]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/x86/kernel/cpu/cpufreq/powernow-k8.c
[CPUFREQ] powernow-k8: Fix misleading variable naming
[net-next-2.6.git] / arch / x86 / kernel / cpu / cpufreq / powernow-k8.c
CommitLineData
1da177e4 1/*
73860c6b 2 * (c) 2003-2010 Advanced Micro Devices, Inc.
1da177e4
LT
3 * Your use of this code is subject to the terms and conditions of the
4 * GNU general public license version 2. See "COPYING" or
5 * http://www.gnu.org/licenses/gpl.html
6 *
065b807c 7 * Support : mark.langsdorf@amd.com
1da177e4
LT
8 *
9 * Based on the powernow-k7.c module written by Dave Jones.
f4432c5c 10 * (C) 2003 Dave Jones on behalf of SuSE Labs
1da177e4
LT
11 * (C) 2004 Dominik Brodowski <linux@brodo.de>
12 * (C) 2004 Pavel Machek <pavel@suse.cz>
13 * Licensed under the terms of the GNU GPL License version 2.
14 * Based upon datasheets & sample CPUs kindly provided by AMD.
15 *
16 * Valuable input gratefully received from Dave Jones, Pavel Machek,
1f729e06 17 * Dominik Brodowski, Jacob Shin, and others.
065b807c 18 * Originally developed by Paul Devriendt.
1da177e4
LT
19 * Processor information obtained from Chapter 9 (Power and Thermal Management)
20 * of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
21 * Opteron Processors" available for download from www.amd.com
22 *
2e3f8faa 23 * Tables for specific CPUs can be inferred from
065b807c 24 * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
1da177e4
LT
25 */
26
27#include <linux/kernel.h>
28#include <linux/smp.h>
29#include <linux/module.h>
30#include <linux/init.h>
31#include <linux/cpufreq.h>
32#include <linux/slab.h>
33#include <linux/string.h>
065b807c 34#include <linux/cpumask.h>
4e57b681 35#include <linux/sched.h> /* for current / set_cpus_allowed() */
0e64a0c9
DJ
36#include <linux/io.h>
37#include <linux/delay.h>
1da177e4
LT
38
39#include <asm/msr.h>
1da177e4 40
1da177e4 41#include <linux/acpi.h>
14cc3e2b 42#include <linux/mutex.h>
1da177e4 43#include <acpi/processor.h>
1da177e4
LT
44
45#define PFX "powernow-k8: "
c5829cd0 46#define VERSION "version 2.20.00"
1da177e4 47#include "powernow-k8.h"
a2fed573 48#include "mperf.h"
1da177e4
LT
49
50/* serialize freq changes */
14cc3e2b 51static DEFINE_MUTEX(fidvid_mutex);
1da177e4 52
2c6b8c03 53static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
1da177e4 54
1f729e06
DJ
55static int cpu_family = CPU_OPTERON;
56
73860c6b
BP
57/* core performance boost */
58static bool cpb_capable, cpb_enabled;
59static struct msr __percpu *msrs;
60
a2fed573
ML
61static struct cpufreq_driver cpufreq_amd64_driver;
62
065b807c 63#ifndef CONFIG_SMP
7ad728f9
RR
64static inline const struct cpumask *cpu_core_mask(int cpu)
65{
66 return cpumask_of(0);
67}
065b807c
DJ
68#endif
69
1da177e4
LT
70/* Return a frequency in MHz, given an input fid */
71static u32 find_freq_from_fid(u32 fid)
72{
73 return 800 + (fid * 100);
74}
75
76/* Return a frequency in KHz, given an input fid */
77static u32 find_khz_freq_from_fid(u32 fid)
78{
79 return 1000 * find_freq_from_fid(fid);
80}
81
0e64a0c9
DJ
82static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data,
83 u32 pstate)
1f729e06 84{
c5829cd0 85 return data[pstate].frequency;
1f729e06
DJ
86}
87
1da177e4
LT
88/* Return the vco fid for an input fid
89 *
90 * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
91 * only from corresponding high fids. This returns "high" fid corresponding to
92 * "low" one.
93 */
94static u32 convert_fid_to_vco_fid(u32 fid)
95{
32ee8c3e 96 if (fid < HI_FID_TABLE_BOTTOM)
1da177e4 97 return 8 + (2 * fid);
32ee8c3e 98 else
1da177e4 99 return fid;
1da177e4
LT
100}
101
102/*
103 * Return 1 if the pending bit is set. Unless we just instructed the processor
104 * to transition to a new state, seeing this bit set is really bad news.
105 */
106static int pending_bit_stuck(void)
107{
108 u32 lo, hi;
109
e7bdd7a5 110 if (cpu_family == CPU_HW_PSTATE)
1f729e06
DJ
111 return 0;
112
1da177e4
LT
113 rdmsr(MSR_FIDVID_STATUS, lo, hi);
114 return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
115}
116
117/*
118 * Update the global current fid / vid values from the status msr.
119 * Returns 1 on error.
120 */
121static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
122{
123 u32 lo, hi;
124 u32 i = 0;
125
e7bdd7a5 126 if (cpu_family == CPU_HW_PSTATE) {
532cfee6
NC
127 rdmsr(MSR_PSTATE_STATUS, lo, hi);
128 i = lo & HW_PSTATE_MASK;
129 data->currpstate = i;
130
131 /*
132 * a workaround for family 11h erratum 311 might cause
133 * an "out-of-range Pstate if the core is in Pstate-0
134 */
135 if ((boot_cpu_data.x86 == 0x11) && (i >= data->numps))
136 data->currpstate = HW_PSTATE_0;
137
1f729e06
DJ
138 return 0;
139 }
7153d961 140 do {
0213df74
DJ
141 if (i++ > 10000) {
142 dprintk("detected change pending stuck\n");
1da177e4
LT
143 return 1;
144 }
145 rdmsr(MSR_FIDVID_STATUS, lo, hi);
7153d961 146 } while (lo & MSR_S_LO_CHANGE_PENDING);
1da177e4
LT
147
148 data->currvid = hi & MSR_S_HI_CURRENT_VID;
149 data->currfid = lo & MSR_S_LO_CURRENT_FID;
150
151 return 0;
152}
153
154/* the isochronous relief time */
155static void count_off_irt(struct powernow_k8_data *data)
156{
157 udelay((1 << data->irt) * 10);
158 return;
159}
160
27b46d76 161/* the voltage stabilization time */
1da177e4
LT
162static void count_off_vst(struct powernow_k8_data *data)
163{
164 udelay(data->vstable * VST_UNITS_20US);
165 return;
166}
167
168/* need to init the control msr to a safe value (for each cpu) */
169static void fidvid_msr_init(void)
170{
171 u32 lo, hi;
172 u8 fid, vid;
173
174 rdmsr(MSR_FIDVID_STATUS, lo, hi);
175 vid = hi & MSR_S_HI_CURRENT_VID;
176 fid = lo & MSR_S_LO_CURRENT_FID;
177 lo = fid | (vid << MSR_C_LO_VID_SHIFT);
178 hi = MSR_C_HI_STP_GNT_BENIGN;
179 dprintk("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
180 wrmsr(MSR_FIDVID_CTL, lo, hi);
181}
182
1da177e4
LT
183/* write the new fid value along with the other control fields to the msr */
184static int write_new_fid(struct powernow_k8_data *data, u32 fid)
185{
186 u32 lo;
187 u32 savevid = data->currvid;
0213df74 188 u32 i = 0;
1da177e4
LT
189
190 if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
191 printk(KERN_ERR PFX "internal error - overflow on fid write\n");
192 return 1;
