]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/x86/include/asm/uv/uv_hub.h
x86, UV: Fix and clean up bau code to use uv_gpa_to_pnode()
[net-next-2.6.git] / arch / x86 / include / asm / uv / uv_hub.h
CommitLineData
952cf6d7
JS
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * SGI UV architectural definitions
7 *
9f5314fb 8 * Copyright (C) 2007-2008 Silicon Graphics, Inc. All rights reserved.
952cf6d7
JS
9 */
10
05e4d316
PA
11#ifndef _ASM_X86_UV_UV_HUB_H
12#define _ASM_X86_UV_UV_HUB_H
952cf6d7 13
bc5d9940 14#ifdef CONFIG_X86_64
952cf6d7
JS
15#include <linux/numa.h>
16#include <linux/percpu.h>
c08b6acc 17#include <linux/timer.h>
8dc579e8 18#include <linux/io.h>
952cf6d7
JS
19#include <asm/types.h>
20#include <asm/percpu.h>
66666e50 21#include <asm/uv/uv_mmrs.h>
952cf6d7
JS
22
23
24/*
25 * Addressing Terminology
26 *
9f5314fb
JS
27 * M - The low M bits of a physical address represent the offset
28 * into the blade local memory. RAM memory on a blade is physically
29 * contiguous (although various IO spaces may punch holes in
30 * it)..
952cf6d7 31 *
9f5314fb
JS
32 * N - Number of bits in the node portion of a socket physical
33 * address.
34 *
35 * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
36 * routers always have low bit of 1, C/MBricks have low bit
37 * equal to 0. Most addressing macros that target UV hub chips
38 * right shift the NASID by 1 to exclude the always-zero bit.
39 * NASIDs contain up to 15 bits.
40 *
41 * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
42 * of nasids.
43 *
44 * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant
45 * of the nasid for socket usage.
46 *
47 *
48 * NumaLink Global Physical Address Format:
49 * +--------------------------------+---------------------+
50 * |00..000| GNODE | NodeOffset |
51 * +--------------------------------+---------------------+
52 * |<-------53 - M bits --->|<--------M bits ----->
53 *
54 * M - number of node offset bits (35 .. 40)
952cf6d7
JS
55 *
56 *
57 * Memory/UV-HUB Processor Socket Address Format:
9f5314fb
JS
58 * +----------------+---------------+---------------------+
59 * |00..000000000000| PNODE | NodeOffset |
60 * +----------------+---------------+---------------------+
61 * <--- N bits --->|<--------M bits ----->
952cf6d7 62 *
9f5314fb
JS
63 * M - number of node offset bits (35 .. 40)
64 * N - number of PNODE bits (0 .. 10)
952cf6d7
JS
65 *
66 * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
67 * The actual values are configuration dependent and are set at
9f5314fb
JS
68 * boot time. M & N values are set by the hardware/BIOS at boot.
69 *
952cf6d7
JS
70 *
71 * APICID format
72 * NOTE!!!!!! This is the current format of the APICID. However, code
73 * should assume that this will change in the future. Use functions
74 * in this file for all APICID bit manipulations and conversion.
75 *
76 * 1111110000000000
77 * 5432109876543210
9f5314fb 78 * pppppppppplc0cch
952cf6d7
JS
79 * sssssssssss
80 *
9f5314fb 81 * p = pnode bits
952cf6d7
JS
82 * l = socket number on board
83 * c = core
84 * h = hyperthread
9f5314fb 85 * s = bits that are in the SOCKET_ID CSR
952cf6d7
JS
86 *
87 * Note: Processor only supports 12 bits in the APICID register. The ACPI
88 * tables hold all 16 bits. Software needs to be aware of this.
89 *
90 * Unless otherwise specified, all references to APICID refer to
91 * the FULL value contained in ACPI tables, not the subset in the
92 * processor APICID register.
93 */
94
95
96/*
97 * Maximum number of bricks in all partitions and in all coherency domains.
98 * This is the total number of bricks accessible in the numalink fabric. It
99 * includes all C & M bricks. Routers are NOT included.
100 *
101 * This value is also the value of the maximum number of non-router NASIDs
102 * in the numalink fabric.
103 *
9f5314fb 104 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
952cf6d7
JS
105 */
106#define UV_MAX_NUMALINK_BLADES 16384
107
108/*
109 * Maximum number of C/Mbricks within a software SSI (hardware may support
110 * more).
