]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/x86/kernel/amd_iommu_init.c
x86/amd-iommu: Fix passthrough mode
[net-next-2.6.git] / arch / x86 / kernel / amd_iommu_init.c
CommitLineData
f6e2e6b6 1/*
bf3118c1 2 * Copyright (C) 2007-2009 Advanced Micro Devices, Inc.
f6e2e6b6
JR
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/acpi.h>
22#include <linux/gfp.h>
23#include <linux/list.h>
7441e9cb 24#include <linux/sysdev.h>
a80dc3e0
JR
25#include <linux/interrupt.h>
26#include <linux/msi.h>
f6e2e6b6 27#include <asm/pci-direct.h>
6a9401a7 28#include <asm/amd_iommu_proto.h>
f6e2e6b6 29#include <asm/amd_iommu_types.h>
c6da992e 30#include <asm/amd_iommu.h>
46a7fa27 31#include <asm/iommu.h>
1d9b16d1 32#include <asm/gart.h>
ea1b0d39 33#include <asm/x86_init.h>
f6e2e6b6
JR
34
35/*
36 * definitions for the ACPI scanning code
37 */
f6e2e6b6 38#define IVRS_HEADER_LENGTH 48
f6e2e6b6
JR
39
40#define ACPI_IVHD_TYPE 0x10
41#define ACPI_IVMD_TYPE_ALL 0x20
42#define ACPI_IVMD_TYPE 0x21
43#define ACPI_IVMD_TYPE_RANGE 0x22
44
45#define IVHD_DEV_ALL 0x01
46#define IVHD_DEV_SELECT 0x02
47#define IVHD_DEV_SELECT_RANGE_START 0x03
48#define IVHD_DEV_RANGE_END 0x04
49#define IVHD_DEV_ALIAS 0x42
50#define IVHD_DEV_ALIAS_RANGE 0x43
51#define IVHD_DEV_EXT_SELECT 0x46
52#define IVHD_DEV_EXT_SELECT_RANGE 0x47
53
6da7342f
JR
54#define IVHD_FLAG_HT_TUN_EN_MASK 0x01
55#define IVHD_FLAG_PASSPW_EN_MASK 0x02
56#define IVHD_FLAG_RESPASSPW_EN_MASK 0x04
57#define IVHD_FLAG_ISOC_EN_MASK 0x08
f6e2e6b6
JR
58
59#define IVMD_FLAG_EXCL_RANGE 0x08
60#define IVMD_FLAG_UNITY_MAP 0x01
61
62#define ACPI_DEVFLAG_INITPASS 0x01
63#define ACPI_DEVFLAG_EXTINT 0x02
64#define ACPI_DEVFLAG_NMI 0x04
65#define ACPI_DEVFLAG_SYSMGT1 0x10
66#define ACPI_DEVFLAG_SYSMGT2 0x20
67#define ACPI_DEVFLAG_LINT0 0x40
68#define ACPI_DEVFLAG_LINT1 0x80
69#define ACPI_DEVFLAG_ATSDIS 0x10000000
70
b65233a9
JR
71/*
72 * ACPI table definitions
73 *
74 * These data structures are laid over the table to parse the important values
75 * out of it.
76 */
77
78/*
79 * structure describing one IOMMU in the ACPI table. Typically followed by one
80 * or more ivhd_entrys.
81 */
f6e2e6b6
JR
82struct ivhd_header {
83 u8 type;
84 u8 flags;
85 u16 length;
86 u16 devid;
87 u16 cap_ptr;
88 u64 mmio_phys;
89 u16 pci_seg;
90 u16 info;
91 u32 reserved;
92} __attribute__((packed));
93
b65233a9
JR
94/*
95 * A device entry describing which devices a specific IOMMU translates and
96 * which requestor ids they use.
97 */
f6e2e6b6
JR
98struct ivhd_entry {
99 u8 type;
100 u16 devid;
101 u8 flags;
102 u32 ext;
103} __attribute__((packed));
104
b65233a9
JR
105/*
106 * An AMD IOMMU memory definition structure. It defines things like exclusion
107 * ranges for devices and regions that should be unity mapped.
108 */
f6e2e6b6
JR
109struct ivmd_header {
110 u8 type;
111 u8 flags;
112 u16 length;
113 u16 devid;
114 u16 aux;
115 u64 resv;
116 u64 range_start;
117 u64 range_length;
118} __attribute__((packed));
119
fefda117
JR
120bool amd_iommu_dump;
121
c1cbebee
JR
122static int __initdata amd_iommu_detected;
123
b65233a9
JR
124u16 amd_iommu_last_bdf; /* largest PCI device id we have
125 to handle */
2e22847f 126LIST_HEAD(amd_iommu_unity_map); /* a list of required unity mappings
b65233a9 127 we find in ACPI */
afa9fdc2 128bool amd_iommu_unmap_flush; /* if true, flush on every unmap */
928abd25 129
2e22847f 130LIST_HEAD(amd_iommu_list); /* list of all AMD IOMMUs in the
b65233a9 131 system */
928abd25 132
bb52777e
JR
133/* Array to assign indices to IOMMUs*/
134struct amd_iommu *amd_iommus[MAX_IOMMUS];
135int amd_iommus_present;
136
318afd41
JR
137/* IOMMUs have a non-present cache? */
138bool amd_iommu_np_cache __read_mostly;
139
aeb26f55
JR
140/*
141 * List of protection domains - used during resume
142 */
143LIST_HEAD(amd_iommu_pd_list);
144spinlock_t amd_iommu_pd_lock;
145
b65233a9
JR
146/*
147 * Pointer to the device table which is shared by all AMD IOMMUs
148 * it is indexed by the PCI device id or the HT unit id and contains
149 * information about the domain the device belongs to as well as the
150 * page table root pointer.
151 */
928abd25 152struct dev_table_entry *amd_iommu_dev_table;
b65233a9
JR
153
154/*
155 * The alias table is a driver specific data structure which contains the
156 * mappings of the PCI device ids to the actual requestor ids on the IOMMU.
157 * More than one device can share the same requestor id.
158 */
928abd25 159u16 *amd_iommu_alias_table;
b65233a9
JR
160
161/*
162 * The rlookup table is used to find the IOMMU which is responsible
163 * for a specific device. It is also indexed by the PCI device id.
164 */
928abd25 165struct amd_iommu **amd_iommu_rlookup_table;
b65233a9 166
b65233a9
JR
167/*
168 * AMD IOMMU allows up to 2^16 differend protection domains. This is a bitmap
169 * to know which ones are already in use.