193 }
194
0e64a0c9
DJ
195 lo = fid;
196 lo |= (data->currvid << MSR_C_LO_VID_SHIFT);
197 lo |= MSR_C_LO_INIT_FID_VID;
1da177e4
LT
198
199 dprintk("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
200 fid, lo, data->plllock * PLL_LOCK_CONVERSION);
201
0213df74
DJ
202 do {
203 wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
204 if (i++ > 100) {
0e64a0c9
DJ
205 printk(KERN_ERR PFX
206 "Hardware error - pending bit very stuck - "
207 "no further pstate changes possible\n");
63172cb3 208 return 1;
32ee8c3e 209 }
0213df74 210 } while (query_current_values_with_pending_wait(data));
1da177e4
LT
211
212 count_off_irt(data);
213
214 if (savevid != data->currvid) {
0e64a0c9
DJ
215 printk(KERN_ERR PFX
216 "vid change on fid trans, old 0x%x, new 0x%x\n",
217 savevid, data->currvid);
1da177e4
LT
218 return 1;
219 }
220
221 if (fid != data->currfid) {
0e64a0c9
DJ
222 printk(KERN_ERR PFX
223 "fid trans failed, fid 0x%x, curr 0x%x\n", fid,
224 data->currfid);
1da177e4
LT
225 return 1;
226 }
227
228 return 0;
229}
230
231/* Write a new vid to the hardware */
232static int write_new_vid(struct powernow_k8_data *data, u32 vid)
233{
234 u32 lo;
235 u32 savefid = data->currfid;
0213df74 236 int i = 0;
1da177e4
LT
237
238 if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
239 printk(KERN_ERR PFX "internal error - overflow on vid write\n");
240 return 1;
241 }
242
0e64a0c9
DJ
243 lo = data->currfid;
244 lo |= (vid << MSR_C_LO_VID_SHIFT);
245 lo |= MSR_C_LO_INIT_FID_VID;
1da177e4
LT
246
247 dprintk("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
248 vid, lo, STOP_GRANT_5NS);
249
0213df74
DJ
250 do {
251 wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
6df89006 252 if (i++ > 100) {
0e64a0c9
DJ
253 printk(KERN_ERR PFX "internal error - pending bit "
254 "very stuck - no further pstate "
255 "changes possible\n");
6df89006
DJ
256 return 1;
257 }
0213df74 258 } while (query_current_values_with_pending_wait(data));
1da177e4
LT
259
260 if (savefid != data->currfid) {
0e64a0c9
DJ
261 printk(KERN_ERR PFX "fid changed on vid trans, old "
262 "0x%x new 0x%x\n",
1da177e4
LT
263 savefid, data->currfid);
264 return 1;
265 }
266
267 if (vid != data->currvid) {
0e64a0c9
DJ
268 printk(KERN_ERR PFX "vid trans failed, vid 0x%x, "
269 "curr 0x%x\n",
270 vid, data->currvid);
1da177e4
LT
271 return 1;
272 }
273
274 return 0;
275}
276
277/*
278 * Reduce the vid by the max of step or reqvid.
279 * Decreasing vid codes represent increasing voltages:
841e40b3 280 * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
1da177e4 281 */
0e64a0c9
DJ
282static int decrease_vid_code_by_step(struct powernow_k8_data *data,
283 u32 reqvid, u32 step)
1da177e4
LT
284{
285 if ((data->currvid - reqvid) > step)
286 reqvid = data->currvid - step;
287
288 if (write_new_vid(data, reqvid))
289 return 1;
290
291 count_off_vst(data);
292
293 return 0;
294}
295
1f729e06
DJ
296/* Change hardware pstate by single MSR write */
297static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
298{
299 wrmsr(MSR_PSTATE_CTRL, pstate, 0);
c5829cd0 300 data->currpstate = pstate;
1f729e06
DJ
301 return 0;
302}
303
304/* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
0e64a0c9
DJ
305static int transition_fid_vid(struct powernow_k8_data *data,
306 u32 reqfid, u32 reqvid)
1da177e4 307{
a2e1b4c3 308 if (core_voltage_pre_transition(data, reqvid, reqfid))
1da177e4
LT
309 return 1;
310
311 if (core_frequency_transition(data, reqfid))
312 return 1;
313
314 if (core_voltage_post_transition(data, reqvid))
315 return 1;
316
317 if (query_current_values_with_pending_wait(data))
318 return 1;
319
320 if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
0e64a0c9
DJ
321 printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, "
322 "curr 0x%x 0x%x\n",
1da177e4
LT
323 smp_processor_id(),
324 reqfid, reqvid, data->currfid, data->currvid);
325 return 1;
326 }
327
328 dprintk("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
329 smp_processor_id(), data->currfid, data->currvid);
330
331 return 0;
332}
333
334/* Phase 1 - core voltage transition ... setup voltage */
0e64a0c9 335static int core_voltage_pre_transition(struct powernow_k8_data *data,
a2e1b4c3 336 u32 reqvid, u32 reqfid)
1da177e4
LT
337{
338 u32 rvosteps = data->rvo;
339 u32 savefid = data->currfid;
a2e1b4c3 340 u32 maxvid, lo, rvomult = 1;
1da177e4 341
0e64a0c9
DJ
342 dprintk("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, "
343 "reqvid 0x%x, rvo 0x%x\n",
1da177e4
LT
344 smp_processor_id(),
345 data->currfid, data->currvid, reqvid, data->rvo);
346
a2e1b4c3
ML
347 if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP))
348 rvomult = 2;
349 rvosteps *= rvomult;
065b807c
DJ
350 rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
351 maxvid = 0x1f & (maxvid >> 16);
352 dprintk("ph1 maxvid=0x%x\n", maxvid);
353 if (reqvid < maxvid) /* lower numbers are higher voltages */
354 reqvid = maxvid;
355
1da177e4
LT
356 while (data->currvid > reqvid) {
357 dprintk("ph1: curr 0x%x, req vid 0x%x\n",
358 data->currvid, reqvid);
359 if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
360 return 1;
361 }
362
a2e1b4c3
ML
363 while ((rvosteps > 0) &&
364 ((rvomult * data->rvo + data->currvid) > reqvid)) {
065b807c 365 if (data->currvid == maxvid) {
1da177e4
LT
366 rvosteps = 0;
367 } else {
368 dprintk("ph1: changing vid for rvo, req 0x%x\n",
369 data->currvid - 1);
0e64a0c9 370 if (decrease_vid_code_by_step(data, data->currvid-1, 1))
1da177e4
LT
371 return 1;
372 rvosteps--;
373 }
374 }
375
376 if (query_current_values_with_pending_wait(data))
377 return 1;
378
379 if (savefid != data->currfid) {
0e64a0c9
DJ
380 printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n",
381 data->currfid);
1da177e4
LT
382 return 1;
383 }
384
385 dprintk("ph1 complete, currfid 0x%x, currvid 0x%x\n",
386 data->currfid, data->currvid);
387
388 return 0;
389}
390
391/* Phase 2 - core frequency transition */
392static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
393{
0e64a0c9
DJ
394 u32 vcoreqfid, vcocurrfid, vcofiddiff;
395 u32 fid_interval, savevid = data->currvid;
1da177e4 396
1da177e4 397 if (data->currfid == reqfid) {
0e64a0c9
DJ
398 printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n",
399 data->currfid);
