]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/x86/kernel/amd_iommu_init.c
x86/amd-iommu: Add amd_iommu=off command line option
[net-next-2.6.git] / arch / x86 / kernel / amd_iommu_init.c
CommitLineData
f6e2e6b6 1/*
bf3118c1 2 * Copyright (C) 2007-2009 Advanced Micro Devices, Inc.
f6e2e6b6
JR
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/acpi.h>
f6e2e6b6 22#include <linux/list.h>
5a0e3ad6 23#include <linux/slab.h>
7441e9cb 24#include <linux/sysdev.h>
a80dc3e0
JR
25#include <linux/interrupt.h>
26#include <linux/msi.h>
f6e2e6b6 27#include <asm/pci-direct.h>
6a9401a7 28#include <asm/amd_iommu_proto.h>
f6e2e6b6 29#include <asm/amd_iommu_types.h>
c6da992e 30#include <asm/amd_iommu.h>
46a7fa27 31#include <asm/iommu.h>
1d9b16d1 32#include <asm/gart.h>
ea1b0d39 33#include <asm/x86_init.h>
f6e2e6b6
JR
34
35/*
36 * definitions for the ACPI scanning code
37 */
f6e2e6b6 38#define IVRS_HEADER_LENGTH 48
f6e2e6b6
JR
39
40#define ACPI_IVHD_TYPE 0x10
41#define ACPI_IVMD_TYPE_ALL 0x20
42#define ACPI_IVMD_TYPE 0x21
43#define ACPI_IVMD_TYPE_RANGE 0x22
44
45#define IVHD_DEV_ALL 0x01
46#define IVHD_DEV_SELECT 0x02
47#define IVHD_DEV_SELECT_RANGE_START 0x03
48#define IVHD_DEV_RANGE_END 0x04
49#define IVHD_DEV_ALIAS 0x42
50#define IVHD_DEV_ALIAS_RANGE 0x43
51#define IVHD_DEV_EXT_SELECT 0x46
52#define IVHD_DEV_EXT_SELECT_RANGE 0x47
53
6da7342f
JR
54#define IVHD_FLAG_HT_TUN_EN_MASK 0x01
55#define IVHD_FLAG_PASSPW_EN_MASK 0x02
56#define IVHD_FLAG_RESPASSPW_EN_MASK 0x04
57#define IVHD_FLAG_ISOC_EN_MASK 0x08
f6e2e6b6
JR
58
59#define IVMD_FLAG_EXCL_RANGE 0x08
60#define IVMD_FLAG_UNITY_MAP 0x01
61
62#define ACPI_DEVFLAG_INITPASS 0x01
63#define ACPI_DEVFLAG_EXTINT 0x02
64#define ACPI_DEVFLAG_NMI 0x04
65#define ACPI_DEVFLAG_SYSMGT1 0x10
66#define ACPI_DEVFLAG_SYSMGT2 0x20
67#define ACPI_DEVFLAG_LINT0 0x40
68#define ACPI_DEVFLAG_LINT1 0x80
69#define ACPI_DEVFLAG_ATSDIS 0x10000000
70
b65233a9
JR
71/*
72 * ACPI table definitions
73 *
74 * These data structures are laid over the table to parse the important values
75 * out of it.
76 */
77
78/*
79 * structure describing one IOMMU in the ACPI table. Typically followed by one
80 * or more ivhd_entrys.
81 */
f6e2e6b6
JR
82struct ivhd_header {
83 u8 type;
84 u8 flags;
85 u16 length;
86 u16 devid;
87 u16 cap_ptr;
88 u64 mmio_phys;
89 u16 pci_seg;
90 u16 info;
91 u32 reserved;
92} __attribute__((packed));
93
b65233a9
JR
94/*
95 * A device entry describing which devices a specific IOMMU translates and
96 * which requestor ids they use.
97 */
f6e2e6b6
JR
98struct ivhd_entry {
99 u8 type;
100 u16 devid;
101 u8 flags;
102 u32 ext;
103} __attribute__((packed));
104
b65233a9
JR
105/*
106 * An AMD IOMMU memory definition structure. It defines things like exclusion
107 * ranges for devices and regions that should be unity mapped.
108 */
f6e2e6b6
JR
109struct ivmd_header {
110 u8 type;
111 u8 flags;
112 u16 length;
113 u16 devid;
114 u16 aux;
115 u64 resv;
116 u64 range_start;
117 u64 range_length;
118} __attribute__((packed));
119
fefda117
JR
120bool amd_iommu_dump;
121
c1cbebee 122static int __initdata amd_iommu_detected;
a5235725 123static bool __initdata amd_iommu_disabled;
c1cbebee 124
b65233a9
JR
125u16 amd_iommu_last_bdf; /* largest PCI device id we have
126 to handle */
2e22847f 127LIST_HEAD(amd_iommu_unity_map); /* a list of required unity mappings
b65233a9 128 we find in ACPI */
afa9fdc2 129bool amd_iommu_unmap_flush; /* if true, flush on every unmap */
928abd25 130
2e22847f 131LIST_HEAD(amd_iommu_list); /* list of all AMD IOMMUs in the
b65233a9 132 system */
928abd25 133
bb52777e
JR
134/* Array to assign indices to IOMMUs*/
135struct amd_iommu *amd_iommus[MAX_IOMMUS];
136int amd_iommus_present;
137
318afd41
JR
138/* IOMMUs have a non-present cache? */
139bool amd_iommu_np_cache __read_mostly;
140
0f764806 141/*
3551a708 142 * The ACPI table parsing functions set this variable on an error
0f764806 143 */
3551a708 144static int __initdata amd_iommu_init_err;
0f764806 145
aeb26f55
JR
146/*
147 * List of protection domains - used during resume
148 */
149LIST_HEAD(amd_iommu_pd_list);
150spinlock_t amd_iommu_pd_lock;
151
b65233a9
JR
152/*
153 * Pointer to the device table which is shared by all AMD IOMMUs
154 * it is indexed by the PCI device id or the HT unit id and contains
155 * information about the domain the device belongs to as well as the
156 * page table root pointer.
157 */
928abd25 158struct dev_table_entry *amd_iommu_dev_table;
b65233a9
JR
159
160/*
161 * The alias table is a driver specific data structure which contains the
162 * mappings of the PCI device ids to the actual requestor ids on the IOMMU.
163 * More than one device can share the same requestor id.
164 */
928abd25 165u16 *amd_iommu_alias_table;
b65233a9
JR
166
167/*
168 * The rlookup table is used to find the IOMMU which is responsible
169 * for a specific device. It is also indexed by the PCI device id.
170 */
928abd25 171struct amd_iommu **amd_iommu_rlookup_table;
b65233a9 172
b65233a9
JR
173/*
174 * AMD IOMMU allows up to 2^16 differend protection domains. This is a bitmap
175 * to know which ones are already in use.