170 */
928abd25
JR
171unsigned long *amd_iommu_pd_alloc_bitmap;
172
b65233a9
JR
173static u32 dev_table_size; /* size of the device table */
174static u32 alias_table_size; /* size of the alias table */
175static u32 rlookup_table_size; /* size if the rlookup table */
3e8064ba 176
208ec8c9
JR
177static inline void update_last_devid(u16 devid)
178{
179 if (devid > amd_iommu_last_bdf)
180 amd_iommu_last_bdf = devid;
181}
182
c571484e
JR
183static inline unsigned long tbl_size(int entry_size)
184{
185 unsigned shift = PAGE_SHIFT +
421f909c 186 get_order(((int)amd_iommu_last_bdf + 1) * entry_size);
c571484e
JR
187
188 return 1UL << shift;
189}
190
b65233a9
JR
191/****************************************************************************
192 *
193 * AMD IOMMU MMIO register space handling functions
194 *
195 * These functions are used to program the IOMMU device registers in
196 * MMIO space required for that driver.
197 *
198 ****************************************************************************/
3e8064ba 199
b65233a9
JR
200/*
201 * This function set the exclusion range in the IOMMU. DMA accesses to the
202 * exclusion range are passed through untranslated
203 */
05f92db9 204static void iommu_set_exclusion_range(struct amd_iommu *iommu)
b2026aa2
JR
205{
206 u64 start = iommu->exclusion_start & PAGE_MASK;
207 u64 limit = (start + iommu->exclusion_length) & PAGE_MASK;
208 u64 entry;
209
210 if (!iommu->exclusion_start)
211 return;
212
213 entry = start | MMIO_EXCL_ENABLE_MASK;
214 memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET,
215 &entry, sizeof(entry));
216
217 entry = limit;
218 memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET,
219 &entry, sizeof(entry));
220}
221
b65233a9 222/* Programs the physical address of the device table into the IOMMU hardware */
b2026aa2
JR
223static void __init iommu_set_device_table(struct amd_iommu *iommu)
224{
f609891f 225 u64 entry;
b2026aa2
JR
226
227 BUG_ON(iommu->mmio_base == NULL);
228
229 entry = virt_to_phys(amd_iommu_dev_table);
230 entry |= (dev_table_size >> 12) - 1;
231 memcpy_toio(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET,
232 &entry, sizeof(entry));
233}
234
b65233a9 235/* Generic functions to enable/disable certain features of the IOMMU. */
05f92db9 236static void iommu_feature_enable(struct amd_iommu *iommu, u8 bit)
b2026aa2
JR
237{
238 u32 ctrl;
239
240 ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
241 ctrl |= (1 << bit);
242 writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
243}
244
ca020711 245static void iommu_feature_disable(struct amd_iommu *iommu, u8 bit)
b2026aa2
JR
246{
247 u32 ctrl;
248
199d0d50 249 ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
b2026aa2
JR
250 ctrl &= ~(1 << bit);
251 writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
252}
253
b65233a9 254/* Function to enable the hardware */
05f92db9 255static void iommu_enable(struct amd_iommu *iommu)
b2026aa2 256{
4c6f40d4 257 printk(KERN_INFO "AMD-Vi: Enabling IOMMU at %s cap 0x%hx\n",
a4e267c8 258 dev_name(&iommu->dev->dev), iommu->cap_ptr);
b2026aa2
JR
259
260 iommu_feature_enable(iommu, CONTROL_IOMMU_EN);
b2026aa2
JR
261}
262
92ac4320 263static void iommu_disable(struct amd_iommu *iommu)
126c52be 264{
a8c485bb
CW
265 /* Disable command buffer */
266 iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);
267
268 /* Disable event logging and event interrupts */
269 iommu_feature_disable(iommu, CONTROL_EVT_INT_EN);
270 iommu_feature_disable(iommu, CONTROL_EVT_LOG_EN);
271
272 /* Disable IOMMU hardware itself */
92ac4320 273 iommu_feature_disable(iommu, CONTROL_IOMMU_EN);
126c52be
JR
274}
275
b65233a9
JR
276/*
277 * mapping and unmapping functions for the IOMMU MMIO space. Each AMD IOMMU in
278 * the system has one.
279 */
6c56747b
JR
280static u8 * __init iommu_map_mmio_space(u64 address)
281{
282 u8 *ret;
283
284 if (!request_mem_region(address, MMIO_REGION_LENGTH, "amd_iommu"))
285 return NULL;
286
287 ret = ioremap_nocache(address, MMIO_REGION_LENGTH);
288 if (ret != NULL)
289 return ret;
290
291 release_mem_region(address, MMIO_REGION_LENGTH);
292
293 return NULL;
294}
295
296static void __init iommu_unmap_mmio_space(struct amd_iommu *iommu)
297{
298 if (iommu->mmio_base)
299 iounmap(iommu->mmio_base);
300 release_mem_region(iommu->mmio_phys, MMIO_REGION_LENGTH);
301}
302
b65233a9
JR
303/****************************************************************************
304 *
305 * The functions below belong to the first pass of AMD IOMMU ACPI table
306 * parsing. In this pass we try to find out the highest device id this
307 * code has to handle. Upon this information the size of the shared data
308 * structures is determined later.
309 *
310 ****************************************************************************/
311
b514e555
JR
312/*
313 * This function calculates the length of a given IVHD entry
314 */
315static inline int ivhd_entry_length(u8 *ivhd)
316{
317 return 0x04 << (*ivhd >> 6);
318}
319
b65233a9
JR
320/*
321 * This function reads the last device id the IOMMU has to handle from the PCI
322 * capability header for this IOMMU
323 */
3e8064ba
JR
324static int __init find_last_devid_on_pci(int bus, int dev, int fn, int cap_ptr)
325{
326 u32 cap;
327
328 cap = read_pci_config(bus, dev, fn, cap_ptr+MMIO_RANGE_OFFSET);
d591b0a3 329 update_last_devid(calc_devid(MMIO_GET_BUS(cap), MMIO_GET_LD(cap)));
3e8064ba
JR
330
331 return 0;
332}
333
b65233a9
JR
334/*
335 * After reading the highest device id from the IOMMU PCI capability header
336 * this function looks if there is a higher device id defined in the ACPI table
337 */
3e8064ba
JR
338static int __init find_last_devid_from_ivhd(struct ivhd_header *h)
339{
340 u8 *p = (void *)h, *end = (void *)h;
341 struct ivhd_entry *dev;
342
343 p += sizeof(*h);
344 end += h->length;
345
346 find_last_devid_on_pci(PCI_BUS(h->devid),
347 PCI_SLOT(h->devid),
348 PCI_FUNC(h->devid),
349 h->cap_ptr);
350
351 while (p < end) {
352 dev = (struct ivhd_entry *)p;
353 switch (dev->type) {
354 case IVHD_DEV_SELECT:
355 case IVHD_DEV_RANGE_END:
356 case IVHD_DEV_ALIAS:
357 case IVHD_DEV_EXT_SELECT:
b65233a9 358 /* all the above subfield types refer to device ids */
208ec8c9 359 update_last_devid(dev->devid);
3e8064ba
JR
360 break;
361 default:
362 break;
363 }
b514e555 364 p += ivhd_entry_length(p);
3e8064ba
JR
365 }
366
367 WARN_ON(p != end);
368
369 return 0;
370}
371
b65233a9
JR
372/*
373 * Iterate over all IVHD entries in the ACPI table and find the highest device
374 * id which we need to handle. This is the first of three functions which parse
375 * the ACPI table. So we check the checksum here.