111 */
112#define UV_MAX_SSI_BLADES 256
113
114/*
115 * The largest possible NASID of a C or M brick (+ 2)
116 */
1d21e6e3 117#define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_BLADES * 2)
952cf6d7 118
7f1baa06
MT
119struct uv_scir_s {
120 struct timer_list timer;
121 unsigned long offset;
122 unsigned long last;
123 unsigned long idle_on;
124 unsigned long idle_off;
125 unsigned char state;
126 unsigned char enabled;
127};
128
952cf6d7
JS
129/*
130 * The following defines attributes of the HUB chip. These attributes are
131 * frequently referenced and are kept in the per-cpu data areas of each cpu.
132 * They are kept together in a struct to minimize cache misses.
133 */
134struct uv_hub_info_s {
69a72a0e
MT
135 unsigned long global_mmr_base;
136 unsigned long gpa_mask;
c4ed3f04 137 unsigned int gnode_extra;
69a72a0e
MT
138 unsigned long gnode_upper;
139 unsigned long lowmem_remap_top;
140 unsigned long lowmem_remap_base;
141 unsigned short pnode;
142 unsigned short pnode_mask;
143 unsigned short coherency_domain_number;
144 unsigned short numa_blade_id;
145 unsigned char blade_processor_id;
146 unsigned char m_val;
147 unsigned char n_val;
148 struct uv_scir_s scir;
952cf6d7 149};
7f1baa06 150
952cf6d7
JS
151DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
152#define uv_hub_info (&__get_cpu_var(__uv_hub_info))
153#define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu))
154
155/*
156 * Local & Global MMR space macros.
157 * Note: macros are intended to be used ONLY by inline functions
158 * in this file - not by other kernel code.
9f5314fb
JS
159 * n - NASID (full 15-bit global nasid)
160 * g - GNODE (full 15-bit global nasid, right shifted 1)
161 * p - PNODE (local part of nsids, right shifted 1)
952cf6d7 162 */
9f5314fb 163#define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask)
c4ed3f04
JS
164#define UV_PNODE_TO_GNODE(p) ((p) |uv_hub_info->gnode_extra)
165#define UV_PNODE_TO_NASID(p) (UV_PNODE_TO_GNODE(p) << 1)
952cf6d7
JS
166
167#define UV_LOCAL_MMR_BASE 0xf4000000UL
168#define UV_GLOBAL_MMR32_BASE 0xf8000000UL
169#define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
83f5d894
JS
170#define UV_LOCAL_MMR_SIZE (64UL * 1024 * 1024)
171#define UV_GLOBAL_MMR32_SIZE (64UL * 1024 * 1024)
952cf6d7 172
9f5314fb
JS
173#define UV_GLOBAL_MMR32_PNODE_SHIFT 15
174#define UV_GLOBAL_MMR64_PNODE_SHIFT 26
952cf6d7 175
9f5314fb 176#define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
952cf6d7 177
9f5314fb 178#define UV_GLOBAL_MMR64_PNODE_BITS(p) \
67e83f30 179 (((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
9f5314fb
JS
180
181#define UV_APIC_PNODE_SHIFT 6
182
7f1baa06
MT
183/* Local Bus from cpu's perspective */
184#define LOCAL_BUS_BASE 0x1c00000
185#define LOCAL_BUS_SIZE (4 * 1024 * 1024)
186
187/*
188 * System Controller Interface Reg
189 *
190 * Note there are NO leds on a UV system. This register is only
191 * used by the system controller to monitor system-wide operation.
192 * There are 64 regs per node. With Nahelem cpus (2 cores per node,
193 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
194 * a node.
195 *
196 * The window is located at top of ACPI MMR space
197 */
198#define SCIR_WINDOW_COUNT 64
199#define SCIR_LOCAL_MMR_BASE (LOCAL_BUS_BASE + \
200 LOCAL_BUS_SIZE - \
201 SCIR_WINDOW_COUNT)
202
203#define SCIR_CPU_HEARTBEAT 0x01 /* timer interrupt */
204#define SCIR_CPU_ACTIVITY 0x02 /* not idle */
205#define SCIR_CPU_HB_INTERVAL (HZ) /* once per second */
206
8661984f
DS
207/* Loop through all installed blades */
208#define for_each_possible_blade(bid) \
209 for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
210
9f5314fb
JS
211/*
212 * Macros for converting between kernel virtual addresses, socket local physical
213 * addresses, and UV global physical addresses.
