]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/x86/include/asm/bitops.h
Merge branch 'fix/asoc' into for-linus
[net-next-2.6.git] / arch / x86 / include / asm / bitops.h
CommitLineData
1965aae3
PA
1#ifndef _ASM_X86_BITOPS_H
2#define _ASM_X86_BITOPS_H
1c54d770
JF
3
4/*
5 * Copyright 1992, Linus Torvalds.
c8399943
AK
6 *
7 * Note: inlines with more than a single statement should be marked
8 * __always_inline to avoid problems with older gcc's inlining heuristics.
1c54d770
JF
9 */
10
11#ifndef _LINUX_BITOPS_H
12#error only <linux/bitops.h> can be included directly
13#endif
14
15#include <linux/compiler.h>
16#include <asm/alternative.h>
17
18/*
19 * These have to be done with inline assembly: that way the bit-setting
20 * is guaranteed to be atomic. All bit operations return 0 if the bit
21 * was cleared before the operation and != 0 if it was not.
22 *
23 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
24 */
25
26#if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1)
27/* Technically wrong, but this avoids compilation errors on some gcc
28 versions. */
1a750e0c 29#define BITOP_ADDR(x) "=m" (*(volatile long *) (x))
1c54d770 30#else
1a750e0c 31#define BITOP_ADDR(x) "+m" (*(volatile long *) (x))
1c54d770
JF
32#endif
33
7dbceaf9 34#define ADDR BITOP_ADDR(addr)
1a750e0c
LT
35
36/*
37 * We do the locked ops that don't return the old value as
38 * a mask operation on a byte.
39 */
7dbceaf9
IM
40#define IS_IMMEDIATE(nr) (__builtin_constant_p(nr))
41#define CONST_MASK_ADDR(nr, addr) BITOP_ADDR((void *)(addr) + ((nr)>>3))
42#define CONST_MASK(nr) (1 << ((nr) & 7))
1a750e0c 43
1c54d770
JF
44/**
45 * set_bit - Atomically set a bit in memory
46 * @nr: the bit to set
47 * @addr: the address to start counting from
48 *
49 * This function is atomic and may not be reordered. See __set_bit()
50 * if you do not require the atomic guarantees.
51 *
52 * Note: there are no guarantees that this function will not be reordered
53 * on non x86 architectures, so if you are writing portable code,
54 * make sure not to rely on its reordering guarantees.
55 *
56 * Note that @nr may be almost arbitrarily large; this function is not
57 * restricted to acting on a single-word quantity.
58 */
c8399943
AK
59static __always_inline void
60set_bit(unsigned int nr, volatile unsigned long *addr)
1c54d770 61{
7dbceaf9
IM
62 if (IS_IMMEDIATE(nr)) {
63 asm volatile(LOCK_PREFIX "orb %1,%0"
64 : CONST_MASK_ADDR(nr, addr)
437a0a54 65 : "iq" ((u8)CONST_MASK(nr))
7dbceaf9
IM
66 : "memory");
67 } else {
68 asm volatile(LOCK_PREFIX "bts %1,%0"
69 : BITOP_ADDR(addr) : "Ir" (nr) : "memory");
70 }
1c54d770
JF
71}
72
73/**
74 * __set_bit - Set a bit in memory
75 * @nr: the bit to set
76 * @addr: the address to start counting from
77 *
78 * Unlike set_bit(), this function is non-atomic and may be reordered.
79 * If it's called on the same region of memory simultaneously, the effect
80 * may be that only one operation succeeds.
81 */
5136dea5 82static inline void __set_bit(int nr, volatile unsigned long *addr)
1c54d770 83{
f19dcf4a 84 asm volatile("bts %1,%0" : ADDR : "Ir" (nr) : "memory");
1c54d770
JF
85}
86
1c54d770
JF
87/**
88 * clear_bit - Clears a bit in memory
89 * @nr: Bit to clear
90 * @addr: Address to start counting from
91 *
92 * clear_bit() is atomic and may not be reordered. However, it does
93 * not contain a memory barrier, so if it is used for locking purposes,
94 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
95 * in order to ensure changes are visible on other processors.
