]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/sparc64/mm/init.c
[SPARC]: Declare paging_init() in asm/pgtable.h
[net-next-2.6.git] / arch / sparc64 / mm / init.c
CommitLineData
1da177e4
LT
1/* $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
2 * arch/sparc64/mm/init.c
3 *
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
7
8#include <linux/config.h>
9#include <linux/kernel.h>
10#include <linux/sched.h>
11#include <linux/string.h>
12#include <linux/init.h>
13#include <linux/bootmem.h>
14#include <linux/mm.h>
15#include <linux/hugetlb.h>
16#include <linux/slab.h>
17#include <linux/initrd.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/fs.h>
21#include <linux/seq_file.h>
05e14cb3 22#include <linux/kprobes.h>
1ac4f5eb 23#include <linux/cache.h>
1da177e4
LT
24
25#include <asm/head.h>
26#include <asm/system.h>
27#include <asm/page.h>
28#include <asm/pgalloc.h>
29#include <asm/pgtable.h>
30#include <asm/oplib.h>
31#include <asm/iommu.h>
32#include <asm/io.h>
33#include <asm/uaccess.h>
34#include <asm/mmu_context.h>
35#include <asm/tlbflush.h>
36#include <asm/dma.h>
37#include <asm/starfire.h>
38#include <asm/tlb.h>
39#include <asm/spitfire.h>
40#include <asm/sections.h>
41
42extern void device_scan(void);
43
44struct sparc_phys_banks sp_banks[SPARC_PHYS_BANKS];
45
2bdb3cb2 46unsigned long *sparc64_valid_addr_bitmap __read_mostly;
1da177e4
LT
47
48/* Ugly, but necessary... -DaveM */
1ac4f5eb
DM
49unsigned long phys_base __read_mostly;
50unsigned long kern_base __read_mostly;
51unsigned long kern_size __read_mostly;
52unsigned long pfn_base __read_mostly;
1da177e4 53
1da177e4
LT
54/* get_new_mmu_context() uses "cache + 1". */
55DEFINE_SPINLOCK(ctx_alloc_lock);
56unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
57#define CTX_BMAP_SLOTS (1UL << (CTX_NR_BITS - 6))
58unsigned long mmu_context_bmap[CTX_BMAP_SLOTS];
59
60/* References to special section boundaries */
61extern char _start[], _end[];
62
63/* Initial ramdisk setup */
64extern unsigned long sparc_ramdisk_image64;
65extern unsigned int sparc_ramdisk_image;
66extern unsigned int sparc_ramdisk_size;
67
1ac4f5eb 68struct page *mem_map_zero __read_mostly;
1da177e4
LT
69
70int bigkernel = 0;
71
72/* XXX Tune this... */
73#define PGT_CACHE_LOW 25
74#define PGT_CACHE_HIGH 50
75
76void check_pgt_cache(void)
77{
78 preempt_disable();
79 if (pgtable_cache_size > PGT_CACHE_HIGH) {
80 do {
81 if (pgd_quicklist)
82 free_pgd_slow(get_pgd_fast());
83 if (pte_quicklist[0])
84 free_pte_slow(pte_alloc_one_fast(NULL, 0));
85 if (pte_quicklist[1])
86 free_pte_slow(pte_alloc_one_fast(NULL, 1 << (PAGE_SHIFT + 10)));
87 } while (pgtable_cache_size > PGT_CACHE_LOW);
88 }
89 preempt_enable();
90}
91
92#ifdef CONFIG_DEBUG_DCFLUSH
93atomic_t dcpage_flushes = ATOMIC_INIT(0);
94#ifdef CONFIG_SMP
95atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
96#endif
97#endif
98
99__inline__ void flush_dcache_page_impl(struct page *page)
100{
101#ifdef CONFIG_DEBUG_DCFLUSH
102 atomic_inc(&dcpage_flushes);
103#endif
104
105#ifdef DCACHE_ALIASING_POSSIBLE
106 __flush_dcache_page(page_address(page),
107 ((tlb_type == spitfire) &&
108 page_mapping(page) != NULL));
109#else
110 if (page_mapping(page) != NULL &&
111 tlb_type == spitfire)
112 __flush_icache_page(__pa(page_address(page)));
113#endif
114}
115
116#define PG_dcache_dirty PG_arch_1
48b0e548
DM
117#define PG_dcache_cpu_shift 24
118#define PG_dcache_cpu_mask (256 - 1)
119
120#if NR_CPUS > 256
