]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/x86/include/asm/uv/uv_hub.h
Merge branch 'for-linus' of git://git.infradead.org/users/eparis/notify
[net-next-2.6.git] / arch / x86 / include / asm / uv / uv_hub.h
CommitLineData
952cf6d7
JS
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * SGI UV architectural definitions
7 *
c8f730b1 8 * Copyright (C) 2007-2010 Silicon Graphics, Inc. All rights reserved.
952cf6d7
JS
9 */
10
05e4d316
PA
11#ifndef _ASM_X86_UV_UV_HUB_H
12#define _ASM_X86_UV_UV_HUB_H
952cf6d7 13
bc5d9940 14#ifdef CONFIG_X86_64
952cf6d7
JS
15#include <linux/numa.h>
16#include <linux/percpu.h>
c08b6acc 17#include <linux/timer.h>
8dc579e8 18#include <linux/io.h>
952cf6d7
JS
19#include <asm/types.h>
20#include <asm/percpu.h>
66666e50 21#include <asm/uv/uv_mmrs.h>
02dd0a06
RH
22#include <asm/irq_vectors.h>
23#include <asm/io_apic.h>
952cf6d7
JS
24
25
26/*
27 * Addressing Terminology
28 *
9f5314fb
JS
29 * M - The low M bits of a physical address represent the offset
30 * into the blade local memory. RAM memory on a blade is physically
31 * contiguous (although various IO spaces may punch holes in
32 * it)..
952cf6d7 33 *
39d30770
MT
34 * N - Number of bits in the node portion of a socket physical
35 * address.
9f5314fb 36 *
39d30770
MT
37 * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
38 * routers always have low bit of 1, C/MBricks have low bit
39 * equal to 0. Most addressing macros that target UV hub chips
40 * right shift the NASID by 1 to exclude the always-zero bit.
41 * NASIDs contain up to 15 bits.
9f5314fb
JS
42 *
43 * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
44 * of nasids.
45 *
39d30770
MT
46 * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant
47 * of the nasid for socket usage.
9f5314fb
JS
48 *
49 *
50 * NumaLink Global Physical Address Format:
51 * +--------------------------------+---------------------+
52 * |00..000| GNODE | NodeOffset |
53 * +--------------------------------+---------------------+
54 * |<-------53 - M bits --->|<--------M bits ----->
55 *
56 * M - number of node offset bits (35 .. 40)
952cf6d7
JS
57 *
58 *
59 * Memory/UV-HUB Processor Socket Address Format:
9f5314fb
JS
60 * +----------------+---------------+---------------------+
61 * |00..000000000000| PNODE | NodeOffset |
62 * +----------------+---------------+---------------------+
63 * <--- N bits --->|<--------M bits ----->
952cf6d7 64 *
9f5314fb
JS
65 * M - number of node offset bits (35 .. 40)
66 * N - number of PNODE bits (0 .. 10)
952cf6d7
JS
67 *
68 * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
69 * The actual values are configuration dependent and are set at
9f5314fb
JS
70 * boot time. M & N values are set by the hardware/BIOS at boot.
71 *
952cf6d7
JS
72 *
73 * APICID format
39d30770
MT
74 * NOTE!!!!!! This is the current format of the APICID. However, code
75 * should assume that this will change in the future. Use functions
76 * in this file for all APICID bit manipulations and conversion.
952cf6d7 77 *
39d30770
MT
78 * 1111110000000000
79 * 5432109876543210
c8f730b1
RA
80 * pppppppppplc0cch Nehalem-EX
81 * ppppppppplcc0cch Westmere-EX
952cf6d7
JS
82 * sssssssssss
83 *
9f5314fb 84 * p = pnode bits
952cf6d7
JS
85 * l = socket number on board
86 * c = core
87 * h = hyperthread
9f5314fb 88 * s = bits that are in the SOCKET_ID CSR
952cf6d7
JS
89 *
90 * Note: Processor only supports 12 bits in the APICID register. The ACPI
91 * tables hold all 16 bits. Software needs to be aware of this.