176 */
928abd25
JR
177unsigned long *amd_iommu_pd_alloc_bitmap;
178
b65233a9
JR
179static u32 dev_table_size; /* size of the device table */
180static u32 alias_table_size; /* size of the alias table */
181static u32 rlookup_table_size; /* size if the rlookup table */
3e8064ba 182
208ec8c9
JR
183static inline void update_last_devid(u16 devid)
184{
185 if (devid > amd_iommu_last_bdf)
186 amd_iommu_last_bdf = devid;
187}
188
c571484e
JR
189static inline unsigned long tbl_size(int entry_size)
190{
191 unsigned shift = PAGE_SHIFT +
421f909c 192 get_order(((int)amd_iommu_last_bdf + 1) * entry_size);
c571484e
JR
193
194 return 1UL << shift;
195}
196
b65233a9
JR
197/****************************************************************************
198 *
199 * AMD IOMMU MMIO register space handling functions
200 *
201 * These functions are used to program the IOMMU device registers in
202 * MMIO space required for that driver.
203 *
204 ****************************************************************************/
3e8064ba 205
b65233a9
JR
206/*
207 * This function set the exclusion range in the IOMMU. DMA accesses to the
208 * exclusion range are passed through untranslated
209 */
05f92db9 210static void iommu_set_exclusion_range(struct amd_iommu *iommu)
b2026aa2
JR
211{
212 u64 start = iommu->exclusion_start & PAGE_MASK;
213 u64 limit = (start + iommu->exclusion_length) & PAGE_MASK;
214 u64 entry;
215
216 if (!iommu->exclusion_start)
217 return;
218
219 entry = start | MMIO_EXCL_ENABLE_MASK;
220 memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET,
221 &entry, sizeof(entry));
222
223 entry = limit;
224 memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET,
225 &entry, sizeof(entry));
226}
227
b65233a9 228/* Programs the physical address of the device table into the IOMMU hardware */
b2026aa2
JR
229static void __init iommu_set_device_table(struct amd_iommu *iommu)
230{
f609891f 231 u64 entry;
b2026aa2
JR
232
233 BUG_ON(iommu->mmio_base == NULL);
234
235 entry = virt_to_phys(amd_iommu_dev_table);
236 entry |= (dev_table_size >> 12) - 1;
237 memcpy_toio(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET,
238 &entry, sizeof(entry));
239}
240
b65233a9 241/* Generic functions to enable/disable certain features of the IOMMU. */
05f92db9 242static void iommu_feature_enable(struct amd_iommu *iommu, u8 bit)
b2026aa2
JR
243{
244 u32 ctrl;
245
246 ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
247 ctrl |= (1 << bit);
248 writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
249}
250
ca020711 251static void iommu_feature_disable(struct amd_iommu *iommu, u8 bit)
b2026aa2
JR
252{
253 u32 ctrl;
254
199d0d50 255 ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
b2026aa2
JR
256 ctrl &= ~(1 << bit);
257 writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
258}
259
b65233a9 260/* Function to enable the hardware */
05f92db9 261static void iommu_enable(struct amd_iommu *iommu)
b2026aa2 262{
4c6f40d4 263 printk(KERN_INFO "AMD-Vi: Enabling IOMMU at %s cap 0x%hx\n",
a4e267c8 264 dev_name(&iommu->dev->dev), iommu->cap_ptr);
b2026aa2
JR
265
266 iommu_feature_enable(iommu, CONTROL_IOMMU_EN);
b2026aa2
JR
267}
268
92ac4320 269static void iommu_disable(struct amd_iommu *iommu)
126c52be 270{
a8c485bb
CW
271 /* Disable command buffer */
272 iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);
273
274 /* Disable event logging and event interrupts */
275 iommu_feature_disable(iommu, CONTROL_EVT_INT_EN);
276 iommu_feature_disable(iommu, CONTROL_EVT_LOG_EN);
277
278 /* Disable IOMMU hardware itself */
92ac4320 279 iommu_feature_disable(iommu, CONTROL_IOMMU_EN);
126c52be
JR
280}
281
b65233a9
JR
282/*
283 * mapping and unmapping functions for the IOMMU MMIO space. Each AMD IOMMU in
284 * the system has one.
285 */
6c56747b
JR
286static u8 * __init iommu_map_mmio_space(u64 address)
287{
288 u8 *ret;
289
290 if (!request_mem_region(address, MMIO_REGION_LENGTH, "amd_iommu"))
291 return NULL;
292
293 ret = ioremap_nocache(address, MMIO_REGION_LENGTH);
294 if (ret != NULL)
295 return ret;
296
297 release_mem_region(address, MMIO_REGION_LENGTH);
298
299 return NULL;
300}
301
302static void __init iommu_unmap_mmio_space(struct amd_iommu *iommu)
303{
304 if (iommu->mmio_base)
305 iounmap(iommu->mmio_base);
306 release_mem_region(iommu->mmio_phys, MMIO_REGION_LENGTH);
307}
308
b65233a9
JR
309/****************************************************************************
310 *
311 * The functions below belong to the first pass of AMD IOMMU ACPI table
312 * parsing. In this pass we try to find out the highest device id this
313 * code has to handle. Upon this information the size of the shared data
314 * structures is determined later.
315 *
316 ****************************************************************************/
317
b514e555
JR
318/*
319 * This function calculates the length of a given IVHD entry
320 */
321static inline int ivhd_entry_length(u8 *ivhd)
322{
323 return 0x04 << (*ivhd >> 6);
324}
325
b65233a9
JR
326/*
327 * This function reads the last device id the IOMMU has to handle from the PCI
328 * capability header for this IOMMU
329 */
3e8064ba
JR
330static int __init find_last_devid_on_pci(int bus, int dev, int fn, int cap_ptr)
331{
332 u32 cap;
333
334 cap = read_pci_config(bus, dev, fn, cap_ptr+MMIO_RANGE_OFFSET);
d591b0a3 335 update_last_devid(calc_devid(MMIO_GET_BUS(cap), MMIO_GET_LD(cap)));
3e8064ba
JR
336
337 return 0;
338}
339
b65233a9
JR
340/*
341 * After reading the highest device id from the IOMMU PCI capability header
342 * this function looks if there is a higher device id defined in the ACPI table
343 */
3e8064ba
JR
344static int __init find_last_devid_from_ivhd(struct ivhd_header *h)
345{
346 u8 *p = (void *)h, *end = (void *)h;
347 struct ivhd_entry *dev;
348
349 p += sizeof(*h);
350 end += h->length;
351
352 find_last_devid_on_pci(PCI_BUS(h->devid),
353 PCI_SLOT(h->devid),
354 PCI_FUNC(h->devid),
355 h->cap_ptr);
356
357 while (p < end) {
358 dev = (struct ivhd_entry *)p;
359 switch (dev->type) {
360 case IVHD_DEV_SELECT:
361 case IVHD_DEV_RANGE_END:
362 case IVHD_DEV_ALIAS:
363 case IVHD_DEV_EXT_SELECT:
b65233a9 364 /* all the above subfield types refer to device ids */
208ec8c9 365 update_last_devid(dev->devid);
3e8064ba
JR
366 break;
367 default:
368 break;
369 }
b514e555 370 p += ivhd_entry_length(p);
3e8064ba
JR
371 }
372
373 WARN_ON(p != end);
374
375 return 0;
376}
377
b65233a9
JR
378/*
379 * Iterate over all IVHD entries in the ACPI table and find the highest device
380 * id which we need to handle. This is the first of three functions which parse
381 * the ACPI table. So we check the checksum here.