121#error D-cache dirty tracking and thread_info->cpu need fixing for > 256 cpus
122#endif
1da177e4
LT
123
124#define dcache_dirty_cpu(page) \
48b0e548 125 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
1da177e4
LT
126
127static __inline__ void set_dcache_dirty(struct page *page, int this_cpu)
128{
129 unsigned long mask = this_cpu;
48b0e548
DM
130 unsigned long non_cpu_bits;
131
132 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
133 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
134
1da177e4
LT
135 __asm__ __volatile__("1:\n\t"
136 "ldx [%2], %%g7\n\t"
137 "and %%g7, %1, %%g1\n\t"
138 "or %%g1, %0, %%g1\n\t"
139 "casx [%2], %%g7, %%g1\n\t"
140 "cmp %%g7, %%g1\n\t"
b445e26c 141 "membar #StoreLoad | #StoreStore\n\t"
1da177e4 142 "bne,pn %%xcc, 1b\n\t"
b445e26c 143 " nop"
1da177e4
LT
144 : /* no outputs */
145 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
146 : "g1", "g7");
147}
148
149static __inline__ void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
150{
151 unsigned long mask = (1UL << PG_dcache_dirty);
152
153 __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
154 "1:\n\t"
155 "ldx [%2], %%g7\n\t"
48b0e548 156 "srlx %%g7, %4, %%g1\n\t"
1da177e4
LT
157 "and %%g1, %3, %%g1\n\t"
158 "cmp %%g1, %0\n\t"
159 "bne,pn %%icc, 2f\n\t"
160 " andn %%g7, %1, %%g1\n\t"
161 "casx [%2], %%g7, %%g1\n\t"
162 "cmp %%g7, %%g1\n\t"
b445e26c 163 "membar #StoreLoad | #StoreStore\n\t"
1da177e4 164 "bne,pn %%xcc, 1b\n\t"
b445e26c 165 " nop\n"
1da177e4
LT
166 "2:"
167 : /* no outputs */
168 : "r" (cpu), "r" (mask), "r" (&page->flags),
48b0e548
DM
169 "i" (PG_dcache_cpu_mask),
170 "i" (PG_dcache_cpu_shift)
1da177e4
LT
171 : "g1", "g7");
172}
173
1da177e4
LT
174void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
175{
176 struct page *page;
177 unsigned long pfn;
178 unsigned long pg_flags;
179
180 pfn = pte_pfn(pte);
181 if (pfn_valid(pfn) &&
182 (page = pfn_to_page(pfn), page_mapping(page)) &&
183 ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
48b0e548
DM
184 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
185 PG_dcache_cpu_mask);
1da177e4
LT
186 int this_cpu = get_cpu();
187
188 /* This is just to optimize away some function calls
189 * in the SMP case.
190 */
191 if (cpu == this_cpu)
192 flush_dcache_page_impl(page);
193 else
194 smp_flush_dcache_page_impl(page, cpu);
195
196 clear_dcache_dirty_cpu(page, cpu);
197
198 put_cpu();
199 }
1da177e4
LT
200}
201
202void flush_dcache_page(struct page *page)
203{
a9546f59
DM
204 struct address_space *mapping;
205 int this_cpu;
1da177e4 206
a9546f59
DM
207 /* Do not bother with the expensive D-cache flush if it
208 * is merely the zero page. The 'bigcore' testcase in GDB
209 * causes this case to run millions of times.
210 */
211 if (page == ZERO_PAGE(0))
212 return;
213
214 this_cpu = get_cpu();
215
216 mapping = page_mapping(page);
1da177e4 217 if (mapping && !mapping_mapped(mapping)) {
a9546f59 218 int dirty = test_bit(PG_dcache_dirty, &page->flags);
1da177e4 219 if (dirty) {
a9546f59
DM
220 int dirty_cpu = dcache_dirty_cpu(page);
221
1da177e4
LT
222 if (dirty_cpu == this_cpu)
223 goto out;
224 smp_flush_dcache_page_impl(page, dirty_cpu);
225 }
226 set_dcache_dirty(page, this_cpu);
227 } else {
228 /* We could delay the flush for the !page_mapping
229 * case too. But that case is for exec env/arg
230 * pages and those are %99 certainly going to get
231 * faulted into the tlb (and thus flushed) anyways.