1da177e4
LT
400 return 0;
401 }
402
0e64a0c9
DJ
403 dprintk("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, "
404 "reqfid 0x%x\n",
1da177e4
LT
405 smp_processor_id(),
406 data->currfid, data->currvid, reqfid);
407
408 vcoreqfid = convert_fid_to_vco_fid(reqfid);
409 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
410 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
411 : vcoreqfid - vcocurrfid;
412
a2e1b4c3
ML
413 if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP))
414 vcofiddiff = 0;
415
1da177e4 416 while (vcofiddiff > 2) {
019a61b9
LM
417 (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
418
1da177e4
LT
419 if (reqfid > data->currfid) {
420 if (data->currfid > LO_FID_TABLE_TOP) {
0e64a0c9
DJ
421 if (write_new_fid(data,
422 data->currfid + fid_interval))
1da177e4 423 return 1;
1da177e4
LT
424 } else {
425 if (write_new_fid
0e64a0c9
DJ
426 (data,
427 2 + convert_fid_to_vco_fid(data->currfid)))
1da177e4 428 return 1;
1da177e4
LT
429 }
430 } else {
019a61b9 431 if (write_new_fid(data, data->currfid - fid_interval))
1da177e4
LT
432 return 1;
433 }
434
435 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
436 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
437 : vcoreqfid - vcocurrfid;
438 }
439
440 if (write_new_fid(data, reqfid))
441 return 1;
442
443 if (query_current_values_with_pending_wait(data))
444 return 1;
445
446 if (data->currfid != reqfid) {
447 printk(KERN_ERR PFX
0e64a0c9
DJ
448 "ph2: mismatch, failed fid transition, "
449 "curr 0x%x, req 0x%x\n",
1da177e4
LT
450 data->currfid, reqfid);
451 return 1;
452 }
453
454 if (savevid != data->currvid) {
455 printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
456 savevid, data->currvid);
457 return 1;
458 }
459
460 dprintk("ph2 complete, currfid 0x%x, currvid 0x%x\n",
461 data->currfid, data->currvid);
462
463 return 0;
464}
465
466/* Phase 3 - core voltage transition flow ... jump to the final vid. */
0e64a0c9
DJ
467static int core_voltage_post_transition(struct powernow_k8_data *data,
468 u32 reqvid)
1da177e4
LT
469{
470 u32 savefid = data->currfid;
471 u32 savereqvid = reqvid;
472
473 dprintk("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
474 smp_processor_id(),
475 data->currfid, data->currvid);
476
477 if (reqvid != data->currvid) {
478 if (write_new_vid(data, reqvid))
479 return 1;
480
481 if (savefid != data->currfid) {
482 printk(KERN_ERR PFX
483 "ph3: bad fid change, save 0x%x, curr 0x%x\n",
484 savefid, data->currfid);
485 return 1;
486 }
487
488 if (data->currvid != reqvid) {
489 printk(KERN_ERR PFX
0e64a0c9
DJ
490 "ph3: failed vid transition\n, "
491 "req 0x%x, curr 0x%x",
1da177e4
LT
492 reqvid, data->currvid);
493 return 1;
494 }
495 }
496
497 if (query_current_values_with_pending_wait(data))
498 return 1;
499
500 if (savereqvid != data->currvid) {
501 dprintk("ph3 failed, currvid 0x%x\n", data->currvid);
502 return 1;
503 }
504
505 if (savefid != data->currfid) {
506 dprintk("ph3 failed, currfid changed 0x%x\n",
507 data->currfid);
508 return 1;
509 }
510
511 dprintk("ph3 complete, currfid 0x%x, currvid 0x%x\n",
512 data->currfid, data->currvid);
513
514 return 0;
515}
516
1ff6e97f 517static void check_supported_cpu(void *_rc)
1da177e4 518{
1da177e4 519 u32 eax, ebx, ecx, edx;
1ff6e97f 520 int *rc = _rc;
1da177e4 521
1ff6e97f 522 *rc = -ENODEV;
1da177e4
LT
523
524 if (current_cpu_data.x86_vendor != X86_VENDOR_AMD)
1ff6e97f 525 return;
1da177e4
LT
526
527 eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
1f729e06
DJ
528 if (((eax & CPUID_XFAM) != CPUID_XFAM_K8) &&
529 ((eax & CPUID_XFAM) < CPUID_XFAM_10H))
1ff6e97f 530 return;
2c906ae6 531
1f729e06
DJ
532 if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
533 if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
99fbe1ac 534 ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
0e64a0c9
DJ
535 printk(KERN_INFO PFX
536 "Processor cpuid %x not supported\n", eax);
1ff6e97f 537 return;
1f729e06 538 }
1da177e4 539
1f729e06
DJ
540 eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
541 if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
542 printk(KERN_INFO PFX
543 "No frequency change capabilities detected\n");
1ff6e97f 544 return;
1f729e06 545 }
1da177e4 546
1f729e06 547 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
0e64a0c9
DJ
548 if ((edx & P_STATE_TRANSITION_CAPABLE)
549 != P_STATE_TRANSITION_CAPABLE) {
550 printk(KERN_INFO PFX
551 "Power state transitions not supported\n");
1ff6e97f 552 return;
1f729e06
DJ
553 }
554 } else { /* must be a HW Pstate capable processor */
555 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
556 if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
557 cpu_family = CPU_HW_PSTATE;
558 else
1ff6e97f 559 return;
1da177e4
LT
560 }
561
1ff6e97f 562 *rc = 0;
1da177e4
LT
563}
564
0e64a0c9
DJ
565static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst,
566 u8 maxvid)
1da177e4
LT
567{
568 unsigned int j;
569 u8 lastfid = 0xff;
570
571 for (j = 0; j < data->numps; j++) {
572 if (pst[j].vid > LEAST_VID) {
2fd47094
TR
573 printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n",
574 j, pst[j].vid);
1da177e4
LT
575 return -EINVAL;
576 }
0e64a0c9
DJ
577 if (pst[j].vid < data->rvo) {
578 /* vid + rvo >= 0 */
2fd47094
TR
579 printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate"
580 " %d\n", j);
1da177e4
LT
581 return -ENODEV;
582 }
0e64a0c9
DJ
583 if (pst[j].vid < maxvid + data->rvo) {
584 /* vid + rvo >= maxvid */
2fd47094
TR
585 printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate"
586 " %d\n", j);
1da177e4
LT
587 return -ENODEV;
588 }
8aae8284 589 if (pst[j].fid > MAX_FID) {
2fd47094
TR
590 printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate"
591 " %d\n", j);
8aae8284
JS
592 return -ENODEV;
593 }
8aae8284 594 if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
1da177e4 595 /* Only first fid is allowed to be in "low" range */
2fd47094
TR
596 printk(KERN_ERR FW_BUG PFX "two low fids - %d : "
597 "0x%x\n", j, pst[j].fid);
1da177e4
LT
598 return -EINVAL;
599 }
600 if (pst[j].fid < lastfid)
601 lastfid = pst[j].fid;
602 }
603 if (lastfid & 1) {
2fd47094 604 printk(KERN_ERR FW_BUG PFX "lastfid invalid\n");
1da177e4
LT
605 return -EINVAL;
606 }