382 */
3e8064ba
JR
383static int __init find_last_devid_acpi(struct acpi_table_header *table)
384{
385 int i;
386 u8 checksum = 0, *p = (u8 *)table, *end = (u8 *)table;
387 struct ivhd_header *h;
388
389 /*
390 * Validate checksum here so we don't need to do it when
391 * we actually parse the table
392 */
393 for (i = 0; i < table->length; ++i)
394 checksum += p[i];
3551a708 395 if (checksum != 0) {
3e8064ba 396 /* ACPI table corrupt */
3551a708
JR
397 amd_iommu_init_err = -ENODEV;
398 return 0;
399 }
3e8064ba
JR
400
401 p += IVRS_HEADER_LENGTH;
402
403 end += table->length;
404 while (p < end) {
405 h = (struct ivhd_header *)p;
406 switch (h->type) {
407 case ACPI_IVHD_TYPE:
408 find_last_devid_from_ivhd(h);
409 break;
410 default:
411 break;
412 }
413 p += h->length;
414 }
415 WARN_ON(p != end);
416
417 return 0;
418}
419
b65233a9
JR
420/****************************************************************************
421 *
422 * The following functions belong the the code path which parses the ACPI table
423 * the second time. In this ACPI parsing iteration we allocate IOMMU specific
424 * data structures, initialize the device/alias/rlookup table and also
425 * basically initialize the hardware.
426 *
427 ****************************************************************************/
428
429/*
430 * Allocates the command buffer. This buffer is per AMD IOMMU. We can
431 * write commands to that buffer later and the IOMMU will execute them
432 * asynchronously
433 */
b36ca91e
JR
434static u8 * __init alloc_command_buffer(struct amd_iommu *iommu)
435{
d0312b21 436 u8 *cmd_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
b36ca91e 437 get_order(CMD_BUFFER_SIZE));
b36ca91e
JR
438
439 if (cmd_buf == NULL)
440 return NULL;
441
549c90dc 442 iommu->cmd_buf_size = CMD_BUFFER_SIZE | CMD_BUFFER_UNINITIALIZED;
b36ca91e 443
58492e12
JR
444 return cmd_buf;
445}
446
93f1cc67
JR
447/*
448 * This function resets the command buffer if the IOMMU stopped fetching
449 * commands from it.
450 */
451void amd_iommu_reset_cmd_buffer(struct amd_iommu *iommu)
452{
453 iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);
454
455 writel(0x00, iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
456 writel(0x00, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
457
458 iommu_feature_enable(iommu, CONTROL_CMDBUF_EN);
459}
460
58492e12
JR
461/*
462 * This function writes the command buffer address to the hardware and
463 * enables it.
464 */
465static void iommu_enable_command_buffer(struct amd_iommu *iommu)
466{
467 u64 entry;
468
469 BUG_ON(iommu->cmd_buf == NULL);
470
471 entry = (u64)virt_to_phys(iommu->cmd_buf);
b36ca91e 472 entry |= MMIO_CMD_SIZE_512;
58492e12 473
b36ca91e 474 memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET,
58492e12 475 &entry, sizeof(entry));
b36ca91e 476
93f1cc67 477 amd_iommu_reset_cmd_buffer(iommu);
549c90dc 478 iommu->cmd_buf_size &= ~(CMD_BUFFER_UNINITIALIZED);
b36ca91e
JR
479}
480
481static void __init free_command_buffer(struct amd_iommu *iommu)
482{
23c1713f 483 free_pages((unsigned long)iommu->cmd_buf,
549c90dc 484 get_order(iommu->cmd_buf_size & ~(CMD_BUFFER_UNINITIALIZED)));
b36ca91e
JR
485}
486
335503e5
JR
487/* allocates the memory where the IOMMU will log its events to */
488static u8 * __init alloc_event_buffer(struct amd_iommu *iommu)
489{
335503e5
JR
490 iommu->evt_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
491 get_order(EVT_BUFFER_SIZE));
492
493 if (iommu->evt_buf == NULL)
494 return NULL;
495
1bc6f838
JR
496 iommu->evt_buf_size = EVT_BUFFER_SIZE;
497
58492e12
JR
498 return iommu->evt_buf;
499}
500
501static void iommu_enable_event_buffer(struct amd_iommu *iommu)
502{
503 u64 entry;
504
505 BUG_ON(iommu->evt_buf == NULL);
506
335503e5 507 entry = (u64)virt_to_phys(iommu->evt_buf) | EVT_LEN_MASK;
58492e12 508
335503e5
JR
509 memcpy_toio(iommu->mmio_base + MMIO_EVT_BUF_OFFSET,
510 &entry, sizeof(entry));
511
09067207
JR
512 /* set head and tail to zero manually */
513 writel(0x00, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
514 writel(0x00, iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
515
58492e12 516 iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN);
335503e5
JR
517}
518
519static void __init free_event_buffer(struct amd_iommu *iommu)
520{
521 free_pages((unsigned long)iommu->evt_buf, get_order(EVT_BUFFER_SIZE));
522}
523
b65233a9 524/* sets a specific bit in the device table entry. */
3566b778
JR
525static void set_dev_entry_bit(u16 devid, u8 bit)
526{
527 int i = (bit >> 5) & 0x07;
528 int _bit = bit & 0x1f;
529
530 amd_iommu_dev_table[devid].data[i] |= (1 << _bit);
531}
532
c5cca146
JR
533static int get_dev_entry_bit(u16 devid, u8 bit)
534{
535 int i = (bit >> 5) & 0x07;
536 int _bit = bit & 0x1f;
537
