static int powernowk8_verify(struct cpufreq_policy *pol)
1091{
2c6b8c03 1092 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1da177e4 1093
4211a303
JS
1094 if (!data)
1095 return -EINVAL;
1096
1da177e4
LT
1097 return cpufreq_frequency_table_verify(pol, data->powernow_table);
1098}
1099
1100/* per CPU init entry point to the driver */
aa41eb99 1101static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
1da177e4
LT
1102{
1103 struct powernow_k8_data *data;
f607e3a0 1104 cpumask_t oldmask;
d7fa706c 1105 int rc;
1da177e4 1106
8aae8284
JS
1107 if (!cpu_online(pol->cpu))
1108 return -ENODEV;
1109
1da177e4
LT
1110 if (!check_supported_cpu(pol->cpu))
1111 return -ENODEV;
1112
bfdc708d 1113 data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
1da177e4
LT
1114 if (!data) {
1115 printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
1116 return -ENOMEM;
1117 }
1da177e4
LT
1118
1119 data->cpu = pol->cpu;
1120
1121 if (powernow_k8_cpu_init_acpi(data)) {
1122 /*
1123 * Use the PSB BIOS structure. This is only availabe on
1124 * an UP version, and is deprecated by AMD.
1125 */
9ed059e1 1126 if (num_online_cpus() != 1) {
eba9fe93
ML
1127#ifndef CONFIG_ACPI_PROCESSOR
1128 printk(KERN_ERR PFX "ACPI Processor support is required "
1129 "for SMP systems but is absent. Please load the "
1130 "ACPI Processor module before starting this "
1131 "driver.\n");
1132#else
1133 printk(KERN_ERR PFX "Your BIOS does not provide ACPI "
1134 "_PSS objects in a way that Linux understands. "
1135 "Please report this to the Linux ACPI maintainers"
1136 " and complain to your BIOS vendor.\n");
1137#endif
1da177e4
LT
1138 kfree(data);
1139 return -ENODEV;
1140 }
1141 if (pol->cpu != 0) {
eba9fe93
ML
1142 printk(KERN_ERR PFX "No ACPI _PSS objects for CPU other than "
1143 "CPU0. Complain to your BIOS vendor.\n");
1da177e4
LT
1144 kfree(data);
1145 return -ENODEV;
1146 }
1147 rc = find_psb_table(data);
1148 if (rc) {
1149 kfree(data);
1150 return -ENODEV;
1151 }
1152 }
1153
1154 /* only run on specific CPU from here on */
1155 oldmask = current->cpus_allowed;
0bc3cc03 1156 set_cpus_allowed_ptr(current, &cpumask_of_cpu(pol->cpu));
1da177e4
LT
1157
1158 if (smp_processor_id() != pol->cpu) {
8aae8284 1159 printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1da177e4
LT
1160 goto err_out;
1161 }
1162
1163 if (pending_bit_stuck()) {
1164 printk(KERN_ERR PFX "failing init, change pending bit set\n");
1165 goto err_out;
1166 }
1167
1168 if (query_current_values_with_pending_wait(data))
1169 goto err_out;
1170
e7bdd7a5 1171 if (cpu_family == CPU_OPTERON)
1f729e06 1172 fidvid_msr_init();
1da177e4
LT
1173
1174 /* run on any CPU again */
fc0e4748 1175 set_cpus_allowed_ptr(current, &oldmask);
1da177e4 1176
f607e3a0
LT
1177 if (cpu_family == CPU_HW_PSTATE)
1178 pol->cpus = cpumask_of_cpu(pol->cpu);
1179 else
1180 pol->cpus = per_cpu(cpu_core_map, pol->cpu);
1f729e06 1181 data->available_cores = &(pol->cpus);
1da177e4 1182
32ee8c3e 1183 /* Take a crude guess here.