607 if (lastfid > LO_FID_TABLE_TOP)
0e64a0c9
DJ
608 printk(KERN_INFO FW_BUG PFX
609 "first fid not from lo freq table\n");
1da177e4
LT
610
611 return 0;
612}
613
f0adb134
KR
614static void invalidate_entry(struct cpufreq_frequency_table *powernow_table,
615 unsigned int entry)
0e64a0c9 616{
f0adb134 617 powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID;
0e64a0c9
DJ
618}
619
1da177e4
LT
620static void print_basics(struct powernow_k8_data *data)
621{
622 int j;
623 for (j = 0; j < data->numps; j++) {
0e64a0c9
DJ
624 if (data->powernow_table[j].frequency !=
625 CPUFREQ_ENTRY_INVALID) {
e7bdd7a5 626 if (cpu_family == CPU_HW_PSTATE) {
0e64a0c9
DJ
627 printk(KERN_INFO PFX
628 " %d : pstate %d (%d MHz)\n", j,
4ae5c49f 629 data->powernow_table[j].index,
9a60ddbc 630 data->powernow_table[j].frequency/1000);
1f729e06 631 } else {
0e64a0c9
DJ
632 printk(KERN_INFO PFX
633 " %d : fid 0x%x (%d MHz), vid 0x%x\n",
9a60ddbc
DJ
634 j,
635 data->powernow_table[j].index & 0xff,
636 data->powernow_table[j].frequency/1000,
637 data->powernow_table[j].index >> 8);
1f729e06
DJ
638 }
639 }
1da177e4
LT
640 }
641 if (data->batps)
0e64a0c9
DJ
642 printk(KERN_INFO PFX "Only %d pstates on battery\n",
643 data->batps);
1da177e4
LT
644}
645
ca446d06
AH
646static u32 freq_from_fid_did(u32 fid, u32 did)
647{
648 u32 mhz = 0;
649
650 if (boot_cpu_data.x86 == 0x10)
651 mhz = (100 * (fid + 0x10)) >> did;
652 else if (boot_cpu_data.x86 == 0x11)
653 mhz = (100 * (fid + 8)) >> did;
654 else
655 BUG();
656
657 return mhz * 1000;
658}
659
0e64a0c9
DJ
660static int fill_powernow_table(struct powernow_k8_data *data,
661 struct pst_s *pst, u8 maxvid)
1da177e4
LT
662{
663 struct cpufreq_frequency_table *powernow_table;
664 unsigned int j;
665
0e64a0c9
DJ
666 if (data->batps) {
667 /* use ACPI support to get full speed on mains power */
668 printk(KERN_WARNING PFX
669 "Only %d pstates usable (use ACPI driver for full "
670 "range\n", data->batps);
1da177e4
LT
671 data->numps = data->batps;
672 }
673
0e64a0c9 674 for (j = 1; j < data->numps; j++) {
1da177e4
LT
675 if (pst[j-1].fid >= pst[j].fid) {
676 printk(KERN_ERR PFX "PST out of sequence\n");
677 return -EINVAL;
678 }
679 }
680
681 if (data->numps < 2) {
682 printk(KERN_ERR PFX "no p states to transition\n");
683 return -ENODEV;
684 }
685
686 if (check_pst_table(data, pst, maxvid))
687 return -EINVAL;
688
689 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
690 * (data->numps + 1)), GFP_KERNEL);
691 if (!powernow_table) {
692 printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
693 return -ENOMEM;
694 }
695
696 for (j = 0; j < data->numps; j++) {
0e64a0c9 697 int freq;
1da177e4
LT
698 powernow_table[j].index = pst[j].fid; /* lower 8 bits */
699 powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
0e64a0c9
DJ
700 freq = find_khz_freq_from_fid(pst[j].fid);
701 powernow_table[j].frequency = freq;
1da177e4
LT
702 }
703 powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
704 powernow_table[data->numps].index = 0;
705
706 if (query_current_values_with_pending_wait(data)) {
707 kfree(powernow_table);
708 return -EIO;
709 }
710
711 dprintk("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
712 data->powernow_table = powernow_table;
7ad728f9 713 if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
2e497620 714 print_basics(data);
1da177e4
LT
715
716 for (j = 0; j < data->numps; j++)
0e64a0c9
DJ
717 if ((pst[j].fid == data->currfid) &&
718 (pst[j].vid == data->currvid))
1da177e4
LT
719 return 0;
720
721 dprintk("currfid/vid do not match PST, ignoring\n");
722 return 0;
723}
724
725/* Find and validate the PSB/PST table in BIOS. */
726static int find_psb_table(struct powernow_k8_data *data)
727{
728 struct psb_s *psb;
729 unsigned int i;
730 u32 mvs;
731 u8 maxvid;
732 u32 cpst = 0;
733 u32 thiscpuid;
734
735 for (i = 0xc0000; i < 0xffff0; i += 0x10) {
736 /* Scan BIOS looking for the signature. */
737 /* It can not be at ffff0 - it is too big. */
738
739 psb = phys_to_virt(i);
740 if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
741 continue;
742
743 dprintk("found PSB header at 0x%p\n", psb);
744
745 dprintk("table vers: 0x%x\n", psb->tableversion);
746 if (psb->tableversion != PSB_VERSION_1_4) {
2fd47094 747 printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n");
1da177e4
LT
748 return -ENODEV;
749 }
750
751 dprintk("flags: 0x%x\n", psb->flags1);
752 if (psb->flags1) {
2fd47094 753 printk(KERN_ERR FW_BUG PFX "unknown flags\n");
1da177e4
LT
754 return -ENODEV;
755 }
756
757 data->vstable = psb->vstable;
0e64a0c9
DJ
758 dprintk("voltage stabilization time: %d(*20us)\n",
759 data->vstable);
1da177e4
LT
760
761 dprintk("flags2: 0x%x\n", psb->flags2);
762 data->rvo = psb->flags2 & 3;
763 data->irt = ((psb->flags2) >> 2) & 3;
764 mvs = ((psb->flags2) >> 4) & 3;
765 data->vidmvs = 1 << mvs;
766 data->batps = ((psb->flags2) >> 6) & 3;
767
768 dprintk("ramp voltage offset: %d\n", data->rvo);
769 dprintk("isochronous relief time: %d\n", data->irt);
770 dprintk("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
771
772 dprintk("numpst: 0x%x\n", psb->num_tables);
773 cpst = psb->num_tables;
0e64a0c9
DJ
774 if ((psb->cpuid == 0x00000fc0) ||
775 (psb->cpuid == 0x00000fe0)) {
1da177e4 776 thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
0e64a0c9
DJ
777 if ((thiscpuid == 0x00000fc0) ||
778 (thiscpuid == 0x00000fe0))
1da177e4 779 cpst = 1;
1da177e4
LT
780 }
781 if (cpst != 1) {
2fd47094 782 printk(KERN_ERR FW_BUG PFX "numpst must be 1\n");
1da177e4
LT
783 return -ENODEV;
784 }
785
786 data->plllock = psb->plllocktime;
787 dprintk("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
788 dprintk("maxfid: 0x%x\n", psb->maxfid);
789 dprintk("maxvid: 0x%x\n", psb->maxvid);
790 maxvid = psb->maxvid;
791
792 data->numps = psb->numps;
793 dprintk("numpstates: 0x%x\n", data->numps);
0e64a0c9
DJ
794 return fill_powernow_table(data,
795 (struct pst_s *)(psb+1), maxvid);
1da177e4
LT
796 }
797 /*
798 * If you see this message, complain to BIOS manufacturer. If
799 * he tells you "we do not support Linux" or some similar
800 * nonsense, remember that Windows 2000 uses the same legacy
801 * mechanism that the old Linux PSB driver uses. Tell them it
802 * is broken with Windows 2000.