538 return (amd_iommu_dev_table[devid].data[i] & (1 << _bit)) >> _bit;
539}
540
541
542void amd_iommu_apply_erratum_63(u16 devid)
543{
544 int sysmgt;
545
546 sysmgt = get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1) |
547 (get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2) << 1);
548
549 if (sysmgt == 0x01)
550 set_dev_entry_bit(devid, DEV_ENTRY_IW);
551}
552
5ff4789d
JR
553/* Writes the specific IOMMU for a device into the rlookup table */
554static void __init set_iommu_for_device(struct amd_iommu *iommu, u16 devid)
555{
556 amd_iommu_rlookup_table[devid] = iommu;
557}
558
b65233a9
JR
559/*
560 * This function takes the device specific flags read from the ACPI
561 * table and sets up the device table entry with that information
562 */
5ff4789d
JR
563static void __init set_dev_entry_from_acpi(struct amd_iommu *iommu,
564 u16 devid, u32 flags, u32 ext_flags)
3566b778
JR
565{
566 if (flags & ACPI_DEVFLAG_INITPASS)
567 set_dev_entry_bit(devid, DEV_ENTRY_INIT_PASS);
568 if (flags & ACPI_DEVFLAG_EXTINT)
569 set_dev_entry_bit(devid, DEV_ENTRY_EINT_PASS);
570 if (flags & ACPI_DEVFLAG_NMI)
571 set_dev_entry_bit(devid, DEV_ENTRY_NMI_PASS);
572 if (flags & ACPI_DEVFLAG_SYSMGT1)
573 set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1);
574 if (flags & ACPI_DEVFLAG_SYSMGT2)
575 set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2);
576 if (flags & ACPI_DEVFLAG_LINT0)
577 set_dev_entry_bit(devid, DEV_ENTRY_LINT0_PASS);
578 if (flags & ACPI_DEVFLAG_LINT1)
579 set_dev_entry_bit(devid, DEV_ENTRY_LINT1_PASS);
3566b778 580
c5cca146
JR
581 amd_iommu_apply_erratum_63(devid);
582
5ff4789d 583 set_iommu_for_device(iommu, devid);
3566b778
JR
584}
585
b65233a9
JR
586/*
587 * Reads the device exclusion range from ACPI and initialize IOMMU with
588 * it
589 */
3566b778
JR
590static void __init set_device_exclusion_range(u16 devid, struct ivmd_header *m)
591{
592 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
593
594 if (!(m->flags & IVMD_FLAG_EXCL_RANGE))
595 return;
596
597 if (iommu) {
b65233a9
JR
598 /*
599 * We only can configure exclusion ranges per IOMMU, not
600 * per device. But we can enable the exclusion range per
601 * device. This is done here
602 */
3566b778
JR
603 set_dev_entry_bit(m->devid, DEV_ENTRY_EX);
604 iommu->exclusion_start = m->range_start;
605 iommu->exclusion_length = m->range_length;
606 }
607}
608
b65233a9
JR
609/*
610 * This function reads some important data from the IOMMU PCI space and
611 * initializes the driver data structure with it. It reads the hardware
612 * capabilities and the first/last device entries
613 */
5d0c8e49
JR
614static void __init init_iommu_from_pci(struct amd_iommu *iommu)
615{
5d0c8e49 616 int cap_ptr = iommu->cap_ptr;
a80dc3e0 617 u32 range, misc;
5d0c8e49 618
3eaf28a1
JR
619 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_CAP_HDR_OFFSET,
620 &iommu->cap);
621 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_RANGE_OFFSET,
622 &range);
a80dc3e0
JR
623 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_MISC_OFFSET,
624 &misc);
5d0c8e49 625
d591b0a3
JR
626 iommu->first_device = calc_devid(MMIO_GET_BUS(range),
627 MMIO_GET_FD(range));
628 iommu->last_device = calc_devid(MMIO_GET_BUS(range),
629 MMIO_GET_LD(range));
a80dc3e0 630 iommu->evt_msi_num = MMIO_MSI_NUM(misc);
5d0c8e49
JR
631}
632
b65233a9
JR
633/*
634 * Takes a pointer to an AMD IOMMU entry in the ACPI table and
635 * initializes the hardware and our data structures with it.
636 */
5d0c8e49
JR
637static void __init init_iommu_from_acpi(struct amd_iommu *iommu,
638 struct ivhd_header *h)
639{
640 u8 *p = (u8 *)h;
641 u8 *end = p, flags = 0;
642 u16 dev_i, devid = 0, devid_start = 0, devid_to = 0;
643 u32 ext_flags = 0;
58a3bee5 644 bool alias = false;
5d0c8e49
JR
645 struct ivhd_entry *e;
646
647 /*
648 * First set the recommended feature enable bits from ACPI
649 * into the IOMMU control registers
650 */
6da7342f 651 h->flags & IVHD_FLAG_HT_TUN_EN_MASK ?
5d0c8e49
JR
652 iommu_feature_enable(iommu, CONTROL_HT_TUN_EN) :
653 iommu_feature_disable(iommu, CONTROL_HT_TUN_EN);
654
6da7342f 655 h->flags & IVHD_FLAG_PASSPW_EN_MASK ?
5d0c8e49
JR
656 iommu_feature_enable(iommu, CONTROL_PASSPW_EN) :
657 iommu_feature_disable(iommu, CONTROL_PASSPW_EN);
658
6da7342f 659 h->flags & IVHD_FLAG_RESPASSPW_EN_MASK ?
5d0c8e49
JR
660 iommu_feature_enable(iommu, CONTROL_RESPASSPW_EN) :
661 iommu_feature_disable(iommu, CONTROL_RESPASSPW_EN);
662
6da7342f 663 h->flags & IVHD_FLAG_ISOC_EN_MASK ?
5d0c8e49
JR
664 iommu_feature_enable(iommu, CONTROL_ISOC_EN) :
665 iommu_feature_disable(iommu, CONTROL_ISOC_EN);
666
667 /*
668 * make IOMMU memory accesses cache coherent
669 */
670 iommu_feature_enable(iommu, CONTROL_COHERENT_EN);
671
672 /*
673 * Done. Now parse the device entries
674 */
675 p += sizeof(struct ivhd_header);