376 */
3e8064ba
JR
377static int __init find_last_devid_acpi(struct acpi_table_header *table)
378{
379 int i;
380 u8 checksum = 0, *p = (u8 *)table, *end = (u8 *)table;
381 struct ivhd_header *h;
382
383 /*
384 * Validate checksum here so we don't need to do it when
385 * we actually parse the table
386 */
387 for (i = 0; i < table->length; ++i)
388 checksum += p[i];
389 if (checksum != 0)
390 /* ACPI table corrupt */
391 return -ENODEV;
392
393 p += IVRS_HEADER_LENGTH;
394
395 end += table->length;
396 while (p < end) {
397 h = (struct ivhd_header *)p;
398 switch (h->type) {
399 case ACPI_IVHD_TYPE:
400 find_last_devid_from_ivhd(h);
401 break;
402 default:
403 break;
404 }
405 p += h->length;
406 }
407 WARN_ON(p != end);
408
409 return 0;
410}
411
b65233a9
JR
412/****************************************************************************
413 *
414 * The following functions belong the the code path which parses the ACPI table
415 * the second time. In this ACPI parsing iteration we allocate IOMMU specific
416 * data structures, initialize the device/alias/rlookup table and also
417 * basically initialize the hardware.
418 *
419 ****************************************************************************/
420
421/*
422 * Allocates the command buffer. This buffer is per AMD IOMMU. We can
423 * write commands to that buffer later and the IOMMU will execute them
424 * asynchronously
425 */
b36ca91e
JR
426static u8 * __init alloc_command_buffer(struct amd_iommu *iommu)
427{
d0312b21 428 u8 *cmd_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
b36ca91e 429 get_order(CMD_BUFFER_SIZE));
b36ca91e
JR
430
431 if (cmd_buf == NULL)
432 return NULL;
433
434 iommu->cmd_buf_size = CMD_BUFFER_SIZE;
435
58492e12
JR
436 return cmd_buf;
437}
438
93f1cc67
JR
439/*
440 * This function resets the command buffer if the IOMMU stopped fetching
441 * commands from it.
442 */
443void amd_iommu_reset_cmd_buffer(struct amd_iommu *iommu)
444{
445 iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);
446
447 writel(0x00, iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
448 writel(0x00, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
449
450 iommu_feature_enable(iommu, CONTROL_CMDBUF_EN);
451}
452
58492e12
JR
453/*
454 * This function writes the command buffer address to the hardware and
455 * enables it.
456 */
457static void iommu_enable_command_buffer(struct amd_iommu *iommu)
458{
459 u64 entry;
460
461 BUG_ON(iommu->cmd_buf == NULL);
462
463 entry = (u64)virt_to_phys(iommu->cmd_buf);
b36ca91e 464 entry |= MMIO_CMD_SIZE_512;
58492e12 465
b36ca91e 466 memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET,
58492e12 467 &entry, sizeof(entry));
b36ca91e 468
93f1cc67 469 amd_iommu_reset_cmd_buffer(iommu);
b36ca91e
JR
470}
471
472static void __init free_command_buffer(struct amd_iommu *iommu)
473{
23c1713f
JR
474 free_pages((unsigned long)iommu->cmd_buf,
475 get_order(iommu->cmd_buf_size));
b36ca91e
JR
476}
477
335503e5
JR
478/* allocates the memory where the IOMMU will log its events to */
479static u8 * __init alloc_event_buffer(struct amd_iommu *iommu)
480{
335503e5
JR
481 iommu->evt_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
482 get_order(EVT_BUFFER_SIZE));
483
484 if (iommu->evt_buf == NULL)
485 return NULL;
486
1bc6f838
JR
487 iommu->evt_buf_size = EVT_BUFFER_SIZE;
488
58492e12
JR
489 return iommu->evt_buf;
490}
491
492static void iommu_enable_event_buffer(struct amd_iommu *iommu)
493{
494 u64 entry;
495
496 BUG_ON(iommu->evt_buf == NULL);
497
335503e5 498 entry = (u64)virt_to_phys(iommu->evt_buf) | EVT_LEN_MASK;
58492e12 499
335503e5
JR
500 memcpy_toio(iommu->mmio_base + MMIO_EVT_BUF_OFFSET,
501 &entry, sizeof(entry));
502
09067207
JR
503 /* set head and tail to zero manually */
504 writel(0x00, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
505 writel(0x00, iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
506
58492e12 507 iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN);
335503e5
JR
508}
509
510static void __init free_event_buffer(struct amd_iommu *iommu)
511{
512 free_pages((unsigned long)iommu->evt_buf, get_order(EVT_BUFFER_SIZE));
513}
514
b65233a9 515/* sets a specific bit in the device table entry. */
3566b778
JR
516static void set_dev_entry_bit(u16 devid, u8 bit)
517{
518 int i = (bit >> 5) & 0x07;
519 int _bit = bit & 0x1f;
520
521 amd_iommu_dev_table[devid].data[i] |= (1 << _bit);
522}
523
c5cca146
JR
524static int get_dev_entry_bit(u16 devid, u8 bit)
525{
526 int i = (bit >> 5) & 0x07;