232 */
233 flush_dcache_page_impl(page);
234 }
235
236out:
237 put_cpu();
238}
239
05e14cb3 240void __kprobes flush_icache_range(unsigned long start, unsigned long end)
1da177e4
LT
241{
242 /* Cheetah has coherent I-cache. */
243 if (tlb_type == spitfire) {
244 unsigned long kaddr;
245
246 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE)
247 __flush_icache_page(__get_phys(kaddr));
248 }
249}
250
251unsigned long page_to_pfn(struct page *page)
252{
253 return (unsigned long) ((page - mem_map) + pfn_base);
254}
255
256struct page *pfn_to_page(unsigned long pfn)
257{
258 return (mem_map + (pfn - pfn_base));
259}
260
261void show_mem(void)
262{
263 printk("Mem-info:\n");
264 show_free_areas();
265 printk("Free swap: %6ldkB\n",
266 nr_swap_pages << (PAGE_SHIFT-10));
267 printk("%ld pages of RAM\n", num_physpages);
268 printk("%d free pages\n", nr_free_pages());
269 printk("%d pages in page table cache\n",pgtable_cache_size);
270}
271
272void mmu_info(struct seq_file *m)
273{
274 if (tlb_type == cheetah)
275 seq_printf(m, "MMU Type\t: Cheetah\n");
276 else if (tlb_type == cheetah_plus)
277 seq_printf(m, "MMU Type\t: Cheetah+\n");
278 else if (tlb_type == spitfire)
279 seq_printf(m, "MMU Type\t: Spitfire\n");
280 else
281 seq_printf(m, "MMU Type\t: ???\n");
282
283#ifdef CONFIG_DEBUG_DCFLUSH
284 seq_printf(m, "DCPageFlushes\t: %d\n",
285 atomic_read(&dcpage_flushes));
286#ifdef CONFIG_SMP
287 seq_printf(m, "DCPageFlushesXC\t: %d\n",
288 atomic_read(&dcpage_flushes_xcall));
289#endif /* CONFIG_SMP */
290#endif /* CONFIG_DEBUG_DCFLUSH */
291}
292
293struct linux_prom_translation {
294 unsigned long virt;
295 unsigned long size;
296 unsigned long data;
297};
b206fc4c 298static struct linux_prom_translation prom_trans[512] __initdata;
1da177e4
LT
299
300extern unsigned long prom_boot_page;
301extern void prom_remap(unsigned long physpage, unsigned long virtpage, int mmu_ihandle);
302extern int prom_get_mmu_ihandle(void);
303extern void register_prom_callbacks(void);
304
305/* Exported for SMP bootup purposes. */
306unsigned long kern_locked_tte_data;
307
1ac4f5eb
DM
308/* Exported for kernel TLB miss handling in ktlb.S */
309unsigned long prom_pmd_phys __read_mostly;
310unsigned int swapper_pgd_zero __read_mostly;
311
5085b4a5
DM
312/* Allocate power-of-2 aligned chunks from the end of the
313 * kernel image. Return physical address.
314 */
315static inline unsigned long early_alloc_phys(unsigned long size)
1da177e4 316{
5085b4a5
DM
317 unsigned long base;
318
319 BUILD_BUG_ON(size & (size - 1));
320
321 kern_size = (kern_size + (size - 1)) & ~(size - 1);
322 base = kern_base + kern_size;
323 kern_size += size;
324
325 return base;
326}
327
328static inline unsigned long load_phys32(unsigned long pa)
329{
330 unsigned long val;
331
332 __asm__ __volatile__("lduwa [%1] %2, %0"
333 : "=&r" (val)
334 : "r" (pa), "i" (ASI_PHYS_USE_EC));
335
336 return val;
337}
338
339static inline unsigned long load_phys64(unsigned long pa)
340{
341 unsigned long val;
342
343 __asm__ __volatile__("ldxa [%1] %2, %0"
344 : "=&r" (val)
345 : "r" (pa), "i" (ASI_PHYS_USE_EC));
346
347 return val;
348}
349
350static inline void store_phys32(unsigned long pa, unsigned long val)
351{
352 __asm__ __volatile__("stwa %0, [%1] %2"
353 : /* no outputs */
354 : "r" (val), "r" (pa), "i" (ASI_PHYS_USE_EC));
355}
356
357static inline void store_phys64(unsigned long pa, unsigned long val)
358{
359 __asm__ __volatile__("stxa %0, [%1] %2"
360 : /* no outputs */
361 : "r" (val), "r" (pa), "i" (ASI_PHYS_USE_EC));
1da177e4
LT
362}
363
364#define BASE_PAGE_SIZE 8192
1da177e4
LT
365
366/*
367 * Translate PROM's mapping we capture at boot time into physical address.