676 end += h->length;
677
42a698f4 678
5d0c8e49
JR
679 while (p < end) {
680 e = (struct ivhd_entry *)p;
681 switch (e->type) {
682 case IVHD_DEV_ALL:
42a698f4
JR
683
684 DUMP_printk(" DEV_ALL\t\t\t first devid: %02x:%02x.%x"
685 " last device %02x:%02x.%x flags: %02x\n",
686 PCI_BUS(iommu->first_device),
687 PCI_SLOT(iommu->first_device),
688 PCI_FUNC(iommu->first_device),
689 PCI_BUS(iommu->last_device),
690 PCI_SLOT(iommu->last_device),
691 PCI_FUNC(iommu->last_device),
692 e->flags);
693
5d0c8e49
JR
694 for (dev_i = iommu->first_device;
695 dev_i <= iommu->last_device; ++dev_i)
5ff4789d
JR
696 set_dev_entry_from_acpi(iommu, dev_i,
697 e->flags, 0);
5d0c8e49
JR
698 break;
699 case IVHD_DEV_SELECT:
42a698f4
JR
700
701 DUMP_printk(" DEV_SELECT\t\t\t devid: %02x:%02x.%x "
702 "flags: %02x\n",
703 PCI_BUS(e->devid),
704 PCI_SLOT(e->devid),
705 PCI_FUNC(e->devid),
706 e->flags);
707
5d0c8e49 708 devid = e->devid;
5ff4789d 709 set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
5d0c8e49
JR
710 break;
711 case IVHD_DEV_SELECT_RANGE_START:
42a698f4
JR
712
713 DUMP_printk(" DEV_SELECT_RANGE_START\t "
714 "devid: %02x:%02x.%x flags: %02x\n",
715 PCI_BUS(e->devid),
716 PCI_SLOT(e->devid),
717 PCI_FUNC(e->devid),
718 e->flags);
719
5d0c8e49
JR
720 devid_start = e->devid;
721 flags = e->flags;
722 ext_flags = 0;
58a3bee5 723 alias = false;
5d0c8e49
JR
724 break;
725 case IVHD_DEV_ALIAS:
42a698f4
JR
726
727 DUMP_printk(" DEV_ALIAS\t\t\t devid: %02x:%02x.%x "
728 "flags: %02x devid_to: %02x:%02x.%x\n",
729 PCI_BUS(e->devid),
730 PCI_SLOT(e->devid),
731 PCI_FUNC(e->devid),
732 e->flags,
733 PCI_BUS(e->ext >> 8),
734 PCI_SLOT(e->ext >> 8),
735 PCI_FUNC(e->ext >> 8));
736
5d0c8e49
JR
737 devid = e->devid;
738 devid_to = e->ext >> 8;
7a6a3a08 739 set_dev_entry_from_acpi(iommu, devid , e->flags, 0);
7455aab1 740 set_dev_entry_from_acpi(iommu, devid_to, e->flags, 0);
5d0c8e49
JR
741 amd_iommu_alias_table[devid] = devid_to;
742 break;
743 case IVHD_DEV_ALIAS_RANGE:
42a698f4
JR
744
745 DUMP_printk(" DEV_ALIAS_RANGE\t\t "
746 "devid: %02x:%02x.%x flags: %02x "
747 "devid_to: %02x:%02x.%x\n",
748 PCI_BUS(e->devid),
749 PCI_SLOT(e->devid),
750 PCI_FUNC(e->devid),
751 e->flags,
752 PCI_BUS(e->ext >> 8),
753 PCI_SLOT(e->ext >> 8),
754 PCI_FUNC(e->ext >> 8));
755
5d0c8e49
JR
756 devid_start = e->devid;
757 flags = e->flags;
758 devid_to = e->ext >> 8;
759 ext_flags = 0;
58a3bee5 760 alias = true;
5d0c8e49
JR
761 break;
762 case IVHD_DEV_EXT_SELECT:
42a698f4
JR
763
764 DUMP_printk(" DEV_EXT_SELECT\t\t devid: %02x:%02x.%x "
765 "flags: %02x ext: %08x\n",
766 PCI_BUS(e->devid),
767 PCI_SLOT(e->devid),
768 PCI_FUNC(e->devid),
769 e->flags, e->ext);
770
5d0c8e49 771 devid = e->devid;
5ff4789d
JR
772 set_dev_entry_from_acpi(iommu, devid, e->flags,
773 e->ext);
5d0c8e49
JR
774 break;
775 case IVHD_DEV_EXT_SELECT_RANGE:
42a698f4
JR
776
777 DUMP_printk(" DEV_EXT_SELECT_RANGE\t devid: "
778 "%02x:%02x.%x flags: %02x ext: %08x\n",
779 PCI_BUS(e->devid),
780 PCI_SLOT(e->devid),
781 PCI_FUNC(e->devid),
782 e->flags, e->ext);
783
5d0c8e49
JR
784 devid_start = e->devid;
785 flags = e->flags;
786 ext_flags = e->ext;
58a3bee5 787 alias = false;
5d0c8e49
JR
788 break;
789 case IVHD_DEV_RANGE_END:
42a698f4
JR
790
791 DUMP_printk(" DEV_RANGE_END\t\t devid: %02x:%02x.%x\n",
792 PCI_BUS(e->devid),
793 PCI_SLOT(e->devid),
794 PCI_FUNC(e->devid));
795
5d0c8e49
JR
796 devid = e->devid;
797 for (dev_i = devid_start; dev_i <= devid; ++dev_i) {
7a6a3a08 798 if (alias) {
5d0c8e49 799 amd_iommu_alias_table[dev_i] = devid_to;
7a6a3a08
JR
800 set_dev_entry_from_acpi(iommu,
801 devid_to, flags, ext_flags);
802 }
803 set_dev_entry_from_acpi(iommu, dev_i,
804 flags, ext_flags);
5d0c8e49
JR
805 }
806 break;
807 default:
808 break;
809 }
810
b514e555 811 p += ivhd_entry_length(p);
5d0c8e49
JR
812 }
813}
814
b65233a9 815/* Initializes the device->iommu mapping for the driver */
5d0c8e49
JR
816static int __init init_iommu_devices(struct amd_iommu *iommu)
817{
818 u16 i;
819
820 for (i = iommu->first_device; i <= iommu->last_device; ++i)
821 set_iommu_for_device(iommu, i);
822
823 return 0;
824}
825
e47d402d
JR
826static void __init free_iommu_one(struct amd_iommu *iommu)
827{
828 free_command_buffer(iommu);
335503e5 829 free_event_buffer(iommu);
e47d402d
JR
830 iommu_unmap_mmio_space(iommu);
831}
832
833static void __init free_iommu_all(void)
834{
835 struct amd_iommu *iommu, *next;
836
3bd22172 837 for_each_iommu_safe(iommu, next) {
e47d402d
JR
838 list_del(&iommu->list);
839 free_iommu_one(iommu);
840 kfree(iommu);
841 }
842}
843
b65233a9
JR
844/*
845 * This function clues the initialization function for one IOMMU
846 * together and also allocates the command buffer and programs the
847 * hardware. It does NOT enable the IOMMU. This is done afterwards.