92 *
39d30770
MT
93 * Unless otherwise specified, all references to APICID refer to
94 * the FULL value contained in ACPI tables, not the subset in the
95 * processor APICID register.
952cf6d7
JS
96 */
97
98
99/*
100 * Maximum number of bricks in all partitions and in all coherency domains.
101 * This is the total number of bricks accessible in the numalink fabric. It
102 * includes all C & M bricks. Routers are NOT included.
103 *
104 * This value is also the value of the maximum number of non-router NASIDs
105 * in the numalink fabric.
106 *
9f5314fb 107 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
952cf6d7
JS
108 */
109#define UV_MAX_NUMALINK_BLADES 16384
110
111/*
112 * Maximum number of C/Mbricks within a software SSI (hardware may support
113 * more).
114 */
115#define UV_MAX_SSI_BLADES 256
116
117/*
118 * The largest possible NASID of a C or M brick (+ 2)
119 */
1d21e6e3 120#define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_BLADES * 2)
952cf6d7 121
7f1baa06
MT
122struct uv_scir_s {
123 struct timer_list timer;
124 unsigned long offset;
125 unsigned long last;
126 unsigned long idle_on;
127 unsigned long idle_off;
128 unsigned char state;
129 unsigned char enabled;
130};
131
952cf6d7
JS
132/*
133 * The following defines attributes of the HUB chip. These attributes are
134 * frequently referenced and are kept in the per-cpu data areas of each cpu.
135 * They are kept together in a struct to minimize cache misses.
136 */
137struct uv_hub_info_s {
69a72a0e
MT
138 unsigned long global_mmr_base;
139 unsigned long gpa_mask;
c4ed3f04 140 unsigned int gnode_extra;
69a72a0e
MT
141 unsigned long gnode_upper;
142 unsigned long lowmem_remap_top;
143 unsigned long lowmem_remap_base;
144 unsigned short pnode;
145 unsigned short pnode_mask;
146 unsigned short coherency_domain_number;
147 unsigned short numa_blade_id;
148 unsigned char blade_processor_id;
149 unsigned char m_val;
150 unsigned char n_val;
151 struct uv_scir_s scir;
c8f730b1 152 unsigned char apic_pnode_shift;
952cf6d7 153};
7f1baa06 154
952cf6d7 155DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
39d30770 156#define uv_hub_info (&__get_cpu_var(__uv_hub_info))
952cf6d7
JS
157#define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu))
158
c8f730b1
RA
159union uvh_apicid {
160 unsigned long v;
161 struct uvh_apicid_s {
162 unsigned long local_apic_mask : 24;
163 unsigned long local_apic_shift : 5;
164 unsigned long unused1 : 3;
165 unsigned long pnode_mask : 24;
166 unsigned long pnode_shift : 5;
167 unsigned long unused2 : 3;
168 } s;
169};
170
952cf6d7
JS
171/*
172 * Local & Global MMR space macros.
39d30770
MT
173 * Note: macros are intended to be used ONLY by inline functions
174 * in this file - not by other kernel code.
175 * n - NASID (full 15-bit global nasid)
176 * g - GNODE (full 15-bit global nasid, right shifted 1)
177 * p - PNODE (local part of nsids, right shifted 1)
952cf6d7 178 */
9f5314fb 179#define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask)
c4ed3f04
JS
180#define UV_PNODE_TO_GNODE(p) ((p) |uv_hub_info->gnode_extra)
181#define UV_PNODE_TO_NASID(p) (UV_PNODE_TO_GNODE(p) << 1)
952cf6d7
JS
182
183#define UV_LOCAL_MMR_BASE 0xf4000000UL
184#define UV_GLOBAL_MMR32_BASE 0xf8000000UL
185#define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
83f5d894
JS
186#define UV_LOCAL_MMR_SIZE (64UL * 1024 * 1024)
187#define UV_GLOBAL_MMR32_SIZE (64UL * 1024 * 1024)
952cf6d7 188
56abcf24
JS
189#define UV_GLOBAL_GRU_MMR_BASE 0x4000000
190
9f5314fb
JS
191#define UV_GLOBAL_MMR32_PNODE_SHIFT 15
192#define UV_GLOBAL_MMR64_PNODE_SHIFT 26
952cf6d7 193
9f5314fb 194#define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
952cf6d7 195
9f5314fb 196#define UV_GLOBAL_MMR64_PNODE_BITS(p) \
67e83f30 197 (((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
9f5314fb 198
c8f730b1 199#define UVH_APICID 0x002D0E00L
9f5314fb
JS
200#define UV_APIC_PNODE_SHIFT 6
201
7f1baa06
MT
202/* Local Bus from cpu's perspective */
203#define LOCAL_BUS_BASE 0x1c00000
204#define LOCAL_BUS_SIZE (4 * 1024 * 1024)
205
206/*
207 * System Controller Interface Reg
208 *
209 * Note there are NO leds on a UV system. This register is only
210 * used by the system controller to monitor system-wide operation.