803 *
804 * The reference to the AMD documentation is chapter 9 in the
805 * BIOS and Kernel Developer's Guide, which is available on
806 * www.amd.com
807 */
79cc56af 808 printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n");
298decfb
MR
809 printk(KERN_ERR PFX "Make sure that your BIOS is up to date"
810 " and Cool'N'Quiet support is enabled in BIOS setup\n");
1da177e4
LT
811 return -ENODEV;
812}
813
0e64a0c9
DJ
814static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data,
815 unsigned int index)
1da177e4 816{
439913ff 817 u64 control;
0e64a0c9 818
f607e3a0 819 if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE))
1da177e4
LT
820 return;
821
21335d02
LH
822 control = data->acpi_data.states[index].control;
823 data->irt = (control >> IRT_SHIFT) & IRT_MASK;
824 data->rvo = (control >> RVO_SHIFT) & RVO_MASK;
825 data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
826 data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK;
827 data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK);
828 data->vstable = (control >> VST_SHIFT) & VST_MASK;
829}
1da177e4
LT
830
831static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
832{
1da177e4 833 struct cpufreq_frequency_table *powernow_table;
2fdf66b4 834 int ret_val = -ENODEV;
439913ff 835 u64 control, status;
1da177e4 836
f607e3a0 837 if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
065b807c 838 dprintk("register performance failed: bad ACPI data\n");
1da177e4
LT
839 return -EIO;
840 }
841
842 /* verify the data contained in the ACPI structures */
f607e3a0 843 if (data->acpi_data.state_count <= 1) {
1da177e4
LT
844 dprintk("No ACPI P-States\n");
845 goto err_out;
846 }
847
2c701b10
DJ
848 control = data->acpi_data.control_register.space_id;
849 status = data->acpi_data.status_register.space_id;
850
851 if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
852 (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
1da177e4 853 dprintk("Invalid control/status registers (%x - %x)\n",
2c701b10 854 control, status);
1da177e4
LT
855 goto err_out;
856 }
857
858 /* fill in data->powernow_table */
859 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
f607e3a0 860 * (data->acpi_data.state_count + 1)), GFP_KERNEL);
1da177e4
LT
861 if (!powernow_table) {
862 dprintk("powernow_table memory alloc failure\n");
863 goto err_out;
864 }
865
db39d552
ML
866 /* fill in data */
867 data->numps = data->acpi_data.state_count;
868 powernow_k8_acpi_pst_values(data, 0);
869
e7bdd7a5 870 if (cpu_family == CPU_HW_PSTATE)
1f729e06
DJ
871 ret_val = fill_powernow_table_pstate(data, powernow_table);
872 else
873 ret_val = fill_powernow_table_fidvid(data, powernow_table);
874 if (ret_val)
875 goto err_out_mem;
876
0e64a0c9
DJ
877 powernow_table[data->acpi_data.state_count].frequency =
878 CPUFREQ_TABLE_END;
f607e3a0 879 powernow_table[data->acpi_data.state_count].index = 0;
1f729e06
DJ
880 data->powernow_table = powernow_table;
881
7ad728f9 882 if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
2e497620 883 print_basics(data);
1f729e06
DJ
884
885 /* notify BIOS that we exist */
886 acpi_processor_notify_smm(THIS_MODULE);
887
eaa95840 888 if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
2fdf66b4
RR
889 printk(KERN_ERR PFX
890 "unable to alloc powernow_k8_data cpumask\n");
891 ret_val = -ENOMEM;
892 goto err_out_mem;
893 }
894
1f729e06
DJ
895 return 0;
896
897err_out_mem:
898 kfree(powernow_table);
899
900err_out:
f607e3a0 901 acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
1f729e06 902
0e64a0c9
DJ
903 /* data->acpi_data.state_count informs us at ->exit()
904 * whether ACPI was used */
f607e3a0 905 data->acpi_data.state_count = 0;
1f729e06 906
2fdf66b4 907 return ret_val;
1f729e06
DJ
908}
909
0e64a0c9
DJ
910static int fill_powernow_table_pstate(struct powernow_k8_data *data,
911 struct cpufreq_frequency_table *powernow_table)
1f729e06
DJ
912{
913 int i;
c5829cd0 914 u32 hi = 0, lo = 0;
b30d3304
BP
915 rdmsr(MSR_PSTATE_CUR_LIMIT, lo, hi);
916 data->max_hw_pstate = (lo & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT;
1f729e06 917
f607e3a0 918 for (i = 0; i < data->acpi_data.state_count; i++) {
1f729e06 919 u32 index;
1f729e06 920
f607e3a0 921 index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
c5829cd0 922 if (index > data->max_hw_pstate) {
0e64a0c9
DJ
923 printk(KERN_ERR PFX "invalid pstate %d - "
924 "bad value %d.\n", i, index);
925 printk(KERN_ERR PFX "Please report to BIOS "
926 "manufacturer\n");
f0adb134 927 invalidate_entry(powernow_table, i);
c5829cd0 928 continue;
1f729e06
DJ
929 }
930 rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
931 if (!(hi & HW_PSTATE_VALID_MASK)) {
932 dprintk("invalid pstate %d, ignoring\n", index);
f0adb134 933 invalidate_entry(powernow_table, i);
1f729e06
DJ
934 continue;
935 }
936
c5829cd0 937 powernow_table[i].index = index;
1f729e06 938
ca446d06 939 /* Frequency may be rounded for these */
67937064
ML
940 if ((boot_cpu_data.x86 == 0x10 && boot_cpu_data.x86_model < 10)
941 || boot_cpu_data.x86 == 0x11) {
ca446d06
AH
942 powernow_table[i].frequency =
943 freq_from_fid_did(lo & 0x3f, (lo >> 6) & 7);
944 } else
945 powernow_table[i].frequency =
946 data->acpi_data.states[i].core_frequency * 1000;
1f729e06
DJ
947 }
948 return 0;
949}
950
0e64a0c9
DJ
951static int fill_powernow_table_fidvid(struct powernow_k8_data *data,
952 struct cpufreq_frequency_table *powernow_table)
1f729e06
DJ
953{
954 int i;
0e64a0c9 955
f607e3a0 956 for (i = 0; i < data->acpi_data.state_count; i++) {
094ce7fd
DJ
957 u32 fid;
958 u32 vid;
0e64a0c9 959 u32 freq, index;
439913ff 960 u64 status, control;
094ce7fd
DJ
961
962 if (data->exttype) {
0e64a0c9
DJ
963 status = data->acpi_data.states[i].status;
964 fid = status & EXT_FID_MASK;
965 vid = (status >> VID_SHIFT) & EXT_VID_MASK;
841e40b3 966 } else {
0e64a0c9
DJ
967 control = data->acpi_data.states[i].control;
968 fid = control & FID_MASK;
969 vid = (control >> VID_SHIFT) & VID_MASK;
841e40b3 970 }
1da177e4
LT
971
972 dprintk(" %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
973
0e64a0c9
DJ
974 index = fid | (vid<<8);
975 powernow_table[i].index = index;
976
977 freq = find_khz_freq_from_fid(fid);
978 powernow_table[i].frequency = freq;
1da177e4
LT
979
980 /* verify frequency is OK */
0e64a0c9
DJ
981 if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) {
982 dprintk("invalid freq %u kHz, ignoring\n", freq);
f0adb134 983 invalidate_entry(powernow_table, i);
1da177e4
LT
984 continue;
985 }
986
0e64a0c9
DJ
987 /* verify voltage is OK -
988 * BIOSs are using "off" to indicate invalid */
841e40b3 989 if (vid == VID_OFF) {
1da177e4 990 dprintk("invalid vid %u, ignoring\n", vid);
f0adb134 991 invalidate_entry(powernow_table, i);
1da177e4
LT
992 continue;
993 }
994
0e64a0c9
DJ
995 if (freq != (data->acpi_data.states[i].core_frequency * 1000)) {
996 printk(KERN_INFO PFX "invalid freq entries "
997 "%u kHz vs. %u kHz\n", freq,
998 (unsigned int)
999 (data->acpi_data.states[i].core_frequency
1000 * 1000));
f0adb134 1001 invalidate_entry(powernow_table, i);
1da177e4
LT
1002 continue;
1003 }
1004 }
1da177e4 1005 return 0;
1da177e4
LT
1006}
1007
1008static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
1009{
f607e3a0 1010 if (data->acpi_data.state_count)
0e64a0c9
DJ
1011 acpi_processor_unregister_performance(&data->acpi_data,
1012 data->cpu);
2fdf66b4 1013 free_cpumask_var(data->acpi_data.shared_cpu_map);
1da177e4
LT
1014}
1015
732553e5
ML
1016static int get_transition_latency(struct powernow_k8_data *data)
1017{
1018 int max_latency = 0;
1019 int i;
1020 for (i = 0; i < data->acpi_data.state_count; i++) {
1021 int cur_latency = data->acpi_data.states[i].transition_latency
1022 + data->acpi_data.states[i].bus_master_latency;
1023 if (cur_latency > max_latency)
1024 max_latency = cur_latency;
1025 }
86e13684
TR
1026 if (max_latency == 0) {
1027 /*
c2f4a2c6
BP
1028 * Fam 11h and later may return 0 as transition latency. This
1029 * is intended and means "very fast". While cpufreq core and
1030 * governors currently can handle that gracefully, better set it
1031 * to 1 to avoid problems in the future.