368 * The second parameter is only set from prom_callback() invocations.
369 */
370unsigned long prom_virt_to_phys(unsigned long promva, int *error)
371{
5085b4a5
DM
372 unsigned long pmd_phys = (prom_pmd_phys +
373 ((promva >> 23) & 0x7ff) * sizeof(pmd_t));
374 unsigned long pte_phys;
375 pmd_t pmd_ent;
376 pte_t pte_ent;
1da177e4
LT
377 unsigned long base;
378
5085b4a5
DM
379 pmd_val(pmd_ent) = load_phys32(pmd_phys);
380 if (pmd_none(pmd_ent)) {
1da177e4
LT
381 if (error)
382 *error = 1;
5085b4a5 383 return 0;
1da177e4 384 }
5085b4a5
DM
385
386 pte_phys = (unsigned long)pmd_val(pmd_ent) << 11UL;
387 pte_phys += ((promva >> 13) & 0x3ff) * sizeof(pte_t);
388 pte_val(pte_ent) = load_phys64(pte_phys);
389 if (!pte_present(pte_ent)) {
1da177e4
LT
390 if (error)
391 *error = 1;
5085b4a5 392 return 0;
1da177e4
LT
393 }
394 if (error) {
395 *error = 0;
5085b4a5 396 return pte_val(pte_ent);
1da177e4 397 }
5085b4a5
DM
398 base = pte_val(pte_ent) & _PAGE_PADDR;
399 return (base + (promva & (BASE_PAGE_SIZE - 1)));
405599bd
DM
400}
401
402/* The obp translations are saved based on 8k pagesize, since obp can
403 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
404 * HI_OBP_ADDRESS range are handled in entry.S and do not use the vpte
405 * scheme (also, see rant in inherit_locked_prom_mappings()).
406 */
898cf0ec 407static void __init build_obp_range(unsigned long start, unsigned long end, unsigned long data)
405599bd
DM
408{
409 unsigned long vaddr;
410
411 for (vaddr = start; vaddr < end; vaddr += BASE_PAGE_SIZE) {
5085b4a5
DM
412 unsigned long val, pte_phys, pmd_phys;
413 pmd_t pmd_ent;
414 int i;
415
416 pmd_phys = (prom_pmd_phys +
417 (((vaddr >> 23) & 0x7ff) * sizeof(pmd_t)));
418 pmd_val(pmd_ent) = load_phys32(pmd_phys);
419 if (pmd_none(pmd_ent)) {
420 pte_phys = early_alloc_phys(BASE_PAGE_SIZE);
421
422 for (i = 0; i < BASE_PAGE_SIZE / sizeof(pte_t); i++)
423 store_phys64(pte_phys+i*sizeof(pte_t),0);
424
425 pmd_val(pmd_ent) = pte_phys >> 11UL;
426 store_phys32(pmd_phys, pmd_val(pmd_ent));
405599bd 427 }
5085b4a5
DM
428
429 pte_phys = (unsigned long)pmd_val(pmd_ent) << 11UL;
430 pte_phys += (((vaddr >> 13) & 0x3ff) * sizeof(pte_t));
405599bd
DM
431
432 val = data;
433
434 /* Clear diag TTE bits. */
435 if (tlb_type == spitfire)
436 val &= ~0x0003fe0000000000UL;
437
5085b4a5
DM
438 store_phys64(pte_phys, val | _PAGE_MODIFIED);
439
405599bd
DM
440 data += BASE_PAGE_SIZE;
441 }
442}
443
5085b4a5
DM
444static inline int in_obp_range(unsigned long vaddr)
445{
446 return (vaddr >= LOW_OBP_ADDRESS &&
447 vaddr < HI_OBP_ADDRESS);
448}
449
405599bd 450#define OBP_PMD_SIZE 2048
898cf0ec 451static void __init build_obp_pgtable(int prom_trans_ents)
405599bd 452{
5085b4a5
DM
453 unsigned long i;
454
455 prom_pmd_phys = early_alloc_phys(OBP_PMD_SIZE);
456 for (i = 0; i < OBP_PMD_SIZE; i += 4)
457 store_phys32(prom_pmd_phys + i, 0);
405599bd 458
405599bd
DM
459 for (i = 0; i < prom_trans_ents; i++) {
460 unsigned long start, end;
461
462 if (!in_obp_range(prom_trans[i].virt))
463 continue;
464
465 start = prom_trans[i].virt;
466 end = start + prom_trans[i].size;
467 if (end > HI_OBP_ADDRESS)
468 end = HI_OBP_ADDRESS;
469
470 build_obp_range(start, end, prom_trans[i].data);
471 }
405599bd
DM
472}
473
474/* Read OBP translations property into 'prom_trans[]'.