527 int _bit = bit & 0x1f;
528
529 return (amd_iommu_dev_table[devid].data[i] & (1 << _bit)) >> _bit;
530}
531
532
533void amd_iommu_apply_erratum_63(u16 devid)
534{
535 int sysmgt;
536
537 sysmgt = get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1) |
538 (get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2) << 1);
539
540 if (sysmgt == 0x01)
541 set_dev_entry_bit(devid, DEV_ENTRY_IW);
542}
543
5ff4789d
JR
544/* Writes the specific IOMMU for a device into the rlookup table */
545static void __init set_iommu_for_device(struct amd_iommu *iommu, u16 devid)
546{
547 amd_iommu_rlookup_table[devid] = iommu;
548}
549
b65233a9
JR
550/*
551 * This function takes the device specific flags read from the ACPI
552 * table and sets up the device table entry with that information
553 */
5ff4789d
JR
554static void __init set_dev_entry_from_acpi(struct amd_iommu *iommu,
555 u16 devid, u32 flags, u32 ext_flags)
3566b778
JR
556{
557 if (flags & ACPI_DEVFLAG_INITPASS)
558 set_dev_entry_bit(devid, DEV_ENTRY_INIT_PASS);
559 if (flags & ACPI_DEVFLAG_EXTINT)
560 set_dev_entry_bit(devid, DEV_ENTRY_EINT_PASS);
561 if (flags & ACPI_DEVFLAG_NMI)
562 set_dev_entry_bit(devid, DEV_ENTRY_NMI_PASS);
563 if (flags & ACPI_DEVFLAG_SYSMGT1)
564 set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1);
565 if (flags & ACPI_DEVFLAG_SYSMGT2)
566 set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2);
567 if (flags & ACPI_DEVFLAG_LINT0)
568 set_dev_entry_bit(devid, DEV_ENTRY_LINT0_PASS);
569 if (flags & ACPI_DEVFLAG_LINT1)
570 set_dev_entry_bit(devid, DEV_ENTRY_LINT1_PASS);
3566b778 571
c5cca146
JR
572 amd_iommu_apply_erratum_63(devid);
573
5ff4789d 574 set_iommu_for_device(iommu, devid);
3566b778
JR
575}
576
b65233a9
JR
577/*
578 * Reads the device exclusion range from ACPI and initialize IOMMU with
579 * it
580 */
3566b778
JR
581static void __init set_device_exclusion_range(u16 devid, struct ivmd_header *m)
582{
583 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
584
585 if (!(m->flags & IVMD_FLAG_EXCL_RANGE))
586 return;
587
588 if (iommu) {
b65233a9
JR
589 /*
590 * We only can configure exclusion ranges per IOMMU, not
591 * per device. But we can enable the exclusion range per
592 * device. This is done here
593 */
3566b778
JR
594 set_dev_entry_bit(m->devid, DEV_ENTRY_EX);
595 iommu->exclusion_start = m->range_start;
596 iommu->exclusion_length = m->range_length;
597 }
598}
599
b65233a9
JR
600/*
601 * This function reads some important data from the IOMMU PCI space and
602 * initializes the driver data structure with it. It reads the hardware
603 * capabilities and the first/last device entries
604 */
5d0c8e49
JR
605static void __init init_iommu_from_pci(struct amd_iommu *iommu)
606{
5d0c8e49 607 int cap_ptr = iommu->cap_ptr;
a80dc3e0 608 u32 range, misc;
5d0c8e49 609
3eaf28a1
JR
610 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_CAP_HDR_OFFSET,
611 &iommu->cap);
612 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_RANGE_OFFSET,
613 &range);
a80dc3e0
JR
614 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_MISC_OFFSET,
615 &misc);
5d0c8e49 616
d591b0a3
JR
617 iommu->first_device = calc_devid(MMIO_GET_BUS(range),
618 MMIO_GET_FD(range));
619 iommu->last_device = calc_devid(MMIO_GET_BUS(range),
620 MMIO_GET_LD(range));
a80dc3e0 621 iommu->evt_msi_num = MMIO_MSI_NUM(misc);
5d0c8e49
JR
622}
623
b65233a9
JR
624/*
625 * Takes a pointer to an AMD IOMMU entry in the ACPI table and
626 * initializes the hardware and our data structures with it.
627 */
5d0c8e49
JR
628static void __init init_iommu_from_acpi(struct amd_iommu *iommu,
629 struct ivhd_header *h)
630{
631 u8 *p = (u8 *)h;
632 u8 *end = p, flags = 0;
633 u16 dev_i, devid = 0, devid_start = 0, devid_to = 0;
634 u32 ext_flags = 0;
58a3bee5 635 bool alias = false;
5d0c8e49
JR
636 struct ivhd_entry *e;
637
638 /*
639 * First set the recommended feature enable bits from ACPI
640 * into the IOMMU control registers
641 */
6da7342f 642 h->flags & IVHD_FLAG_HT_TUN_EN_MASK ?
5d0c8e49
JR
643 iommu_feature_enable(iommu, CONTROL_HT_TUN_EN) :
644 iommu_feature_disable(iommu, CONTROL_HT_TUN_EN);
645
6da7342f 646 h->flags & IVHD_FLAG_PASSPW_EN_MASK ?
5d0c8e49
JR
647 iommu_feature_enable(iommu, CONTROL_PASSPW_EN) :
648 iommu_feature_disable(iommu, CONTROL_PASSPW_EN);
649
6da7342f 650 h->flags & IVHD_FLAG_RESPASSPW_EN_MASK ?
5d0c8e49
JR
651 iommu_feature_enable(iommu, CONTROL_RESPASSPW_EN) :
652 iommu_feature_disable(iommu, CONTROL_RESPASSPW_EN);
653
6da7342f 654 h->flags & IVHD_FLAG_ISOC_EN_MASK ?