86e13684 1032 */
c2f4a2c6 1033 if (boot_cpu_data.x86 < 0x11)
86e13684
TR
1034 printk(KERN_ERR FW_WARN PFX "Invalid zero transition "
1035 "latency\n");
1036 max_latency = 1;
1037 }
732553e5
ML
1038 /* value in usecs, needs to be in nanoseconds */
1039 return 1000 * max_latency;
1040}
1041
1da177e4 1042/* Take a frequency, and issue the fid/vid transition command */
0e64a0c9
DJ
1043static int transition_frequency_fidvid(struct powernow_k8_data *data,
1044 unsigned int index)
1da177e4 1045{
1f729e06
DJ
1046 u32 fid = 0;
1047 u32 vid = 0;
065b807c 1048 int res, i;
1da177e4
LT
1049 struct cpufreq_freqs freqs;
1050
1051 dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
1052
1f729e06 1053 /* fid/vid correctness check for k8 */
1da177e4 1054 /* fid are the lower 8 bits of the index we stored into
1f729e06
DJ
1055 * the cpufreq frequency table in find_psb_table, vid
1056 * are the upper 8 bits.
1da177e4 1057 */
1da177e4
LT
1058 fid = data->powernow_table[index].index & 0xFF;
1059 vid = (data->powernow_table[index].index & 0xFF00) >> 8;
1060
1061 dprintk("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
1062
1063 if (query_current_values_with_pending_wait(data))
1064 return 1;
1065
1066 if ((data->currvid == vid) && (data->currfid == fid)) {
1067 dprintk("target matches current values (fid 0x%x, vid 0x%x)\n",
1068 fid, vid);
1069 return 0;
1070 }
1071
1da177e4
LT
1072 dprintk("cpu %d, changing to fid 0x%x, vid 0x%x\n",
1073 smp_processor_id(), fid, vid);
1da177e4
LT
1074 freqs.old = find_khz_freq_from_fid(data->currfid);
1075 freqs.new = find_khz_freq_from_fid(fid);
1f729e06 1076
8e7c2597 1077 for_each_cpu(i, data->available_cores) {
065b807c
DJ
1078 freqs.cpu = i;
1079 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1080 }
1da177e4 1081
1da177e4 1082 res = transition_fid_vid(data, fid, vid);
1da177e4 1083 freqs.new = find_khz_freq_from_fid(data->currfid);
1f729e06 1084
8e7c2597 1085 for_each_cpu(i, data->available_cores) {
1f729e06
DJ
1086 freqs.cpu = i;
1087 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1088 }
1089 return res;
1090}
1091
1092/* Take a frequency, and issue the hardware pstate transition command */
0e64a0c9
DJ
1093static int transition_frequency_pstate(struct powernow_k8_data *data,
1094 unsigned int index)
1f729e06 1095{
1f729e06
DJ
1096 u32 pstate = 0;
1097 int res, i;
1098 struct cpufreq_freqs freqs;
1099
1100 dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
1101
c5829cd0 1102 /* get MSR index for hardware pstate transition */
1f729e06 1103 pstate = index & HW_PSTATE_MASK;
c5829cd0 1104 if (pstate > data->max_hw_pstate)
1f729e06 1105 return 0;
0e64a0c9
DJ
1106 freqs.old = find_khz_freq_from_pstate(data->powernow_table,
1107 data->currpstate);
c5829cd0 1108 freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1f729e06 1109
8e7c2597 1110 for_each_cpu(i, data->available_cores) {
1f729e06
DJ
1111 freqs.cpu = i;
1112 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1113 }
1114
1115 res = transition_pstate(data, pstate);
c5829cd0 1116 freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1f729e06 1117
8e7c2597 1118 for_each_cpu(i, data->available_cores) {
065b807c
DJ
1119 freqs.cpu = i;
1120 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
2e3f8faa 1121 }
1da177e4
LT
1122 return res;
1123}
1124
1125/* Driver entry point to switch to the target frequency */
0e64a0c9
DJ
1126static int powernowk8_target(struct cpufreq_policy *pol,
1127 unsigned targfreq, unsigned relation)
1da177e4 1128{
b8cbe7e8 1129 cpumask_var_t oldmask;
2c6b8c03 1130 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
9180053c
AB
1131 u32 checkfid;
1132 u32 checkvid;
1da177e4
LT
1133 unsigned int newstate;
1134 int ret = -EIO;
1135
4211a303
JS
1136 if (!data)
1137 return -EINVAL;
1138
9180053c
AB
1139 checkfid = data->currfid;
1140 checkvid = data->currvid;
1141
b8cbe7e8
RR
1142 /* only run on specific CPU from here on. */
1143 /* This is poor form: use a workqueue or smp_call_function_single */
1144 if (!alloc_cpumask_var(&oldmask, GFP_KERNEL))
1145 return -ENOMEM;
1146
a4636818 1147 cpumask_copy(oldmask, tsk_cpus_allowed(current));
b8cbe7e8 1148 set_cpus_allowed_ptr(current, cpumask_of(pol->cpu));
1da177e4
LT
1149
1150 if (smp_processor_id() != pol->cpu) {
8aae8284 1151 printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1da177e4
LT
1152 goto err_out;
1153 }
1154
1155 if (pending_bit_stuck()) {
1156 printk(KERN_ERR PFX "failing targ, change pending bit set\n");
1157 goto err_out;
1158 }
1159
1160 dprintk("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1161 pol->cpu, targfreq, pol->min, pol->max, relation);
1162
83844510 1163 if (query_current_values_with_pending_wait(data))
1da177e4 1164 goto err_out;
1da177e4 1165
c5829cd0 1166 if (cpu_family != CPU_HW_PSTATE) {
1f729e06 1167 dprintk("targ: curr fid 0x%x, vid 0x%x\n",
1da177e4
LT
1168 data->currfid, data->currvid);
1169
0e64a0c9
DJ
1170 if ((checkvid != data->currvid) ||
1171 (checkfid != data->currfid)) {
1f729e06 1172 printk(KERN_INFO PFX
0e64a0c9
DJ
1173 "error - out of sync, fix 0x%x 0x%x, "
1174 "vid 0x%x 0x%x\n",
1175 checkfid, data->currfid,
1176 checkvid, data->currvid);
1f729e06 1177 }
1da177e4
LT
1178 }
1179
0e64a0c9
DJ
1180 if (cpufreq_frequency_table_target(pol, data->powernow_table,
1181 targfreq, relation, &newstate))
1da177e4
LT
1182 goto err_out;
1183
14cc3e2b 1184 mutex_lock(&fidvid_mutex);
065b807c 1185
1da177e4
LT
1186 powernow_k8_acpi_pst_values(data, newstate);
1187
e7bdd7a5 1188 if (cpu_family == CPU_HW_PSTATE)
1f729e06
DJ
1189 ret = transition_frequency_pstate(data, newstate);
1190 else
1191 ret = transition_frequency_fidvid(data, newstate);
1192 if (ret) {
1da177e4
LT
1193 printk(KERN_ERR PFX "transition frequency failed\n");
1194 ret = 1;
14cc3e2b 1195 mutex_unlock(&fidvid_mutex);
1da177e4
LT
1196 goto err_out;
1197 }
14cc3e2b 1198 mutex_unlock(&fidvid_mutex);
065b807c 1199
e7bdd7a5 1200 if (cpu_family == CPU_HW_PSTATE)
0e64a0c9
DJ
1201 pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1202 newstate);
1f729e06
DJ
1203 else
1204 pol->cur = find_khz_freq_from_fid(data->currfid);
1da177e4
LT
1205 ret = 0;
1206
1207err_out:
b8cbe7e8
RR
1208 set_cpus_allowed_ptr(current, oldmask);
1209 free_cpumask_var(oldmask);
1da177e4
LT
1210 return ret;
1211}
1212
1213/* Driver entry point to verify the policy and range of frequencies */
1214static int powernowk8_verify(struct cpufreq_policy *pol)
1215{
2c6b8c03 1216 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1da177e4 1217
4211a303
JS
1218 if (!data)
1219 return -EINVAL;
1220
1da177e4