848 */
e47d402d
JR
849static int __init init_iommu_one(struct amd_iommu *iommu, struct ivhd_header *h)
850{
851 spin_lock_init(&iommu->lock);
bb52777e
JR
852
853 /* Add IOMMU to internal data structures */
e47d402d 854 list_add_tail(&iommu->list, &amd_iommu_list);
bb52777e
JR
855 iommu->index = amd_iommus_present++;
856
857 if (unlikely(iommu->index >= MAX_IOMMUS)) {
858 WARN(1, "AMD-Vi: System has more IOMMUs than supported by this driver\n");
859 return -ENOSYS;
860 }
861
862 /* Index is fine - add IOMMU to the array */
863 amd_iommus[iommu->index] = iommu;
e47d402d
JR
864
865 /*
866 * Copy data from ACPI table entry to the iommu struct
867 */
3eaf28a1
JR
868 iommu->dev = pci_get_bus_and_slot(PCI_BUS(h->devid), h->devid & 0xff);
869 if (!iommu->dev)
870 return 1;
871
e47d402d 872 iommu->cap_ptr = h->cap_ptr;
ee893c24 873 iommu->pci_seg = h->pci_seg;
e47d402d
JR
874 iommu->mmio_phys = h->mmio_phys;
875 iommu->mmio_base = iommu_map_mmio_space(h->mmio_phys);
876 if (!iommu->mmio_base)
877 return -ENOMEM;
878
e47d402d
JR
879 iommu->cmd_buf = alloc_command_buffer(iommu);
880 if (!iommu->cmd_buf)
881 return -ENOMEM;
882
335503e5
JR
883 iommu->evt_buf = alloc_event_buffer(iommu);
884 if (!iommu->evt_buf)
885 return -ENOMEM;
886
a80dc3e0
JR
887 iommu->int_enabled = false;
888
e47d402d
JR
889 init_iommu_from_pci(iommu);
890 init_iommu_from_acpi(iommu, h);
891 init_iommu_devices(iommu);
892
318afd41
JR
893 if (iommu->cap & (1UL << IOMMU_CAP_NPCACHE))
894 amd_iommu_np_cache = true;
895
8a66712b 896 return pci_enable_device(iommu->dev);
e47d402d
JR
897}
898
b65233a9
JR
899/*
900 * Iterates over all IOMMU entries in the ACPI table, allocates the
901 * IOMMU structure and initializes it with init_iommu_one()
902 */
e47d402d
JR
903static int __init init_iommu_all(struct acpi_table_header *table)
904{
905 u8 *p = (u8 *)table, *end = (u8 *)table;
906 struct ivhd_header *h;
907 struct amd_iommu *iommu;
908 int ret;
909
e47d402d
JR
910 end += table->length;
911 p += IVRS_HEADER_LENGTH;
912
913 while (p < end) {
914 h = (struct ivhd_header *)p;
915 switch (*p) {
916 case ACPI_IVHD_TYPE:
9c72041f 917
ae908c22 918 DUMP_printk("device: %02x:%02x.%01x cap: %04x "
9c72041f
JR
919 "seg: %d flags: %01x info %04x\n",
920 PCI_BUS(h->devid), PCI_SLOT(h->devid),
921 PCI_FUNC(h->devid), h->cap_ptr,
922 h->pci_seg, h->flags, h->info);
923 DUMP_printk(" mmio-addr: %016llx\n",
924 h->mmio_phys);
925
e47d402d 926 iommu = kzalloc(sizeof(struct amd_iommu), GFP_KERNEL);
3551a708
JR
927 if (iommu == NULL) {
928 amd_iommu_init_err = -ENOMEM;
929 return 0;
930 }
931
e47d402d 932 ret = init_iommu_one(iommu, h);
3551a708
JR
933 if (ret) {
934 amd_iommu_init_err = ret;
935 return 0;
936 }
e47d402d
JR
937 break;
938 default:
939 break;
940 }
941 p += h->length;
942
943 }
944 WARN_ON(p != end);
945
946 return 0;
947}
948
a80dc3e0
JR
949/****************************************************************************
950 *
951 * The following functions initialize the MSI interrupts for all IOMMUs
952 * in the system. Its a bit challenging because there could be multiple
953 * IOMMUs per PCI BDF but we can call pci_enable_msi(x) only once per
954 * pci_dev.
955 *
956 ****************************************************************************/
957
9f800de3 958static int iommu_setup_msi(struct amd_iommu *iommu)
a80dc3e0
JR
959{
960 int r;
a80dc3e0
JR
961
962 if (pci_enable_msi(iommu->dev))
963 return 1;
964
965 r = request_irq(iommu->dev->irq, amd_iommu_int_handler,
966 IRQF_SAMPLE_RANDOM,
4c6f40d4 967 "AMD-Vi",
a80dc3e0
JR
968 NULL);
969
970 if (r) {
971 pci_disable_msi(iommu->dev);
972 return 1;
973 }
974
fab6afa3 975 iommu->int_enabled = true;
58492e12
JR
976 iommu_feature_enable(iommu, CONTROL_EVT_INT_EN);
977
a80dc3e0
JR
978 return 0;
979}
980
05f92db9 981static int iommu_init_msi(struct amd_iommu *iommu)
a80dc3e0
JR
982{
983 if (iommu->int_enabled)
984 return 0;
985
d91cecdd 986 if (pci_find_capability(iommu->dev, PCI_CAP_ID_MSI))
a80dc3e0
JR
987 return iommu_setup_msi(iommu);
988
989 return 1;
990}
991
b65233a9
JR
992/****************************************************************************
993 *
994 * The next functions belong to the third pass of parsing the ACPI
995 * table. In this last pass the memory mapping requirements are
996 * gathered (like exclusion and unity mapping reanges).
997 *
998 ****************************************************************************/
999
be2a022c
JR
1000static void __init free_unity_maps(void)
1001{
1002 struct unity_map_entry *entry, *next;
1003
1004 list_for_each_entry_safe(entry, next, &amd_iommu_unity_map, list) {
1005 list_del(&entry->list);
1006 kfree(entry);
1007 }
1008}
1009
b65233a9 1010/* called when we find an exclusion range definition in ACPI */
be2a022c
JR
1011static int __init init_exclusion_range(struct ivmd_header *m)
1012{
1013 int i;
1014
1015 switch (m->type) {
1016 case ACPI_IVMD_TYPE:
1017 set_device_exclusion_range(m->devid, m);
1018 break;
1019 case ACPI_IVMD_TYPE_ALL:
3a61ec38 1020 for (i = 0; i <= amd_iommu_last_bdf; ++i)
be2a022c
JR
1021 set_device_exclusion_range(i, m);
1022 break;
1023 case ACPI_IVMD_TYPE_RANGE:
1024 for (i = m->devid; i <= m->aux; ++i)
1025 set_device_exclusion_range(i, m);
1026 break;
1027 default:
1028 break;
1029 }
1030
1031 return 0;
1032}
1033
b65233a9 1034/* called for unity map ACPI definition */
be2a022c
JR
1035static int __init init_unity_map_range(struct ivmd_header *m)