5d0c8e49
JR
655 iommu_feature_enable(iommu, CONTROL_ISOC_EN) :
656 iommu_feature_disable(iommu, CONTROL_ISOC_EN);
657
658 /*
659 * make IOMMU memory accesses cache coherent
660 */
661 iommu_feature_enable(iommu, CONTROL_COHERENT_EN);
662
663 /*
664 * Done. Now parse the device entries
665 */
666 p += sizeof(struct ivhd_header);
667 end += h->length;
668
42a698f4 669
5d0c8e49
JR
670 while (p < end) {
671 e = (struct ivhd_entry *)p;
672 switch (e->type) {
673 case IVHD_DEV_ALL:
42a698f4
JR
674
675 DUMP_printk(" DEV_ALL\t\t\t first devid: %02x:%02x.%x"
676 " last device %02x:%02x.%x flags: %02x\n",
677 PCI_BUS(iommu->first_device),
678 PCI_SLOT(iommu->first_device),
679 PCI_FUNC(iommu->first_device),
680 PCI_BUS(iommu->last_device),
681 PCI_SLOT(iommu->last_device),
682 PCI_FUNC(iommu->last_device),
683 e->flags);
684
5d0c8e49
JR
685 for (dev_i = iommu->first_device;
686 dev_i <= iommu->last_device; ++dev_i)
5ff4789d
JR
687 set_dev_entry_from_acpi(iommu, dev_i,
688 e->flags, 0);
5d0c8e49
JR
689 break;
690 case IVHD_DEV_SELECT:
42a698f4
JR
691
692 DUMP_printk(" DEV_SELECT\t\t\t devid: %02x:%02x.%x "
693 "flags: %02x\n",
694 PCI_BUS(e->devid),
695 PCI_SLOT(e->devid),
696 PCI_FUNC(e->devid),
697 e->flags);
698
5d0c8e49 699 devid = e->devid;
5ff4789d 700 set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
5d0c8e49
JR
701 break;
702 case IVHD_DEV_SELECT_RANGE_START:
42a698f4
JR
703
704 DUMP_printk(" DEV_SELECT_RANGE_START\t "
705 "devid: %02x:%02x.%x flags: %02x\n",
706 PCI_BUS(e->devid),
707 PCI_SLOT(e->devid),
708 PCI_FUNC(e->devid),
709 e->flags);
710
5d0c8e49
JR
711 devid_start = e->devid;
712 flags = e->flags;
713 ext_flags = 0;
58a3bee5 714 alias = false;
5d0c8e49
JR
715 break;
716 case IVHD_DEV_ALIAS:
42a698f4
JR
717
718 DUMP_printk(" DEV_ALIAS\t\t\t devid: %02x:%02x.%x "
719 "flags: %02x devid_to: %02x:%02x.%x\n",
720 PCI_BUS(e->devid),
721 PCI_SLOT(e->devid),
722 PCI_FUNC(e->devid),
723 e->flags,
724 PCI_BUS(e->ext >> 8),
725 PCI_SLOT(e->ext >> 8),
726 PCI_FUNC(e->ext >> 8));
727
5d0c8e49
JR
728 devid = e->devid;
729 devid_to = e->ext >> 8;
7a6a3a08 730 set_dev_entry_from_acpi(iommu, devid , e->flags, 0);
7455aab1 731 set_dev_entry_from_acpi(iommu, devid_to, e->flags, 0);
5d0c8e49
JR
732 amd_iommu_alias_table[devid] = devid_to;
733 break;
734 case IVHD_DEV_ALIAS_RANGE:
42a698f4
JR
735
736 DUMP_printk(" DEV_ALIAS_RANGE\t\t "
737 "devid: %02x:%02x.%x flags: %02x "
738 "devid_to: %02x:%02x.%x\n",
739 PCI_BUS(e->devid),
740 PCI_SLOT(e->devid),
741 PCI_FUNC(e->devid),
742 e->flags,
743 PCI_BUS(e->ext >> 8),
744 PCI_SLOT(e->ext >> 8),
745 PCI_FUNC(e->ext >> 8));
746
5d0c8e49
JR
747 devid_start = e->devid;
748 flags = e->flags;
749 devid_to = e->ext >> 8;
750 ext_flags = 0;
58a3bee5 751 alias = true;
5d0c8e49
JR
752 break;
753 case IVHD_DEV_EXT_SELECT:
42a698f4
JR
754
755 DUMP_printk(" DEV_EXT_SELECT\t\t devid: %02x:%02x.%x "
756 "flags: %02x ext: %08x\n",
757 PCI_BUS(e->devid),
758 PCI_SLOT(e->devid),
759 PCI_FUNC(e->devid),
760 e->flags, e->ext);
761
5d0c8e49 762 devid = e->devid;
5ff4789d
JR
763 set_dev_entry_from_acpi(iommu, devid, e->flags,
764 e->ext);
5d0c8e49
JR
765 break;
766 case IVHD_DEV_EXT_SELECT_RANGE:
42a698f4
JR
767
768 DUMP_printk(" DEV_EXT_SELECT_RANGE\t devid: "
769 "%02x:%02x.%x flags: %02x ext: %08x\n",
770 PCI_BUS(e->devid),
771 PCI_SLOT(e->devid),
772 PCI_FUNC(e->devid),
773 e->flags, e->ext);
774
5d0c8e49
JR
775 devid_start = e->devid;
776 flags = e->flags;
777 ext_flags = e->ext;
58a3bee5 778 alias = false;
5d0c8e49
JR
779 break;
780 case IVHD_DEV_RANGE_END:
42a698f4
JR
781
782 DUMP_printk(" DEV_RANGE_END\t\t devid: %02x:%02x.%x\n",
783 PCI_BUS(e->devid),
784 PCI_SLOT(e->devid),
785 PCI_FUNC(e->devid));
786
5d0c8e49
JR
787 devid = e->devid;
788 for (dev_i = devid_start; dev_i <= devid; ++dev_i) {
7a6a3a08 789 if (alias) {
5d0c8e49 790 amd_iommu_alias_table[dev_i] = devid_to;
7a6a3a08
JR
791 set_dev_entry_from_acpi(iommu,
792 devid_to, flags, ext_flags);
793 }
794 set_dev_entry_from_acpi(iommu, dev_i,
795 flags, ext_flags);
5d0c8e49
JR
796 }
797 break;
798 default:
799 break;
800 }
801
b514e555 802 p += ivhd_entry_length(p);
5d0c8e49
JR
803 }
804}
805
b65233a9 806/* Initializes the device->iommu mapping for the driver */
5d0c8e49
JR
807static int __init init_iommu_devices(struct amd_iommu *iommu)
808{
809 u16 i;
810
811 for (i = iommu->first_device; i <= iommu->last_device; ++i)
812 set_iommu_for_device(iommu, i);
813
814 return 0;
815}
816
e47d402d
JR
817static void __init free_iommu_one(struct amd_iommu *iommu)
818{
819 free_command_buffer(iommu);
335503e5 820 free_event_buffer(iommu);
e47d402d
JR
821 iommu_unmap_mmio_space(iommu);
822}
823
824static void __init free_iommu_all(void)
825{
826 struct amd_iommu *iommu, *next;
827
3bd22172 828 for_each_iommu_safe(iommu, next) {
e47d402d
JR
829 list_del(&iommu->list);
830 free_iommu_one(iommu);
831 kfree(iommu);
832 }
833}
834
b65233a9
JR
835/*
836 * This function clues the initialization function for one IOMMU
837 * together and also allocates the command buffer and programs the
838 * hardware. It does NOT enable the IOMMU. This is done afterwards.