96 */
c8399943
AK
97static __always_inline void
98clear_bit(int nr, volatile unsigned long *addr)
1c54d770 99{
7dbceaf9
IM
100 if (IS_IMMEDIATE(nr)) {
101 asm volatile(LOCK_PREFIX "andb %1,%0"
102 : CONST_MASK_ADDR(nr, addr)
437a0a54 103 : "iq" ((u8)~CONST_MASK(nr)));
7dbceaf9
IM
104 } else {
105 asm volatile(LOCK_PREFIX "btr %1,%0"
106 : BITOP_ADDR(addr)
107 : "Ir" (nr));
108 }
1c54d770
JF
109}
110
111/*
112 * clear_bit_unlock - Clears a bit in memory
113 * @nr: Bit to clear
114 * @addr: Address to start counting from
115 *
116 * clear_bit() is atomic and implies release semantics before the memory
117 * operation. It can be used for an unlock.
118 */
5136dea5 119static inline void clear_bit_unlock(unsigned nr, volatile unsigned long *addr)
1c54d770
JF
120{
121 barrier();
122 clear_bit(nr, addr);
123}
124
5136dea5 125static inline void __clear_bit(int nr, volatile unsigned long *addr)
1c54d770 126{
eb2b4e68 127 asm volatile("btr %1,%0" : ADDR : "Ir" (nr));
1c54d770
JF
128}
129
130/*
131 * __clear_bit_unlock - Clears a bit in memory
132 * @nr: Bit to clear
133 * @addr: Address to start counting from
134 *
135 * __clear_bit() is non-atomic and implies release semantics before the memory
136 * operation. It can be used for an unlock if no other CPUs can concurrently
137 * modify other bits in the word.
138 *
139 * No memory barrier is required here, because x86 cannot reorder stores past
140 * older loads. Same principle as spin_unlock.
141 */
5136dea5 142static inline void __clear_bit_unlock(unsigned nr, volatile unsigned long *addr)
1c54d770
JF
143{
144 barrier();
145 __clear_bit(nr, addr);
146}
147
148#define smp_mb__before_clear_bit() barrier()
149#define smp_mb__after_clear_bit() barrier()
150
151/**
152 * __change_bit - Toggle a bit in memory
153 * @nr: the bit to change
154 * @addr: the address to start counting from
155 *
156 * Unlike change_bit(), this function is non-atomic and may be reordered.
157 * If it's called on the same region of memory simultaneously, the effect
158 * may be that only one operation succeeds.
159 */
5136dea5 160static inline void __change_bit(int nr, volatile unsigned long *addr)
1c54d770 161{
eb2b4e68 162 asm volatile("btc %1,%0" : ADDR : "Ir" (nr));
1c54d770
JF
163}
164
165/**
166 * change_bit - Toggle a bit in memory
167 * @nr: Bit to change
168 * @addr: Address to start counting from
169 *
170 * change_bit() is atomic and may not be reordered.
171 * Note that @nr may be almost arbitrarily large; this function is not
172 * restricted to acting on a single-word quantity.
173 */
5136dea5 174static inline void change_bit(int nr, volatile unsigned long *addr)
1c54d770 175{
838e8bb7
UB
176 if (IS_IMMEDIATE(nr)) {
177 asm volatile(LOCK_PREFIX "xorb %1,%0"
178 : CONST_MASK_ADDR(nr, addr)
179 : "iq" ((u8)CONST_MASK(nr)));
180 } else {
181 asm volatile(LOCK_PREFIX "btc %1,%0"
182 : BITOP_ADDR(addr)
183 : "Ir" (nr));
184 }
1c54d770
JF
185}
186
187/**
188 * test_and_set_bit - Set a bit and return its old value
189 * @nr: Bit to set
190 * @addr: Address to count from
191 *
192 * This operation is atomic and cannot be reordered.
193 * It also implies a memory barrier.
194 */
5136dea5 195static inline int test_and_set_bit(int nr, volatile unsigned long *addr)
1c54d770
JF
196{
197 int oldbit;
198
199 asm volatile(LOCK_PREFIX "bts %2,%1\n\t"
286275c9 200 "sbb %0,%0" : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
1c54d770
JF
201
202 return oldbit;
203}
204
205/**
206 * test_and_set_bit_lock - Set a bit and return its old value for lock
207 * @nr: Bit to set
208 * @addr: Address to count from
209 *
210 * This is the same as test_and_set_bit on x86.
211 */
c8399943
AK
212static __always_inline int
213test_and_set_bit_lock(int nr, volatile unsigned long *addr)
1c54d770
JF
214{
215 return test_and_set_bit(nr, addr);
216}
217
218/**
219 * __test_and_set_bit - Set a bit and return its old value
220 * @nr: Bit to set
221 * @addr: Address to count from
222 *
223 * This operation is non-atomic and can be reordered.