1036{
1037 struct unity_map_entry *e = 0;
02acc43a 1038 char *s;
be2a022c
JR
1039
1040 e = kzalloc(sizeof(*e), GFP_KERNEL);
1041 if (e == NULL)
1042 return -ENOMEM;
1043
1044 switch (m->type) {
1045 default:
0bc252f4
JR
1046 kfree(e);
1047 return 0;
be2a022c 1048 case ACPI_IVMD_TYPE:
02acc43a 1049 s = "IVMD_TYPEi\t\t\t";
be2a022c
JR
1050 e->devid_start = e->devid_end = m->devid;
1051 break;
1052 case ACPI_IVMD_TYPE_ALL:
02acc43a 1053 s = "IVMD_TYPE_ALL\t\t";
be2a022c
JR
1054 e->devid_start = 0;
1055 e->devid_end = amd_iommu_last_bdf;
1056 break;
1057 case ACPI_IVMD_TYPE_RANGE:
02acc43a 1058 s = "IVMD_TYPE_RANGE\t\t";
be2a022c
JR
1059 e->devid_start = m->devid;
1060 e->devid_end = m->aux;
1061 break;
1062 }
1063 e->address_start = PAGE_ALIGN(m->range_start);
1064 e->address_end = e->address_start + PAGE_ALIGN(m->range_length);
1065 e->prot = m->flags >> 1;
1066
02acc43a
JR
1067 DUMP_printk("%s devid_start: %02x:%02x.%x devid_end: %02x:%02x.%x"
1068 " range_start: %016llx range_end: %016llx flags: %x\n", s,
1069 PCI_BUS(e->devid_start), PCI_SLOT(e->devid_start),
1070 PCI_FUNC(e->devid_start), PCI_BUS(e->devid_end),
1071 PCI_SLOT(e->devid_end), PCI_FUNC(e->devid_end),
1072 e->address_start, e->address_end, m->flags);
1073
be2a022c
JR
1074 list_add_tail(&e->list, &amd_iommu_unity_map);
1075
1076 return 0;
1077}
1078
b65233a9 1079/* iterates over all memory definitions we find in the ACPI table */
be2a022c
JR
1080static int __init init_memory_definitions(struct acpi_table_header *table)
1081{
1082 u8 *p = (u8 *)table, *end = (u8 *)table;
1083 struct ivmd_header *m;
1084
be2a022c
JR
1085 end += table->length;
1086 p += IVRS_HEADER_LENGTH;
1087
1088 while (p < end) {
1089 m = (struct ivmd_header *)p;
1090 if (m->flags & IVMD_FLAG_EXCL_RANGE)
1091 init_exclusion_range(m);
1092 else if (m->flags & IVMD_FLAG_UNITY_MAP)
1093 init_unity_map_range(m);
1094
1095 p += m->length;
1096 }
1097
1098 return 0;
1099}
1100
9f5f5fb3
JR
1101/*
1102 * Init the device table to not allow DMA access for devices and
1103 * suppress all page faults
1104 */
1105static void init_device_table(void)
1106{
1107 u16 devid;
1108
1109 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) {
1110 set_dev_entry_bit(devid, DEV_ENTRY_VALID);
1111 set_dev_entry_bit(devid, DEV_ENTRY_TRANSLATION);
9f5f5fb3
JR
1112 }
1113}
1114
b65233a9
JR
1115/*
1116 * This function finally enables all IOMMUs found in the system after
1117 * they have been initialized
1118 */
05f92db9 1119static void enable_iommus(void)
8736197b
JR
1120{
1121 struct amd_iommu *iommu;
1122
3bd22172 1123 for_each_iommu(iommu) {
a8c485bb 1124 iommu_disable(iommu);
58492e12
JR
1125 iommu_set_device_table(iommu);
1126 iommu_enable_command_buffer(iommu);
1127 iommu_enable_event_buffer(iommu);
8736197b 1128 iommu_set_exclusion_range(iommu);
a80dc3e0 1129 iommu_init_msi(iommu);
8736197b
JR
1130 iommu_enable(iommu);
1131 }
1132}
1133
92ac4320
JR
1134static void disable_iommus(void)
1135{
1136 struct amd_iommu *iommu;
1137
1138 for_each_iommu(iommu)
1139 iommu_disable(iommu);
1140}
1141
7441e9cb
JR
1142/*
1143 * Suspend/Resume support
1144 * disable suspend until real resume implemented
1145 */
1146
1147static int amd_iommu_resume(struct sys_device *dev)
1148{
736501ee
JR
1149 /* re-load the hardware */
1150 enable_iommus();
1151
1152 /*
1153 * we have to flush after the IOMMUs are enabled because a
1154 * disabled IOMMU will never execute the commands we send
1155 */
736501ee 1156 amd_iommu_flush_all_devices();
6a047d8b 1157 amd_iommu_flush_all_domains();
736501ee 1158
7441e9cb
JR
1159 return 0;
1160}
1161
1162static int amd_iommu_suspend(struct sys_device *dev, pm_message_t state)
1163{
736501ee
JR
1164 /* disable IOMMUs to go out of the way for BIOS */
1165 disable_iommus();
1166
1167 return 0;
7441e9cb
JR
1168}
1169
1170static struct sysdev_class amd_iommu_sysdev_class = {
1171 .name = "amd_iommu",
1172 .suspend = amd_iommu_suspend,
1173 .resume = amd_iommu_resume,
1174};
1175
1176static struct sys_device device_amd_iommu = {
1177 .id = 0,
1178 .cls = &amd_iommu_sysdev_class,
1179};
1180
b65233a9
JR
1181/*
1182 * This is the core init function for AMD IOMMU hardware in the system.
1183 * This function is called from the generic x86 DMA layer initialization
1184 * code.
1185 *
1186 * This function basically parses the ACPI table for AMD IOMMU (IVRS)
1187 * three times:
1188 *
1189 * 1 pass) Find the highest PCI device id the driver has to handle.
1190 * Upon this information the size of the data structures is
1191 * determined that needs to be allocated.
1192 *
1193 * 2 pass) Initialize the data structures just allocated with the
1194 * information in the ACPI table about available AMD IOMMUs
1195 * in the system. It also maps the PCI devices in the
1196 * system to specific IOMMUs
1197 *
1198 * 3 pass) After the basic data structures are allocated and
1199 * initialized we update them with information about memory
1200 * remapping requirements parsed out of the ACPI table in
1201 * this last pass.
1202 *
1203 * After that the hardware is initialized and ready to go. In the last
1204 * step we do some Linux specific things like registering the driver in
1205 * the dma_ops interface and initializing the suspend/resume support
1206 * functions. Finally it prints some information about AMD IOMMUs and
1207 * the driver state and enables the hardware.