839 */
e47d402d
JR
840static int __init init_iommu_one(struct amd_iommu *iommu, struct ivhd_header *h)
841{
842 spin_lock_init(&iommu->lock);
bb52777e
JR
843
844 /* Add IOMMU to internal data structures */
e47d402d 845 list_add_tail(&iommu->list, &amd_iommu_list);
bb52777e
JR
846 iommu->index = amd_iommus_present++;
847
848 if (unlikely(iommu->index >= MAX_IOMMUS)) {
849 WARN(1, "AMD-Vi: System has more IOMMUs than supported by this driver\n");
850 return -ENOSYS;
851 }
852
853 /* Index is fine - add IOMMU to the array */
854 amd_iommus[iommu->index] = iommu;
e47d402d
JR
855
856 /*
857 * Copy data from ACPI table entry to the iommu struct
858 */
3eaf28a1
JR
859 iommu->dev = pci_get_bus_and_slot(PCI_BUS(h->devid), h->devid & 0xff);
860 if (!iommu->dev)
861 return 1;
862
e47d402d 863 iommu->cap_ptr = h->cap_ptr;
ee893c24 864 iommu->pci_seg = h->pci_seg;
e47d402d
JR
865 iommu->mmio_phys = h->mmio_phys;
866 iommu->mmio_base = iommu_map_mmio_space(h->mmio_phys);
867 if (!iommu->mmio_base)
868 return -ENOMEM;
869
e47d402d
JR
870 iommu->cmd_buf = alloc_command_buffer(iommu);
871 if (!iommu->cmd_buf)
872 return -ENOMEM;
873
335503e5
JR
874 iommu->evt_buf = alloc_event_buffer(iommu);
875 if (!iommu->evt_buf)
876 return -ENOMEM;
877
a80dc3e0
JR
878 iommu->int_enabled = false;
879
e47d402d
JR
880 init_iommu_from_pci(iommu);
881 init_iommu_from_acpi(iommu, h);
882 init_iommu_devices(iommu);
883
318afd41
JR
884 if (iommu->cap & (1UL << IOMMU_CAP_NPCACHE))
885 amd_iommu_np_cache = true;
886
8a66712b 887 return pci_enable_device(iommu->dev);
e47d402d
JR
888}
889
b65233a9
JR
890/*
891 * Iterates over all IOMMU entries in the ACPI table, allocates the
892 * IOMMU structure and initializes it with init_iommu_one()
893 */
e47d402d
JR
894static int __init init_iommu_all(struct acpi_table_header *table)
895{
896 u8 *p = (u8 *)table, *end = (u8 *)table;
897 struct ivhd_header *h;
898 struct amd_iommu *iommu;
899 int ret;
900
e47d402d
JR
901 end += table->length;
902 p += IVRS_HEADER_LENGTH;
903
904 while (p < end) {
905 h = (struct ivhd_header *)p;
906 switch (*p) {
907 case ACPI_IVHD_TYPE:
9c72041f 908
ae908c22 909 DUMP_printk("device: %02x:%02x.%01x cap: %04x "
9c72041f
JR
910 "seg: %d flags: %01x info %04x\n",
911 PCI_BUS(h->devid), PCI_SLOT(h->devid),
912 PCI_FUNC(h->devid), h->cap_ptr,
913 h->pci_seg, h->flags, h->info);
914 DUMP_printk(" mmio-addr: %016llx\n",
915 h->mmio_phys);
916
e47d402d
JR
917 iommu = kzalloc(sizeof(struct amd_iommu), GFP_KERNEL);
918 if (iommu == NULL)
919 return -ENOMEM;
920 ret = init_iommu_one(iommu, h);
921 if (ret)
922 return ret;
923 break;
924 default:
925 break;
926 }
927 p += h->length;
928
929 }
930 WARN_ON(p != end);
931
932 return 0;
933}
934
a80dc3e0
JR
935/****************************************************************************
936 *
937 * The following functions initialize the MSI interrupts for all IOMMUs
938 * in the system. Its a bit challenging because there could be multiple
939 * IOMMUs per PCI BDF but we can call pci_enable_msi(x) only once per
940 * pci_dev.
941 *
942 ****************************************************************************/
943
9f800de3 944static int iommu_setup_msi(struct amd_iommu *iommu)
a80dc3e0
JR
945{
946 int r;
a80dc3e0
JR
947
948 if (pci_enable_msi(iommu->dev))
949 return 1;
950
951 r = request_irq(iommu->dev->irq, amd_iommu_int_handler,
952 IRQF_SAMPLE_RANDOM,
4c6f40d4 953 "AMD-Vi",
a80dc3e0
JR
954 NULL);
955
956 if (r) {
957 pci_disable_msi(iommu->dev);
958 return 1;
959 }
960
fab6afa3 961 iommu->int_enabled = true;
58492e12
JR
962 iommu_feature_enable(iommu, CONTROL_EVT_INT_EN);
963
a80dc3e0
JR
964 return 0;
965}
966
05f92db9 967static int iommu_init_msi(struct amd_iommu *iommu)
a80dc3e0
JR
968{
969 if (iommu->int_enabled)
970 return 0;
971
d91cecdd 972 if (pci_find_capability(iommu->dev, PCI_CAP_ID_MSI))
a80dc3e0
JR
973 return iommu_setup_msi(iommu);
974
975 return 1;
976}
977
b65233a9
JR
978/****************************************************************************
979 *
980 * The next functions belong to the third pass of parsing the ACPI
981 * table. In this last pass the memory mapping requirements are
982 * gathered (like exclusion and unity mapping reanges).
983 *
984 ****************************************************************************/
985
be2a022c
JR
986static void __init free_unity_maps(void)
987{
988 struct unity_map_entry *entry, *next;
989
990 list_for_each_entry_safe(entry, next, &amd_iommu_unity_map, list) {
991 list_del(&entry->list);
992 kfree(entry);
993 }
994}
995
b65233a9 996/* called when we find an exclusion range definition in ACPI */
be2a022c
JR
997static int __init init_exclusion_range(struct ivmd_header *m)
998{
999 int i;
1000
1001 switch (m->type) {
1002 case ACPI_IVMD_TYPE:
1003 set_device_exclusion_range(m->devid, m);
1004 break;
1005 case ACPI_IVMD_TYPE_ALL:
3a61ec38 1006 for (i = 0; i <= amd_iommu_last_bdf; ++i)
be2a022c
JR
1007 set_device_exclusion_range(i, m);
1008 break;
1009 case ACPI_IVMD_TYPE_RANGE:
1010 for (i = m->devid; i <= m->aux; ++i)
1011 set_device_exclusion_range(i, m);
1012 break;
1013 default:
1014 break;
1015 }
1016
1017 return 0;
1018}
1019
b65233a9 1020/* called for unity map ACPI definition */
be2a022c
JR
1021static int __init init_unity_map_range(struct ivmd_header *m)
1022{
1023 struct unity_map_entry *e = 0;