LT
1221 return cpufreq_frequency_table_verify(pol, data->powernow_table);
1222}
1223
1ff6e97f
RR
1224struct init_on_cpu {
1225 struct powernow_k8_data *data;
1226 int rc;
1227};
1228
1229static void __cpuinit powernowk8_cpu_init_on_cpu(void *_init_on_cpu)
1230{
1231 struct init_on_cpu *init_on_cpu = _init_on_cpu;
1232
1233 if (pending_bit_stuck()) {
1234 printk(KERN_ERR PFX "failing init, change pending bit set\n");
1235 init_on_cpu->rc = -ENODEV;
1236 return;
1237 }
1238
1239 if (query_current_values_with_pending_wait(init_on_cpu->data)) {
1240 init_on_cpu->rc = -ENODEV;
1241 return;
1242 }
1243
1244 if (cpu_family == CPU_OPTERON)
1245 fidvid_msr_init();
1246
1247 init_on_cpu->rc = 0;
1248}
1249
1da177e4 1250/* per CPU init entry point to the driver */
aa41eb99 1251static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
1da177e4 1252{
b394f1df
AM
1253 static const char ACPI_PSS_BIOS_BUG_MSG[] =
1254 KERN_ERR FW_BUG PFX "No compatible ACPI _PSS objects found.\n"
ad361c98 1255 FW_BUG PFX "Try again with latest BIOS.\n";
1da177e4 1256 struct powernow_k8_data *data;
1ff6e97f 1257 struct init_on_cpu init_on_cpu;
d7fa706c 1258 int rc;
a2fed573 1259 struct cpuinfo_x86 *c = &cpu_data(pol->cpu);
1da177e4 1260
8aae8284
JS
1261 if (!cpu_online(pol->cpu))
1262 return -ENODEV;
1263
1ff6e97f
RR
1264 smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1);
1265 if (rc)
1da177e4
LT
1266 return -ENODEV;
1267
bfdc708d 1268 data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
1da177e4
LT
1269 if (!data) {
1270 printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
1271 return -ENOMEM;
1272 }
1da177e4
LT
1273
1274 data->cpu = pol->cpu;
a266d9f1 1275 data->currpstate = HW_PSTATE_INVALID;
1da177e4 1276
a0abd520 1277 if (powernow_k8_cpu_init_acpi(data)) {
1da177e4
LT
1278 /*
1279 * Use the PSB BIOS structure. This is only availabe on
1280 * an UP version, and is deprecated by AMD.
1281 */
9ed059e1 1282 if (num_online_cpus() != 1) {
df182977 1283 printk_once(ACPI_PSS_BIOS_BUG_MSG);
0cb8bc25 1284 goto err_out;
1da177e4
LT
1285 }
1286 if (pol->cpu != 0) {
2fd47094
TR
1287 printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for "
1288 "CPU other than CPU0. Complain to your BIOS "
1289 "vendor.\n");
0cb8bc25 1290 goto err_out;
1da177e4
LT
1291 }
1292 rc = find_psb_table(data);
0cb8bc25
DJ
1293 if (rc)
1294 goto err_out;
1295
732553e5
ML
1296 /* Take a crude guess here.
1297 * That guess was in microseconds, so multiply with 1000 */
1298 pol->cpuinfo.transition_latency = (
1299 ((data->rvo + 8) * data->vstable * VST_UNITS_20US) +
1300 ((1 << data->irt) * 30)) * 1000;
1301 } else /* ACPI _PSS objects available */
1302 pol->cpuinfo.transition_latency = get_transition_latency(data);
1da177e4
LT
1303
1304 /* only run on specific CPU from here on */
1ff6e97f
RR
1305 init_on_cpu.data = data;
1306 smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu,
1307 &init_on_cpu, 1);
1308 rc = init_on_cpu.rc;
1309 if (rc != 0)
1310 goto err_out_exit_acpi;
1da177e4 1311
f607e3a0 1312 if (cpu_family == CPU_HW_PSTATE)
835481d9 1313 cpumask_copy(pol->cpus, cpumask_of(pol->cpu));
f607e3a0 1314 else
7ad728f9 1315 cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu));
835481d9 1316 data->available_cores = pol->cpus;
1da177e4 1317
e7bdd7a5 1318 if (cpu_family == CPU_HW_PSTATE)
0e64a0c9
DJ
1319 pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1320 data->currpstate);
1f729e06
DJ
1321 else
1322 pol->cur = find_khz_freq_from_fid(data->currfid);
1da177e4
LT
1323 dprintk("policy current frequency %d kHz\n", pol->cur);
1324
1325 /* min/max the cpu is capable of */
1326 if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
2fd47094 1327 printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n");
1da177e4
LT
1328 powernow_k8_cpu_exit_acpi(data);
1329 kfree(data->powernow_table);
1330 kfree(data);
1331 return -EINVAL;
1332 }
1333
a2fed573
ML
1334 /* Check for APERF/MPERF support in hardware */
1335 if (cpu_has(c, X86_FEATURE_APERFMPERF))
1336 cpufreq_amd64_driver.getavg = cpufreq_get_measured_perf;
1337
1da177e4
LT
1338 cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1339
e7bdd7a5 1340 if (cpu_family == CPU_HW_PSTATE)
0e64a0c9
DJ
1341 dprintk("cpu_init done, current pstate 0x%x\n",
1342 data->currpstate);
1f729e06
DJ
1343 else
1344 dprintk("cpu_init done, current fid 0x%x, vid 0x%x\n",
1345 data->currfid, data->currvid);
1da177e4 1346
2c6b8c03 1347 per_cpu(powernow_data, pol->cpu) = data;
1da177e4
LT
1348
1349 return 0;
1350
1ff6e97f 1351err_out_exit_acpi:
1da177e4
LT
1352 powernow_k8_cpu_exit_acpi(data);
1353
0cb8bc25 1354err_out:
1da177e4
LT
1355 kfree(data);
1356 return -ENODEV;
1357}
1358
0e64a0c9 1359static int __devexit powernowk8_cpu_exit(struct cpufreq_policy *pol)
1da177e4 1360{
2c6b8c03 1361 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1da177e4
LT
1362
1363 if (!data)
1364 return -EINVAL;
1365
1366 powernow_k8_cpu_exit_acpi(data);
1367
1368 cpufreq_frequency_table_put_attr(pol->cpu);
1369
1370 kfree(data->powernow_table);
1371 kfree(data);
557a701c 1372 per_cpu(powernow_data, pol->cpu) = NULL;
1da177e4
LT
1373
1374 return 0;
1375}
1376
1ff6e97f
RR
1377static void query_values_on_cpu(void *_err)
1378{
1379 int *err = _err;
1380 struct powernow_k8_data *data = __get_cpu_var(powernow_data);
1381
1382 *err = query_current_values_with_pending_wait(data);
1383}
1384
0e64a0c9 1385static unsigned int powernowk8_get(unsigned int cpu)
1da177e4 1386{
e15bc455 1387 struct powernow_k8_data *data = per_cpu(powernow_data, cpu);
1da177e4 1388 unsigned int khz = 0;
1ff6e97f 1389 int err;
eef5167e
JS
1390
1391 if (!data)
557a701c 1392 return 0;
eef5167e 1393
1ff6e97f
RR
1394 smp_call_function_single(cpu, query_values_on_cpu, &err, true);
1395 if (err)
1da177e4
LT
1396 goto out;
1397
58389a86 1398 if (cpu_family == CPU_HW_PSTATE)
fc0e4748
MT
1399 khz = find_khz_freq_from_pstate(data->powernow_table,
1400 data->currpstate);
58389a86
JD
1401 else
1402 khz = find_khz_freq_from_fid(data->currfid);
1403
1da177e4 1404
b9111b7b 1405out:
1da177e4
LT
1406 return khz;
1407}
1408
73860c6b
BP
1409static void _cpb_toggle_msrs(bool t)
1410{
1411 int cpu;
1412
1413 get_online_cpus();
1414
1415 rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1416
1417 for_each_cpu(cpu, cpu_online_mask) {
1418 struct msr *reg = per_cpu_ptr(msrs, cpu);
1419 if (t)
1420 reg->l &= ~BIT(25);
1421 else
1422 reg->l |= BIT(25);
1423 }
1424 wrmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1425
1426 put_online_cpus();
1427}
1428
1429/*
1430 * Switch on/off core performance boosting.