1208 */
ea1b0d39 1209static int __init amd_iommu_init(void)
fe74c9cf
JR
1210{
1211 int i, ret = 0;
1212
fe74c9cf
JR
1213 /*
1214 * First parse ACPI tables to find the largest Bus/Dev/Func
1215 * we need to handle. Upon this information the shared data
1216 * structures for the IOMMUs in the system will be allocated
1217 */
1218 if (acpi_table_parse("IVRS", find_last_devid_acpi) != 0)
1219 return -ENODEV;
1220
3551a708
JR
1221 ret = amd_iommu_init_err;
1222 if (ret)
1223 goto out;
1224
c571484e
JR
1225 dev_table_size = tbl_size(DEV_TABLE_ENTRY_SIZE);
1226 alias_table_size = tbl_size(ALIAS_TABLE_ENTRY_SIZE);
1227 rlookup_table_size = tbl_size(RLOOKUP_TABLE_ENTRY_SIZE);
fe74c9cf
JR
1228
1229 ret = -ENOMEM;
1230
1231 /* Device table - directly used by all IOMMUs */
5dc8bff0 1232 amd_iommu_dev_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
fe74c9cf
JR
1233 get_order(dev_table_size));
1234 if (amd_iommu_dev_table == NULL)
1235 goto out;
1236
1237 /*
1238 * Alias table - map PCI Bus/Dev/Func to Bus/Dev/Func the
1239 * IOMMU see for that device
1240 */
1241 amd_iommu_alias_table = (void *)__get_free_pages(GFP_KERNEL,
1242 get_order(alias_table_size));
1243 if (amd_iommu_alias_table == NULL)
1244 goto free;
1245
1246 /* IOMMU rlookup table - find the IOMMU for a specific device */
83fd5cc6
JR
1247 amd_iommu_rlookup_table = (void *)__get_free_pages(
1248 GFP_KERNEL | __GFP_ZERO,
fe74c9cf
JR
1249 get_order(rlookup_table_size));
1250 if (amd_iommu_rlookup_table == NULL)
1251 goto free;
1252
5dc8bff0
JR
1253 amd_iommu_pd_alloc_bitmap = (void *)__get_free_pages(
1254 GFP_KERNEL | __GFP_ZERO,
fe74c9cf
JR
1255 get_order(MAX_DOMAIN_ID/8));
1256 if (amd_iommu_pd_alloc_bitmap == NULL)
1257 goto free;
1258
9f5f5fb3
JR
1259 /* init the device table */
1260 init_device_table();
1261
fe74c9cf 1262 /*
5dc8bff0 1263 * let all alias entries point to itself
fe74c9cf 1264 */
3a61ec38 1265 for (i = 0; i <= amd_iommu_last_bdf; ++i)
fe74c9cf
JR
1266 amd_iommu_alias_table[i] = i;
1267
fe74c9cf
JR
1268 /*
1269 * never allocate domain 0 because its used as the non-allocated and
1270 * error value placeholder
1271 */
1272 amd_iommu_pd_alloc_bitmap[0] = 1;
1273
aeb26f55
JR
1274 spin_lock_init(&amd_iommu_pd_lock);
1275
fe74c9cf
JR
1276 /*
1277 * now the data structures are allocated and basically initialized
1278 * start the real acpi table scan
1279 */
1280 ret = -ENODEV;
1281 if (acpi_table_parse("IVRS", init_iommu_all) != 0)
1282 goto free;
1283
3551a708
JR
1284 if (amd_iommu_init_err) {
1285 ret = amd_iommu_init_err;
0f764806 1286 goto free;
3551a708 1287 }
0f764806 1288
fe74c9cf
JR
1289 if (acpi_table_parse("IVRS", init_memory_definitions) != 0)
1290 goto free;
1291
3551a708
JR
1292 if (amd_iommu_init_err) {
1293 ret = amd_iommu_init_err;
1294 goto free;
1295 }
1296
129d6aba 1297 ret = sysdev_class_register(&amd_iommu_sysdev_class);
8736197b
JR
1298 if (ret)
1299 goto free;
1300
129d6aba 1301 ret = sysdev_register(&device_amd_iommu);
7441e9cb
JR
1302 if (ret)
1303 goto free;
1304
b7cc9554
JR
1305 ret = amd_iommu_init_devices();
1306 if (ret)
1307 goto free;
1308
75f66533
CW
1309 enable_iommus();
1310
4751a951
JR
1311 if (iommu_pass_through)
1312 ret = amd_iommu_init_passthrough();
1313 else
1314 ret = amd_iommu_init_dma_ops();
f5325094 1315
7441e9cb
JR
1316 if (ret)
1317 goto free;
1318
f5325094
JR
1319 amd_iommu_init_api();
1320
8638c491
JR
1321 amd_iommu_init_notifier();
1322
4751a951
JR
1323 if (iommu_pass_through)
1324 goto out;
1325
afa9fdc2 1326 if (amd_iommu_unmap_flush)
4c6f40d4 1327 printk(KERN_INFO "AMD-Vi: IO/TLB flush on unmap enabled\n");
1c655773 1328 else
4c6f40d4 1329 printk(KERN_INFO "AMD-Vi: Lazy IO/TLB flushing enabled\n");
1c655773 1330
338bac52 1331 x86_platform.iommu_shutdown = disable_iommus;
fe74c9cf
JR
1332out:
1333 return ret;
1334
1335free:
75f66533 1336 disable_iommus();
b7cc9554
JR
1337
1338 amd_iommu_uninit_devices();
1339
d58befd3
JR
1340 free_pages((unsigned long)amd_iommu_pd_alloc_bitmap,
1341 get_order(MAX_DOMAIN_ID/8));
fe74c9cf 1342
9a836de0
JR
1343 free_pages((unsigned long)amd_iommu_rlookup_table,
1344 get_order(rlookup_table_size));
fe74c9cf 1345
9a836de0
JR
1346 free_pages((unsigned long)amd_iommu_alias_table,
1347 get_order(alias_table_size));
fe74c9cf 1348
9a836de0
JR
1349 free_pages((unsigned long)amd_iommu_dev_table,
1350 get_order(dev_table_size));
fe74c9cf
JR
1351
1352 free_iommu_all();
1353
1354 free_unity_maps();
1355
1356 goto out;
1357}
1358
b65233a9
JR
1359/****************************************************************************
1360 *
1361 * Early detect code. This code runs at IOMMU detection time in the DMA
1362 * layer. It just looks if there is an IVRS ACPI table to detect AMD
1363 * IOMMUs
1364 *
1365 ****************************************************************************/
ae7877de
JR
1366static int __init early_amd_iommu_detect(struct acpi_table_header *table)
1367{
1368 return 0;
1369}
1370
1371void __init amd_iommu_detect(void)
1372{
75f1cdf1 1373 if (no_iommu || (iommu_detected && !gart_iommu_aperture))
ae7877de
JR
1374 return;
1375
a5235725
JR
1376 if (amd_iommu_disabled)
1377 return;
1378
ae7877de
JR
1379 if (acpi_table_parse("IVRS", early_amd_iommu_detect) == 0) {
1380 iommu_detected = 1;
c1cbebee 1381 amd_iommu_detected = 1;
ea1b0d39 1382 x86_init.iommu.iommu_init = amd_iommu_init;
11bd04f6 1383
5d990b62
CW
1384 /* Make sure ACS will be enabled */
1385 pci_request_acs();
ae7877de
JR
1386 }
1387}
1388
b65233a9
JR
1389/****************************************************************************
1390 *
1391 * Parsing functions for the AMD IOMMU specific kernel command line
1392 * options.
1393 *
1394 ****************************************************************************/
1395
fefda117
JR
1396static int __init parse_amd_iommu_dump(char *str)
1397{
1398 amd_iommu_dump = true;
1399
1400 return 1;
1401}
1402
918ad6c5
JR
1403static int __init parse_amd_iommu_options(char *str)
1404{
1405 for (; *str; ++str) {
695b5676 1406 if (strncmp(str, "fullflush", 9) == 0)
afa9fdc2 1407 amd_iommu_unmap_flush = true;
a5235725
JR
1408 if (strncmp(str, "off", 3) == 0)
1409 amd_iommu_disabled = true;
918ad6c5
JR
1410 }
1411
1412 return 1;
1413}
1414
fefda117 1415__setup("amd_iommu_dump", parse_amd_iommu_dump);
918ad6c5 1416__setup("amd_iommu=", parse_amd_iommu_options);