02acc43a 1024 char *s;
be2a022c
JR
1025
1026 e = kzalloc(sizeof(*e), GFP_KERNEL);
1027 if (e == NULL)
1028 return -ENOMEM;
1029
1030 switch (m->type) {
1031 default:
0bc252f4
JR
1032 kfree(e);
1033 return 0;
be2a022c 1034 case ACPI_IVMD_TYPE:
02acc43a 1035 s = "IVMD_TYPEi\t\t\t";
be2a022c
JR
1036 e->devid_start = e->devid_end = m->devid;
1037 break;
1038 case ACPI_IVMD_TYPE_ALL:
02acc43a 1039 s = "IVMD_TYPE_ALL\t\t";
be2a022c
JR
1040 e->devid_start = 0;
1041 e->devid_end = amd_iommu_last_bdf;
1042 break;
1043 case ACPI_IVMD_TYPE_RANGE:
02acc43a 1044 s = "IVMD_TYPE_RANGE\t\t";
be2a022c
JR
1045 e->devid_start = m->devid;
1046 e->devid_end = m->aux;
1047 break;
1048 }
1049 e->address_start = PAGE_ALIGN(m->range_start);
1050 e->address_end = e->address_start + PAGE_ALIGN(m->range_length);
1051 e->prot = m->flags >> 1;
1052
02acc43a
JR
1053 DUMP_printk("%s devid_start: %02x:%02x.%x devid_end: %02x:%02x.%x"
1054 " range_start: %016llx range_end: %016llx flags: %x\n", s,
1055 PCI_BUS(e->devid_start), PCI_SLOT(e->devid_start),
1056 PCI_FUNC(e->devid_start), PCI_BUS(e->devid_end),
1057 PCI_SLOT(e->devid_end), PCI_FUNC(e->devid_end),
1058 e->address_start, e->address_end, m->flags);
1059
be2a022c
JR
1060 list_add_tail(&e->list, &amd_iommu_unity_map);
1061
1062 return 0;
1063}
1064
b65233a9 1065/* iterates over all memory definitions we find in the ACPI table */
be2a022c
JR
1066static int __init init_memory_definitions(struct acpi_table_header *table)
1067{
1068 u8 *p = (u8 *)table, *end = (u8 *)table;
1069 struct ivmd_header *m;
1070
be2a022c
JR
1071 end += table->length;
1072 p += IVRS_HEADER_LENGTH;
1073
1074 while (p < end) {
1075 m = (struct ivmd_header *)p;
1076 if (m->flags & IVMD_FLAG_EXCL_RANGE)
1077 init_exclusion_range(m);
1078 else if (m->flags & IVMD_FLAG_UNITY_MAP)
1079 init_unity_map_range(m);
1080
1081 p += m->length;
1082 }
1083
1084 return 0;
1085}
1086
9f5f5fb3
JR
1087/*
1088 * Init the device table to not allow DMA access for devices and
1089 * suppress all page faults
1090 */
1091static void init_device_table(void)
1092{
1093 u16 devid;
1094
1095 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) {
1096 set_dev_entry_bit(devid, DEV_ENTRY_VALID);
1097 set_dev_entry_bit(devid, DEV_ENTRY_TRANSLATION);
9f5f5fb3
JR
1098 }
1099}
1100
b65233a9
JR
1101/*
1102 * This function finally enables all IOMMUs found in the system after
1103 * they have been initialized
1104 */
05f92db9 1105static void enable_iommus(void)
8736197b
JR
1106{
1107 struct amd_iommu *iommu;
1108
3bd22172 1109 for_each_iommu(iommu) {
a8c485bb 1110 iommu_disable(iommu);
58492e12
JR
1111 iommu_set_device_table(iommu);
1112 iommu_enable_command_buffer(iommu);
1113 iommu_enable_event_buffer(iommu);
8736197b 1114 iommu_set_exclusion_range(iommu);
a80dc3e0 1115 iommu_init_msi(iommu);
8736197b
JR
1116 iommu_enable(iommu);
1117 }
1118}
1119
92ac4320
JR
1120static void disable_iommus(void)
1121{
1122 struct amd_iommu *iommu;
1123
1124 for_each_iommu(iommu)
1125 iommu_disable(iommu);
1126}
1127
7441e9cb
JR
1128/*
1129 * Suspend/Resume support
1130 * disable suspend until real resume implemented
1131 */
1132
1133static int amd_iommu_resume(struct sys_device *dev)
1134{
736501ee
JR
1135 /* re-load the hardware */
1136 enable_iommus();
1137
1138 /*
1139 * we have to flush after the IOMMUs are enabled because a
1140 * disabled IOMMU will never execute the commands we send
1141 */
736501ee 1142 amd_iommu_flush_all_devices();
6a047d8b 1143 amd_iommu_flush_all_domains();
736501ee 1144
7441e9cb
JR
1145 return 0;
1146}
1147
1148static int amd_iommu_suspend(struct sys_device *dev, pm_message_t state)
1149{
736501ee
JR
1150 /* disable IOMMUs to go out of the way for BIOS */
1151 disable_iommus();
1152
1153 return 0;
7441e9cb
JR
1154}
1155
1156static struct sysdev_class amd_iommu_sysdev_class = {
1157 .name = "amd_iommu",
1158 .suspend = amd_iommu_suspend,
1159 .resume = amd_iommu_resume,
1160};
1161
1162static struct sys_device device_amd_iommu = {
1163 .id = 0,
1164 .cls = &amd_iommu_sysdev_class,
1165};
1166
b65233a9
JR
1167/*
1168 * This is the core init function for AMD IOMMU hardware in the system.
1169 * This function is called from the generic x86 DMA layer initialization
1170 * code.
1171 *
1172 * This function basically parses the ACPI table for AMD IOMMU (IVRS)
1173 * three times:
1174 *
1175 * 1 pass) Find the highest PCI device id the driver has to handle.
1176 * Upon this information the size of the data structures is
1177 * determined that needs to be allocated.
1178 *
1179 * 2 pass) Initialize the data structures just allocated with the
1180 * information in the ACPI table about available AMD IOMMUs
1181 * in the system. It also maps the PCI devices in the
1182 * system to specific IOMMUs
1183 *
1184 * 3 pass) After the basic data structures are allocated and
1185 * initialized we update them with information about memory
1186 * remapping requirements parsed out of the ACPI table in
1187 * this last pass.
1188 *
1189 * After that the hardware is initialized and ready to go. In the last
1190 * step we do some Linux specific things like registering the driver in
1191 * the dma_ops interface and initializing the suspend/resume support
1192 * functions. Finally it prints some information about AMD IOMMUs and
1193 * the driver state and enables the hardware.