1da177e4
LT
1184 * That guess was in microseconds, so multiply with 1000 */
1185 pol->cpuinfo.transition_latency = (((data->rvo + 8) * data->vstable * VST_UNITS_20US)
1186 + (3 * (1 << data->irt) * 10)) * 1000;
1187
e7bdd7a5 1188 if (cpu_family == CPU_HW_PSTATE)
c5829cd0 1189 pol->cur = find_khz_freq_from_pstate(data->powernow_table, data->currpstate);
1f729e06
DJ
1190 else
1191 pol->cur = find_khz_freq_from_fid(data->currfid);
1da177e4
LT
1192 dprintk("policy current frequency %d kHz\n", pol->cur);
1193
1194 /* min/max the cpu is capable of */
1195 if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1196 printk(KERN_ERR PFX "invalid powernow_table\n");
1197 powernow_k8_cpu_exit_acpi(data);
1198 kfree(data->powernow_table);
1199 kfree(data);
1200 return -EINVAL;
1201 }
1202
1203 cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1204
e7bdd7a5 1205 if (cpu_family == CPU_HW_PSTATE)
c5829cd0 1206 dprintk("cpu_init done, current pstate 0x%x\n", data->currpstate);
1f729e06
DJ
1207 else
1208 dprintk("cpu_init done, current fid 0x%x, vid 0x%x\n",
1209 data->currfid, data->currvid);
1da177e4 1210
2c6b8c03 1211 per_cpu(powernow_data, pol->cpu) = data;
1da177e4
LT
1212
1213 return 0;
1214
1215err_out:
fc0e4748 1216 set_cpus_allowed_ptr(current, &oldmask);
1da177e4
LT
1217 powernow_k8_cpu_exit_acpi(data);
1218
1219 kfree(data);
1220 return -ENODEV;
1221}
1222
1223static int __devexit powernowk8_cpu_exit (struct cpufreq_policy *pol)
1224{
2c6b8c03 1225 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1da177e4
LT
1226
1227 if (!data)
1228 return -EINVAL;
1229
1230 powernow_k8_cpu_exit_acpi(data);
1231
1232 cpufreq_frequency_table_put_attr(pol->cpu);
1233
1234 kfree(data->powernow_table);
1235 kfree(data);
1236
1237 return 0;
1238}
1239
1240static unsigned int powernowk8_get (unsigned int cpu)
1241{
eef5167e 1242 struct powernow_k8_data *data;
1da177e4
LT
1243 cpumask_t oldmask = current->cpus_allowed;
1244 unsigned int khz = 0;
89c04849 1245 unsigned int first;
1da177e4 1246
89c04849
DJ
1247 first = first_cpu(per_cpu(cpu_core_map, cpu));
1248 data = per_cpu(powernow_data, first);
eef5167e
JS
1249
1250 if (!data)
1251 return -EINVAL;
1252
0bc3cc03 1253 set_cpus_allowed_ptr(current, &cpumask_of_cpu(cpu));
1da177e4 1254 if (smp_processor_id() != cpu) {
fc0e4748
MT
1255 printk(KERN_ERR PFX
1256 "limiting to CPU %d failed in powernowk8_get\n", cpu);
1257 set_cpus_allowed_ptr(current, &oldmask);
1da177e4
LT
1258 return 0;
1259 }
b9111b7b 1260
1da177e4
LT
1261 if (query_current_values_with_pending_wait(data))
1262 goto out;
1263
58389a86 1264 if (cpu_family == CPU_HW_PSTATE)
fc0e4748
MT
1265 khz = find_khz_freq_from_pstate(data->powernow_table,
1266 data->currpstate);
58389a86
JD
1267 else
1268 khz = find_khz_freq_from_fid(data->currfid);
1269
1da177e4 1270
b9111b7b 1271out:
fc0e4748 1272 set_cpus_allowed_ptr(current, &oldmask);
1da177e4
LT
1273 return khz;
1274}
1275
1276static struct freq_attr* powernow_k8_attr[] = {
1277 &cpufreq_freq_attr_scaling_available_freqs,
1278 NULL,
1279};
1280
221dee28 1281static struct cpufreq_driver cpufreq_amd64_driver = {
1da177e4
LT
1282 .verify = powernowk8_verify,
1283 .target = powernowk8_target,
1284 .init = powernowk8_cpu_init,
1285 .exit = __devexit_p(powernowk8_cpu_exit),
1286 .get = powernowk8_get,
1287 .name = "powernow-k8",
1288 .owner = THIS_MODULE,
1289 .attr = powernow_k8_attr,
1290};
1291
1292/* driver entry point for init */
aa41eb99 1293static int __cpuinit powernowk8_init(void)
1da177e4
LT
1294{
1295 unsigned int i, supported_cpus = 0;
1296
a7201156 1297 for_each_online_cpu(i) {
1da177e4
LT
1298 if (check_supported_cpu(i))
1299 supported_cpus++;
1300 }
1301
1302 if (supported_cpus == num_online_cpus()) {
1f729e06 1303 printk(KERN_INFO PFX "Found %d %s "
904f7a3f 1304 "processors (%d cpu cores) (" VERSION ")\n",
c925401b 1305 num_online_nodes(),
904f7a3f 1306 boot_cpu_data.x86_model_id, supported_cpus);
1da177e4
LT
1307 return cpufreq_register_driver(&cpufreq_amd64_driver);
1308 }
1309
1310 return -ENODEV;
1311}
1312
1313/* driver entry point for term */
1314static void __exit powernowk8_exit(void)
1315{
1316 dprintk("exit\n");
1317
1318 cpufreq_unregister_driver(&cpufreq_amd64_driver);
1319}
1320
8aae8284 1321MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and Mark Langsdorf <mark.langsdorf@amd.com>");
1da177e4
LT
1322MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1323MODULE_LICENSE("GPL");
1324
1325late_initcall(powernowk8_init);
1326module_exit(powernowk8_exit);