211 * There are 64 regs per node. With Nahelem cpus (2 cores per node,
212 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
213 * a node.
214 *
215 * The window is located at top of ACPI MMR space
216 */
217#define SCIR_WINDOW_COUNT 64
218#define SCIR_LOCAL_MMR_BASE (LOCAL_BUS_BASE + \
219 LOCAL_BUS_SIZE - \
220 SCIR_WINDOW_COUNT)
221
222#define SCIR_CPU_HEARTBEAT 0x01 /* timer interrupt */
223#define SCIR_CPU_ACTIVITY 0x02 /* not idle */
224#define SCIR_CPU_HB_INTERVAL (HZ) /* once per second */
225
8661984f
DS
226/* Loop through all installed blades */
227#define for_each_possible_blade(bid) \
228 for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
229
9f5314fb
JS
230/*
231 * Macros for converting between kernel virtual addresses, socket local physical
232 * addresses, and UV global physical addresses.
39d30770
MT
233 * Note: use the standard __pa() & __va() macros for converting
234 * between socket virtual and socket physical addresses.
9f5314fb
JS
235 */
236
237/* socket phys RAM --> UV global physical address */
238static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
239{
240 if (paddr < uv_hub_info->lowmem_remap_top)
189f67c4 241 paddr |= uv_hub_info->lowmem_remap_base;
9f5314fb
JS
242 return paddr | uv_hub_info->gnode_upper;
243}
244
245
246/* socket virtual --> UV global physical address */
247static inline unsigned long uv_gpa(void *v)
248{
189f67c4 249 return uv_soc_phys_ram_to_gpa(__pa(v));
9f5314fb 250}
1d21e6e3 251
fae419f2
RH
252/* Top two bits indicate the requested address is in MMR space. */
253static inline int
254uv_gpa_in_mmr_space(unsigned long gpa)
255{
256 return (gpa >> 62) == 0x3UL;
257}
258
729d69e6
RH
259/* UV global physical address --> socket phys RAM */
260static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
261{
262 unsigned long paddr = gpa & uv_hub_info->gpa_mask;
263 unsigned long remap_base = uv_hub_info->lowmem_remap_base;
264 unsigned long remap_top = uv_hub_info->lowmem_remap_top;
265
266 if (paddr >= remap_base && paddr < remap_base + remap_top)
267 paddr -= remap_base;
268 return paddr;
269}
270
271
1d21e6e3
RH
272/* gnode -> pnode */
273static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
274{
275 return gpa >> uv_hub_info->m_val;
276}
277
278/* gpa -> pnode */
279static inline int uv_gpa_to_pnode(unsigned long gpa)
280{
281 unsigned long n_mask = (1UL << uv_hub_info->n_val) - 1;
282
283 return uv_gpa_to_gnode(gpa) & n_mask;
284}
9f5314fb
JS
285
286/* pnode, offset --> socket virtual */
287static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
288{
289 return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
290}
952cf6d7 291
952cf6d7
JS
292
293/*
9f5314fb 294 * Extract a PNODE from an APICID (full apicid, not processor subset)
952cf6d7 295 */
9f5314fb 296static inline int uv_apicid_to_pnode(int apicid)
952cf6d7 297{
c8f730b1 298 return (apicid >> uv_hub_info->apic_pnode_shift);
952cf6d7
JS
299}
300
301/*
302 * Access global MMRs using the low memory MMR32 space. This region supports
303 * faster MMR access but not all MMRs are accessible in this space.