224 * If two examples of this operation race, one can appear to succeed
225 * but actually fail. You must protect multiple accesses with a lock.
226 */
5136dea5 227static inline int __test_and_set_bit(int nr, volatile unsigned long *addr)
1c54d770
JF
228{
229 int oldbit;
230
eb2b4e68
SHT
231 asm("bts %2,%1\n\t"
232 "sbb %0,%0"
233 : "=r" (oldbit), ADDR
234 : "Ir" (nr));
1c54d770
JF
235 return oldbit;
236}
237
238/**
239 * test_and_clear_bit - Clear a bit and return its old value
240 * @nr: Bit to clear
241 * @addr: Address to count from
242 *
243 * This operation is atomic and cannot be reordered.
244 * It also implies a memory barrier.
245 */
5136dea5 246static inline int test_and_clear_bit(int nr, volatile unsigned long *addr)
1c54d770
JF
247{
248 int oldbit;
249
250 asm volatile(LOCK_PREFIX "btr %2,%1\n\t"
251 "sbb %0,%0"
286275c9 252 : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
1c54d770
JF
253
254 return oldbit;
255}
256
257/**
258 * __test_and_clear_bit - Clear a bit and return its old value
259 * @nr: Bit to clear
260 * @addr: Address to count from
261 *
262 * This operation is non-atomic and can be reordered.
263 * If two examples of this operation race, one can appear to succeed
264 * but actually fail. You must protect multiple accesses with a lock.
265 */
5136dea5 266static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
1c54d770
JF
267{
268 int oldbit;
269
eb2b4e68 270 asm volatile("btr %2,%1\n\t"
1c54d770 271 "sbb %0,%0"
eb2b4e68
SHT
272 : "=r" (oldbit), ADDR
273 : "Ir" (nr));
1c54d770
JF
274 return oldbit;
275}
276
277/* WARNING: non atomic and it can be reordered! */
5136dea5 278static inline int __test_and_change_bit(int nr, volatile unsigned long *addr)
1c54d770
JF
279{
280 int oldbit;
281
eb2b4e68 282 asm volatile("btc %2,%1\n\t"
1c54d770 283 "sbb %0,%0"
eb2b4e68
SHT
284 : "=r" (oldbit), ADDR
285 : "Ir" (nr) : "memory");
1c54d770
JF
286
287 return oldbit;
288}
289
290/**
291 * test_and_change_bit - Change a bit and return its old value
292 * @nr: Bit to change
293 * @addr: Address to count from
294 *
295 * This operation is atomic and cannot be reordered.
296 * It also implies a memory barrier.
297 */
5136dea5 298static inline int test_and_change_bit(int nr, volatile unsigned long *addr)
1c54d770
JF
299{
300 int oldbit;
301
302 asm volatile(LOCK_PREFIX "btc %2,%1\n\t"
303 "sbb %0,%0"
286275c9 304 : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
1c54d770
JF
305
306 return oldbit;
307}
308
c8399943 309static __always_inline int constant_test_bit(unsigned int nr, const volatile unsigned long *addr)
1c54d770 310{
26996dd2 311 return ((1UL << (nr % BITS_PER_LONG)) &
c9e2fbd9 312 (addr[nr / BITS_PER_LONG])) != 0;
1c54d770
JF
313}
314
5136dea5 315static inline int variable_test_bit(int nr, volatile const unsigned long *addr)
1c54d770
JF
316{
317 int oldbit;
318
eb2b4e68 319 asm volatile("bt %2,%1\n\t"
1c54d770
JF
320 "sbb %0,%0"
321 : "=r" (oldbit)
eb2b4e68 322 : "m" (*(unsigned long *)addr), "Ir" (nr));
1c54d770
JF
323
324 return oldbit;
325}
326
327#if 0 /* Fool kernel-doc since it doesn't do macros yet */
328/**
329 * test_bit - Determine whether a bit is set
330 * @nr: bit number to test
331 * @addr: Address to start counting from
332 */
333static int test_bit(int nr, const volatile unsigned long *addr);
334#endif
335
f19dcf4a
JP
336#define test_bit(nr, addr) \
337 (__builtin_constant_p((nr)) \
338 ? constant_test_bit((nr), (addr)) \
339 : variable_test_bit((nr), (addr)))
1c54d770 340
12d9c842
AH
341/**
342 * __ffs - find first set bit in word
343 * @word: The word to search
344 *
345 * Undefined if no bit exists, so code should check against 0 first.