1431 *
1432 * 0=disable
1433 * 1=enable.
1434 */
1435static void cpb_toggle(bool t)
1436{
1437 if (!cpb_capable)
1438 return;
1439
1440 if (t && !cpb_enabled) {
1441 cpb_enabled = true;
1442 _cpb_toggle_msrs(t);
1443 printk(KERN_INFO PFX "Core Boosting enabled.\n");
1444 } else if (!t && cpb_enabled) {
1445 cpb_enabled = false;
1446 _cpb_toggle_msrs(t);
1447 printk(KERN_INFO PFX "Core Boosting disabled.\n");
1448 }
1449}
1450
1451static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
1452 size_t count)
1453{
1454 int ret = -EINVAL;
1455 unsigned long val = 0;
1456
1457 ret = strict_strtoul(buf, 10, &val);
1458 if (!ret && (val == 0 || val == 1) && cpb_capable)
1459 cpb_toggle(val);
1460 else
1461 return -EINVAL;
1462
1463 return count;
1464}
1465
1466static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
1467{
1468 return sprintf(buf, "%u\n", cpb_enabled);
1469}
1470
1471#define define_one_rw(_name) \
1472static struct freq_attr _name = \
1473__ATTR(_name, 0644, show_##_name, store_##_name)
1474
1475define_one_rw(cpb);
1476
0e64a0c9 1477static struct freq_attr *powernow_k8_attr[] = {
1da177e4 1478 &cpufreq_freq_attr_scaling_available_freqs,
73860c6b 1479 &cpb,
1da177e4
LT
1480 NULL,
1481};
1482
221dee28 1483static struct cpufreq_driver cpufreq_amd64_driver = {
e2f74f35
TR
1484 .verify = powernowk8_verify,
1485 .target = powernowk8_target,
1486 .bios_limit = acpi_processor_get_bios_limit,
1487 .init = powernowk8_cpu_init,
1488 .exit = __devexit_p(powernowk8_cpu_exit),
1489 .get = powernowk8_get,
1490 .name = "powernow-k8",
1491 .owner = THIS_MODULE,
1492 .attr = powernow_k8_attr,
1da177e4
LT
1493};
1494
73860c6b
BP
1495/*
1496 * Clear the boost-disable flag on the CPU_DOWN path so that this cpu
1497 * cannot block the remaining ones from boosting. On the CPU_UP path we
1498 * simply keep the boost-disable flag in sync with the current global
1499 * state.
1500 */
fe501f1e
BP
1501static int cpb_notify(struct notifier_block *nb, unsigned long action,
1502 void *hcpu)
73860c6b
BP
1503{
1504 unsigned cpu = (long)hcpu;
1505 u32 lo, hi;
1506
1507 switch (action) {
1508 case CPU_UP_PREPARE:
1509 case CPU_UP_PREPARE_FROZEN:
1510
1511 if (!cpb_enabled) {
1512 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
1513 lo |= BIT(25);
1514 wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
1515 }
1516 break;
1517
1518 case CPU_DOWN_PREPARE:
1519 case CPU_DOWN_PREPARE_FROZEN:
1520 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
1521 lo &= ~BIT(25);
1522 wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
1523 break;
1524
1525 default:
1526 break;
1527 }
1528
1529 return NOTIFY_OK;
1530}
1531
fe501f1e 1532static struct notifier_block cpb_nb = {
73860c6b
BP
1533 .notifier_call = cpb_notify,
1534};
1535
1da177e4 1536/* driver entry point for init */
aa41eb99 1537static int __cpuinit powernowk8_init(void)
1da177e4 1538{
73860c6b 1539 unsigned int i, supported_cpus = 0, cpu;
1da177e4 1540
a7201156 1541 for_each_online_cpu(i) {
1ff6e97f
RR
1542 int rc;
1543 smp_call_function_single(i, check_supported_cpu, &rc, 1);
1544 if (rc == 0)
1da177e4
LT
1545 supported_cpus++;
1546 }
1547
73860c6b
BP
1548 if (supported_cpus != num_online_cpus())
1549 return -ENODEV;
1550
1551 printk(KERN_INFO PFX "Found %d %s (%d cpu cores) (" VERSION ")\n",
1552 num_online_nodes(), boot_cpu_data.x86_model_id, supported_cpus);
1553
1554 if (boot_cpu_has(X86_FEATURE_CPB)) {
1555
1556 cpb_capable = true;
1557
1558 register_cpu_notifier(&cpb_nb);
1559
1560 msrs = msrs_alloc();
1561 if (!msrs) {
1562 printk(KERN_ERR "%s: Error allocating msrs!\n", __func__);
1563 return -ENOMEM;
1564 }
1565
1566 rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1567
1568 for_each_cpu(cpu, cpu_online_mask) {
1569 struct msr *reg = per_cpu_ptr(msrs, cpu);
1570 cpb_enabled |= !(!!(reg->l & BIT(25)));
1571 }
1572
1573 printk(KERN_INFO PFX "Core Performance Boosting: %s.\n",
1574 (cpb_enabled ? "on" : "off"));
1da177e4
LT
1575 }
1576
73860c6b 1577 return cpufreq_register_driver(&cpufreq_amd64_driver);
1da177e4
LT
1578}
1579
1580/* driver entry point for term */
1581static void __exit powernowk8_exit(void)
1582{
1583 dprintk("exit\n");
1584
73860c6b
BP
1585 if (boot_cpu_has(X86_FEATURE_CPB)) {
1586 msrs_free(msrs);
1587 msrs = NULL;
1588
1589 unregister_cpu_notifier(&cpb_nb);
1590 }
1591
1da177e4
LT
1592 cpufreq_unregister_driver(&cpufreq_amd64_driver);
1593}
1594
0e64a0c9
DJ
1595MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and "
1596 "Mark Langsdorf <mark.langsdorf@amd.com>");
1da177e4
LT
1597MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1598MODULE_LICENSE("GPL");
1599
1600late_initcall(powernowk8_init);
1601module_exit(powernowk8_exit);