304 */
39d30770 305static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
952cf6d7
JS
306{
307 return __va(UV_GLOBAL_MMR32_BASE |
9f5314fb 308 UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
952cf6d7
JS
309}
310
39d30770 311static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
952cf6d7 312{
8dc579e8 313 writeq(val, uv_global_mmr32_address(pnode, offset));
952cf6d7
JS
314}
315
39d30770 316static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
952cf6d7 317{
8dc579e8 318 return readq(uv_global_mmr32_address(pnode, offset));
952cf6d7
JS
319}
320
321/*
322 * Access Global MMR space using the MMR space located at the top of physical
323 * memory.
324 */
a289cc7c 325static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
952cf6d7
JS
326{
327 return __va(UV_GLOBAL_MMR64_BASE |
9f5314fb 328 UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
952cf6d7
JS
329}
330
39d30770 331static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
952cf6d7 332{
8dc579e8 333 writeq(val, uv_global_mmr64_address(pnode, offset));
952cf6d7
JS
334}
335
39d30770 336static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
952cf6d7 337{
8dc579e8 338 return readq(uv_global_mmr64_address(pnode, offset));
952cf6d7
JS
339}
340
56abcf24
JS
341/*
342 * Global MMR space addresses when referenced by the GRU. (GRU does
343 * NOT use socket addressing).
344 */
345static inline unsigned long uv_global_gru_mmr_address(int pnode, unsigned long offset)
346{
e1e0138d
JS
347 return UV_GLOBAL_GRU_MMR_BASE | offset |
348 ((unsigned long)pnode << uv_hub_info->m_val);
56abcf24
JS
349}
350
39d30770
MT
351static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
352{
353 writeb(val, uv_global_mmr64_address(pnode, offset));
354}
355
356static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
357{
358 return readb(uv_global_mmr64_address(pnode, offset));
359}
360
952cf6d7 361/*
9f5314fb 362 * Access hub local MMRs. Faster than using global space but only local MMRs
952cf6d7
JS
363 * are accessible.
364 */
365static inline unsigned long *uv_local_mmr_address(unsigned long offset)
366{
367 return __va(UV_LOCAL_MMR_BASE | offset);
368}
369
370static inline unsigned long uv_read_local_mmr(unsigned long offset)
371{
8dc579e8 372 return readq(uv_local_mmr_address(offset));
952cf6d7
JS
373}
374
375static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
376{
8dc579e8 377 writeq(val, uv_local_mmr_address(offset));
952cf6d7
JS
378}
379
7f1baa06
MT
380static inline unsigned char uv_read_local_mmr8(unsigned long offset)
381{
8dc579e8 382 return readb(uv_local_mmr_address(offset));
7f1baa06
MT
383}
384
385static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
386{
8dc579e8 387 writeb(val, uv_local_mmr_address(offset));
7f1baa06
MT
388}
389
8400def8 390/*
9f5314fb 391 * Structures and definitions for converting between cpu, node, pnode, and blade
8400def8
JS
392 * numbers.