346 */
347static inline unsigned long __ffs(unsigned long word)
348{
f19dcf4a
JP
349 asm("bsf %1,%0"
350 : "=r" (word)
351 : "rm" (word));
12d9c842
AH
352 return word;
353}
354
355/**
356 * ffz - find first zero bit in word
357 * @word: The word to search
358 *
359 * Undefined if no zero exists, so code should check against ~0UL first.
360 */
361static inline unsigned long ffz(unsigned long word)
362{
f19dcf4a
JP
363 asm("bsf %1,%0"
364 : "=r" (word)
365 : "r" (~word));
12d9c842
AH
366 return word;
367}
368
369/*
370 * __fls: find last set bit in word
371 * @word: The word to search
372 *
8450e853 373 * Undefined if no set bit exists, so code should check against 0 first.
12d9c842
AH
374 */
375static inline unsigned long __fls(unsigned long word)
376{
f19dcf4a
JP
377 asm("bsr %1,%0"
378 : "=r" (word)
379 : "rm" (word));
12d9c842
AH
380 return word;
381}
382
383#ifdef __KERNEL__
384/**
385 * ffs - find first set bit in word
386 * @x: the word to search
387 *
388 * This is defined the same way as the libc and compiler builtin ffs
389 * routines, therefore differs in spirit from the other bitops.
390 *
391 * ffs(value) returns 0 if value is 0 or the position of the first
392 * set bit if value is nonzero. The first (least significant) bit
393 * is at position 1.
394 */
395static inline int ffs(int x)
396{
397 int r;
398#ifdef CONFIG_X86_CMOV
f19dcf4a
JP
399 asm("bsfl %1,%0\n\t"
400 "cmovzl %2,%0"
401 : "=r" (r) : "rm" (x), "r" (-1));
12d9c842 402#else
f19dcf4a
JP
403 asm("bsfl %1,%0\n\t"
404 "jnz 1f\n\t"
405 "movl $-1,%0\n"
406 "1:" : "=r" (r) : "rm" (x));
12d9c842
AH
407#endif
408 return r + 1;
409}
410
411/**
412 * fls - find last set bit in word
413 * @x: the word to search
414 *
415 * This is defined in a similar way as the libc and compiler builtin
416 * ffs, but returns the position of the most significant set bit.
417 *
418 * fls(value) returns 0 if value is 0 or the position of the last
419 * set bit if value is nonzero. The last (most significant) bit is
420 * at position 32.
421 */
422static inline int fls(int x)
423{
424 int r;
425#ifdef CONFIG_X86_CMOV
f19dcf4a
JP
426 asm("bsrl %1,%0\n\t"
427 "cmovzl %2,%0"
428 : "=&r" (r) : "rm" (x), "rm" (-1));
12d9c842 429#else
f19dcf4a
JP
430 asm("bsrl %1,%0\n\t"
431 "jnz 1f\n\t"
432 "movl $-1,%0\n"
433 "1:" : "=r" (r) : "rm" (x));
12d9c842
AH
434#endif
435 return r + 1;
436}
437#endif /* __KERNEL__ */
438
1c54d770
JF
439#undef ADDR
440
d66462f5
AH
441#ifdef __KERNEL__
442
443#include <asm-generic/bitops/sched.h>
444
445#define ARCH_HAS_FAST_MULTIPLIER 1
446
d61931d8
BP
447#include <asm/arch_hweight.h>
448
449#include <asm-generic/bitops/const_hweight.h>
1c54d770 450
d66462f5
AH
451#endif /* __KERNEL__ */
452
453#include <asm-generic/bitops/fls64.h>
454
455#ifdef __KERNEL__
456
457#include <asm-generic/bitops/ext2-non-atomic.h>
458
459#define ext2_set_bit_atomic(lock, nr, addr) \
460 test_and_set_bit((nr), (unsigned long *)(addr))
461#define ext2_clear_bit_atomic(lock, nr, addr) \
462 test_and_clear_bit((nr), (unsigned long *)(addr))
463
464#include <asm-generic/bitops/minix.h>
465
466#endif /* __KERNEL__ */
1965aae3 467#endif /* _ASM_X86_BITOPS_H */