1194 */
ea1b0d39 1195static int __init amd_iommu_init(void)
fe74c9cf
JR
1196{
1197 int i, ret = 0;
1198
fe74c9cf
JR
1199 /*
1200 * First parse ACPI tables to find the largest Bus/Dev/Func
1201 * we need to handle. Upon this information the shared data
1202 * structures for the IOMMUs in the system will be allocated
1203 */
1204 if (acpi_table_parse("IVRS", find_last_devid_acpi) != 0)
1205 return -ENODEV;
1206
c571484e
JR
1207 dev_table_size = tbl_size(DEV_TABLE_ENTRY_SIZE);
1208 alias_table_size = tbl_size(ALIAS_TABLE_ENTRY_SIZE);
1209 rlookup_table_size = tbl_size(RLOOKUP_TABLE_ENTRY_SIZE);
fe74c9cf
JR
1210
1211 ret = -ENOMEM;
1212
1213 /* Device table - directly used by all IOMMUs */
5dc8bff0 1214 amd_iommu_dev_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
fe74c9cf
JR
1215 get_order(dev_table_size));
1216 if (amd_iommu_dev_table == NULL)
1217 goto out;
1218
1219 /*
1220 * Alias table - map PCI Bus/Dev/Func to Bus/Dev/Func the
1221 * IOMMU see for that device
1222 */
1223 amd_iommu_alias_table = (void *)__get_free_pages(GFP_KERNEL,
1224 get_order(alias_table_size));
1225 if (amd_iommu_alias_table == NULL)
1226 goto free;
1227
1228 /* IOMMU rlookup table - find the IOMMU for a specific device */
83fd5cc6
JR
1229 amd_iommu_rlookup_table = (void *)__get_free_pages(
1230 GFP_KERNEL | __GFP_ZERO,
fe74c9cf
JR
1231 get_order(rlookup_table_size));
1232 if (amd_iommu_rlookup_table == NULL)
1233 goto free;
1234
5dc8bff0
JR
1235 amd_iommu_pd_alloc_bitmap = (void *)__get_free_pages(
1236 GFP_KERNEL | __GFP_ZERO,
fe74c9cf
JR
1237 get_order(MAX_DOMAIN_ID/8));
1238 if (amd_iommu_pd_alloc_bitmap == NULL)
1239 goto free;
1240
9f5f5fb3
JR
1241 /* init the device table */
1242 init_device_table();
1243
fe74c9cf 1244 /*
5dc8bff0 1245 * let all alias entries point to itself
fe74c9cf 1246 */
3a61ec38 1247 for (i = 0; i <= amd_iommu_last_bdf; ++i)
fe74c9cf
JR
1248 amd_iommu_alias_table[i] = i;
1249
fe74c9cf
JR
1250 /*
1251 * never allocate domain 0 because its used as the non-allocated and
1252 * error value placeholder
1253 */
1254 amd_iommu_pd_alloc_bitmap[0] = 1;
1255
aeb26f55
JR
1256 spin_lock_init(&amd_iommu_pd_lock);
1257
fe74c9cf
JR
1258 /*
1259 * now the data structures are allocated and basically initialized
1260 * start the real acpi table scan
1261 */
1262 ret = -ENODEV;
1263 if (acpi_table_parse("IVRS", init_iommu_all) != 0)
1264 goto free;
1265
1266 if (acpi_table_parse("IVRS", init_memory_definitions) != 0)
1267 goto free;
1268
129d6aba 1269 ret = sysdev_class_register(&amd_iommu_sysdev_class);
8736197b
JR
1270 if (ret)
1271 goto free;
1272
129d6aba 1273 ret = sysdev_register(&device_amd_iommu);
7441e9cb
JR
1274 if (ret)
1275 goto free;
1276
b7cc9554
JR
1277 ret = amd_iommu_init_devices();
1278 if (ret)
1279 goto free;
1280
4751a951
JR
1281 if (iommu_pass_through)
1282 ret = amd_iommu_init_passthrough();
1283 else
1284 ret = amd_iommu_init_dma_ops();
7441e9cb
JR
1285 if (ret)
1286 goto free;
1287
8736197b
JR
1288 enable_iommus();
1289
4751a951
JR
1290 if (iommu_pass_through)
1291 goto out;
1292
afa9fdc2 1293 if (amd_iommu_unmap_flush)
4c6f40d4 1294 printk(KERN_INFO "AMD-Vi: IO/TLB flush on unmap enabled\n");
1c655773 1295 else
4c6f40d4 1296 printk(KERN_INFO "AMD-Vi: Lazy IO/TLB flushing enabled\n");
1c655773 1297
338bac52 1298 x86_platform.iommu_shutdown = disable_iommus;
fe74c9cf
JR
1299out:
1300 return ret;
1301
1302free:
b7cc9554
JR
1303
1304 amd_iommu_uninit_devices();
1305
d58befd3
JR
1306 free_pages((unsigned long)amd_iommu_pd_alloc_bitmap,
1307 get_order(MAX_DOMAIN_ID/8));
fe74c9cf 1308
9a836de0
JR
1309 free_pages((unsigned long)amd_iommu_rlookup_table,
1310 get_order(rlookup_table_size));
fe74c9cf 1311
9a836de0
JR
1312 free_pages((unsigned long)amd_iommu_alias_table,
1313 get_order(alias_table_size));
fe74c9cf 1314
9a836de0
JR
1315 free_pages((unsigned long)amd_iommu_dev_table,
1316 get_order(dev_table_size));
fe74c9cf
JR
1317
1318 free_iommu_all();
1319
1320 free_unity_maps();
1321
1322 goto out;
1323}
1324
b65233a9
JR
1325/****************************************************************************
1326 *
1327 * Early detect code. This code runs at IOMMU detection time in the DMA
1328 * layer. It just looks if there is an IVRS ACPI table to detect AMD
1329 * IOMMUs
1330 *
1331 ****************************************************************************/
ae7877de
JR
1332static int __init early_amd_iommu_detect(struct acpi_table_header *table)
1333{
1334 return 0;
1335}
1336
1337void __init amd_iommu_detect(void)
1338{
75f1cdf1 1339 if (no_iommu || (iommu_detected && !gart_iommu_aperture))
ae7877de
JR
1340 return;
1341
ae7877de
JR
1342 if (acpi_table_parse("IVRS", early_amd_iommu_detect) == 0) {
1343 iommu_detected = 1;
c1cbebee 1344 amd_iommu_detected = 1;
ea1b0d39 1345 x86_init.iommu.iommu_init = amd_iommu_init;
ae7877de
JR
1346 }
1347}
1348
b65233a9
JR
1349/****************************************************************************
1350 *
1351 * Parsing functions for the AMD IOMMU specific kernel command line
1352 * options.
1353 *
1354 ****************************************************************************/
1355
fefda117
JR
1356static int __init parse_amd_iommu_dump(char *str)
1357{
1358 amd_iommu_dump = true;
1359
1360 return 1;
1361}
1362
918ad6c5
JR
1363static int __init parse_amd_iommu_options(char *str)
1364{
1365 for (; *str; ++str) {
695b5676 1366 if (strncmp(str, "fullflush", 9) == 0)
afa9fdc2 1367 amd_iommu_unmap_flush = true;
918ad6c5
JR
1368 }
1369
1370 return 1;
1371}
1372
fefda117 1373__setup("amd_iommu_dump", parse_amd_iommu_dump);
918ad6c5 1374__setup("amd_iommu=", parse_amd_iommu_options);