214 * Note: use the standard __pa() & __va() macros for converting
215 * between socket virtual and socket physical addresses.
216 */
217
218/* socket phys RAM --> UV global physical address */
219static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
220{
221 if (paddr < uv_hub_info->lowmem_remap_top)
189f67c4 222 paddr |= uv_hub_info->lowmem_remap_base;
9f5314fb
JS
223 return paddr | uv_hub_info->gnode_upper;
224}
225
226
227/* socket virtual --> UV global physical address */
228static inline unsigned long uv_gpa(void *v)
229{
189f67c4 230 return uv_soc_phys_ram_to_gpa(__pa(v));
9f5314fb 231}
1d21e6e3
RH
232
233/* gnode -> pnode */
234static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
235{
236 return gpa >> uv_hub_info->m_val;
237}
238
239/* gpa -> pnode */
240static inline int uv_gpa_to_pnode(unsigned long gpa)
241{
242 unsigned long n_mask = (1UL << uv_hub_info->n_val) - 1;
243
244 return uv_gpa_to_gnode(gpa) & n_mask;
245}
9f5314fb
JS
246
247/* pnode, offset --> socket virtual */
248static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
249{
250 return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
251}
952cf6d7 252
952cf6d7
JS
253
254/*
9f5314fb 255 * Extract a PNODE from an APICID (full apicid, not processor subset)
952cf6d7 256 */
9f5314fb 257static inline int uv_apicid_to_pnode(int apicid)
952cf6d7 258{
9f5314fb 259 return (apicid >> UV_APIC_PNODE_SHIFT);
952cf6d7
JS
260}
261
262/*
263 * Access global MMRs using the low memory MMR32 space. This region supports
264 * faster MMR access but not all MMRs are accessible in this space.
265 */
9f5314fb 266static inline unsigned long *uv_global_mmr32_address(int pnode,
952cf6d7
JS
267 unsigned long offset)
268{
269 return __va(UV_GLOBAL_MMR32_BASE |
9f5314fb 270 UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
952cf6d7
JS
271}
272
9f5314fb 273static inline void uv_write_global_mmr32(int pnode, unsigned long offset,
952cf6d7
JS
274 unsigned long val)
275{
8dc579e8 276 writeq(val, uv_global_mmr32_address(pnode, offset));
952cf6d7
JS
277}
278
9f5314fb 279static inline unsigned long uv_read_global_mmr32(int pnode,
952cf6d7
JS
280 unsigned long offset)
281{
8dc579e8 282 return readq(uv_global_mmr32_address(pnode, offset));
952cf6d7
JS
283}
284
285/*
286 * Access Global MMR space using the MMR space located at the top of physical
287 * memory.
288 */
9f5314fb 289static inline unsigned long *uv_global_mmr64_address(int pnode,
952cf6d7
JS
290 unsigned long offset)
291{
292 return __va(UV_GLOBAL_MMR64_BASE |
9f5314fb 293 UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
952cf6d7
JS
294}
295
9f5314fb 296static inline void uv_write_global_mmr64(int pnode, unsigned long offset,
952cf6d7
JS
297 unsigned long val)
298{
8dc579e8 299 writeq(val, uv_global_mmr64_address(pnode, offset));
952cf6d7
JS
300}
301
9f5314fb 302static inline unsigned long uv_read_global_mmr64(int pnode,
952cf6d7
JS
303 unsigned long offset)
304{
8dc579e8 305 return readq(uv_global_mmr64_address(pnode, offset));
952cf6d7
JS
306}
307
308/*
9f5314fb 309 * Access hub local MMRs. Faster than using global space but only local MMRs
952cf6d7
JS
310 * are accessible.