393 */
394struct uv_blade_info {
9f5314fb 395 unsigned short nr_possible_cpus;
8400def8 396 unsigned short nr_online_cpus;
9f5314fb 397 unsigned short pnode;
6c7184b7 398 short memory_nid;
8400def8 399};
9f5314fb 400extern struct uv_blade_info *uv_blade_info;
8400def8
JS
401extern short *uv_node_to_blade;
402extern short *uv_cpu_to_blade;
403extern short uv_possible_blades;
404
405/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
406static inline int uv_blade_processor_id(void)
407{
408 return uv_hub_info->blade_processor_id;
409}
410
411/* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
412static inline int uv_numa_blade_id(void)
413{
414 return uv_hub_info->numa_blade_id;
415}
416
417/* Convert a cpu number to the the UV blade number */
418static inline int uv_cpu_to_blade_id(int cpu)
419{
420 return uv_cpu_to_blade[cpu];
421}
422
423/* Convert linux node number to the UV blade number */
424static inline int uv_node_to_blade_id(int nid)
425{
426 return uv_node_to_blade[nid];
427}
428
9f5314fb
JS
429/* Convert a blade id to the PNODE of the blade */
430static inline int uv_blade_to_pnode(int bid)
8400def8 431{
9f5314fb 432 return uv_blade_info[bid].pnode;
8400def8
JS
433}
434
6c7184b7
JS
435/* Nid of memory node on blade. -1 if no blade-local memory */
436static inline int uv_blade_to_memory_nid(int bid)
437{
438 return uv_blade_info[bid].memory_nid;
439}
440
8400def8
JS
441/* Determine the number of possible cpus on a blade */
442static inline int uv_blade_nr_possible_cpus(int bid)
443{
9f5314fb 444 return uv_blade_info[bid].nr_possible_cpus;
8400def8
JS
445}
446
447/* Determine the number of online cpus on a blade */
448static inline int uv_blade_nr_online_cpus(int bid)
449{
450 return uv_blade_info[bid].nr_online_cpus;
451}
452
9f5314fb
JS
453/* Convert a cpu id to the PNODE of the blade containing the cpu */
454static inline int uv_cpu_to_pnode(int cpu)
8400def8 455{
9f5314fb 456 return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
8400def8
JS
457}
458
9f5314fb
JS
459/* Convert a linux node number to the PNODE of the blade */
460static inline int uv_node_to_pnode(int nid)
8400def8 461{
9f5314fb 462 return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
8400def8
JS
463}
464
465/* Maximum possible number of blades */
466static inline int uv_num_possible_blades(void)
467{
468 return uv_possible_blades;
469}
470
7f1baa06
MT
471/* Update SCIR state */
472static inline void uv_set_scir_bits(unsigned char value)
473{
474 if (uv_hub_info->scir.state != value) {
475 uv_hub_info->scir.state = value;
476 uv_write_local_mmr8(uv_hub_info->scir.offset, value);
477 }
478}
66666e50 479
39d30770
MT
480static inline unsigned long uv_scir_offset(int apicid)
481{
482 return SCIR_LOCAL_MMR_BASE | (apicid & 0x3f);
483}
484
7f1baa06
MT
485static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
486{
487 if (uv_cpu_hub_info(cpu)->scir.state != value) {
39d30770
MT
488 uv_write_global_mmr8(uv_cpu_to_pnode(cpu),
489 uv_cpu_hub_info(cpu)->scir.offset, value);
7f1baa06 490 uv_cpu_hub_info(cpu)->scir.state = value;
7f1baa06
MT
491 }
492}
952cf6d7 493
56abcf24
JS
494static unsigned long uv_hub_ipi_value(int apicid, int vector, int mode)
495{
496 return (1UL << UVH_IPI_INT_SEND_SHFT) |
497 ((apicid) << UVH_IPI_INT_APIC_ID_SHFT) |
498 (mode << UVH_IPI_INT_DELIVERY_MODE_SHFT) |
499 (vector << UVH_IPI_INT_VECTOR_SHFT);
500}
501
66666e50
JS
502static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
503{
504 unsigned long val;
02dd0a06
RH
505 unsigned long dmode = dest_Fixed;
506
507 if (vector == NMI_VECTOR)
508 dmode = dest_NMI;
66666e50 509
56abcf24 510 val = uv_hub_ipi_value(apicid, vector, dmode);
66666e50
JS
511 uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
512}
513
7a1110e8
JS
514/*
515 * Get the minimum revision number of the hub chips within the partition.
516 * 1 - initial rev 1.0 silicon
517 * 2 - rev 2.0 production silicon
518 */
519static inline int uv_get_min_hub_revision_id(void)
520{
521 extern int uv_min_hub_revision_id;
522
523 return uv_min_hub_revision_id;
524}
525
bc5d9940 526#endif /* CONFIG_X86_64 */
7f1baa06 527#endif /* _ASM_X86_UV_UV_HUB_H */