311 */
312static inline unsigned long *uv_local_mmr_address(unsigned long offset)
313{
314 return __va(UV_LOCAL_MMR_BASE | offset);
315}
316
317static inline unsigned long uv_read_local_mmr(unsigned long offset)
318{
8dc579e8 319 return readq(uv_local_mmr_address(offset));
952cf6d7
JS
320}
321
322static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
323{
8dc579e8 324 writeq(val, uv_local_mmr_address(offset));
952cf6d7
JS
325}
326
7f1baa06
MT
327static inline unsigned char uv_read_local_mmr8(unsigned long offset)
328{
8dc579e8 329 return readb(uv_local_mmr_address(offset));
7f1baa06
MT
330}
331
332static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
333{
8dc579e8 334 writeb(val, uv_local_mmr_address(offset));
7f1baa06
MT
335}
336
8400def8 337/*
9f5314fb 338 * Structures and definitions for converting between cpu, node, pnode, and blade
8400def8
JS
339 * numbers.
340 */
341struct uv_blade_info {
9f5314fb 342 unsigned short nr_possible_cpus;
8400def8 343 unsigned short nr_online_cpus;
9f5314fb 344 unsigned short pnode;
6c7184b7 345 short memory_nid;
8400def8 346};
9f5314fb 347extern struct uv_blade_info *uv_blade_info;
8400def8
JS
348extern short *uv_node_to_blade;
349extern short *uv_cpu_to_blade;
350extern short uv_possible_blades;
351
352/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
353static inline int uv_blade_processor_id(void)
354{
355 return uv_hub_info->blade_processor_id;
356}
357
358/* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
359static inline int uv_numa_blade_id(void)
360{
361 return uv_hub_info->numa_blade_id;
362}
363
364/* Convert a cpu number to the the UV blade number */
365static inline int uv_cpu_to_blade_id(int cpu)
366{
367 return uv_cpu_to_blade[cpu];
368}
369
370/* Convert linux node number to the UV blade number */
371static inline int uv_node_to_blade_id(int nid)
372{
373 return uv_node_to_blade[nid];
374}
375
9f5314fb
JS
376/* Convert a blade id to the PNODE of the blade */
377static inline int uv_blade_to_pnode(int bid)
8400def8 378{
9f5314fb 379 return uv_blade_info[bid].pnode;
8400def8
JS
380}
381
6c7184b7
JS
382/* Nid of memory node on blade. -1 if no blade-local memory */
383static inline int uv_blade_to_memory_nid(int bid)
384{
385 return uv_blade_info[bid].memory_nid;
386}
387
8400def8
JS
388/* Determine the number of possible cpus on a blade */
389static inline int uv_blade_nr_possible_cpus(int bid)
390{
9f5314fb 391 return uv_blade_info[bid].nr_possible_cpus;
8400def8
JS
392}
393
394/* Determine the number of online cpus on a blade */
395static inline int uv_blade_nr_online_cpus(int bid)
396{
397 return uv_blade_info[bid].nr_online_cpus;
398}
399
9f5314fb
JS
400/* Convert a cpu id to the PNODE of the blade containing the cpu */
401static inline int uv_cpu_to_pnode(int cpu)
8400def8 402{
9f5314fb 403 return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
8400def8
JS
404}
405
9f5314fb
JS
406/* Convert a linux node number to the PNODE of the blade */
407static inline int uv_node_to_pnode(int nid)
8400def8 408{
9f5314fb 409 return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
8400def8
JS
410}
411
412/* Maximum possible number of blades */
413static inline int uv_num_possible_blades(void)
414{
415 return uv_possible_blades;
416}
417
7f1baa06
MT
418/* Update SCIR state */
419static inline void uv_set_scir_bits(unsigned char value)
420{
421 if (uv_hub_info->scir.state != value) {
422 uv_hub_info->scir.state = value;
423 uv_write_local_mmr8(uv_hub_info->scir.offset, value);
424 }
425}
66666e50 426
7f1baa06
MT
427static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
428{
429 if (uv_cpu_hub_info(cpu)->scir.state != value) {
430 uv_cpu_hub_info(cpu)->scir.state = value;
431 uv_write_local_mmr8(uv_cpu_hub_info(cpu)->scir.offset, value);
432 }
433}
952cf6d7 434
66666e50
JS
435static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
436{
437 unsigned long val;
438
439 val = (1UL << UVH_IPI_INT_SEND_SHFT) |
d2374aec 440 ((apicid) << UVH_IPI_INT_APIC_ID_SHFT) |
66666e50
JS
441 (vector << UVH_IPI_INT_VECTOR_SHFT);
442 uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
443}
444
bc5d9940 445#endif /* CONFIG_X86_64 */
7f1baa06 446#endif /* _ASM_X86_UV_UV_HUB_H */