475 * Return the number of entries.
476 */
898cf0ec 477static int __init read_obp_translations(void)
405599bd
DM
478{
479 int n, node;
1da177e4
LT
480
481 node = prom_finddevice("/virtual-memory");
482 n = prom_getproplen(node, "translations");
405599bd 483 if (unlikely(n == 0 || n == -1)) {
b206fc4c 484 prom_printf("prom_mappings: Couldn't get size.\n");
1da177e4
LT
485 prom_halt();
486 }
405599bd
DM
487 if (unlikely(n > sizeof(prom_trans))) {
488 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
1da177e4
LT
489 prom_halt();
490 }
405599bd 491
b206fc4c 492 if ((n = prom_getproperty(node, "translations",
405599bd
DM
493 (char *)&prom_trans[0],
494 sizeof(prom_trans))) == -1) {
b206fc4c 495 prom_printf("prom_mappings: Couldn't get property.\n");
1da177e4
LT
496 prom_halt();
497 }
b206fc4c 498 n = n / sizeof(struct linux_prom_translation);
405599bd
DM
499 return n;
500}
1da177e4 501
898cf0ec 502static void __init remap_kernel(void)
405599bd
DM
503{
504 unsigned long phys_page, tte_vaddr, tte_data;
405599bd
DM
505 int tlb_ent = sparc64_highest_locked_tlbent();
506
1da177e4 507 tte_vaddr = (unsigned long) KERNBASE;
bff06d55
DM
508 phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
509 tte_data = (phys_page | (_PAGE_VALID | _PAGE_SZ4MB |
510 _PAGE_CP | _PAGE_CV | _PAGE_P |
511 _PAGE_L | _PAGE_W));
1da177e4
LT
512
513 kern_locked_tte_data = tte_data;
514
bff06d55 515 /* Now lock us into the TLBs via OBP. */
405599bd
DM
516 prom_dtlb_load(tlb_ent, tte_data, tte_vaddr);
517 prom_itlb_load(tlb_ent, tte_data, tte_vaddr);
1da177e4 518 if (bigkernel) {
405599bd
DM
519 prom_dtlb_load(tlb_ent - 1,
520 tte_data + 0x400000,
521 tte_vaddr + 0x400000);
522 prom_itlb_load(tlb_ent - 1,
523 tte_data + 0x400000,
524 tte_vaddr + 0x400000);
1da177e4 525 }
405599bd 526}
1da177e4 527
898cf0ec 528static void __init inherit_prom_mappings(void)
405599bd
DM
529{
530 int n;
531
532 n = read_obp_translations();
533 build_obp_pgtable(n);
534
535 /* Now fixup OBP's idea about where we really are mapped. */
536 prom_printf("Remapping the kernel... ");
537 remap_kernel();
538
1da177e4
LT
539 prom_printf("done.\n");
540
541 register_prom_callbacks();
542}
543
544/* The OBP specifications for sun4u mark 0xfffffffc00000000 and
545 * upwards as reserved for use by the firmware (I wonder if this
546 * will be the same on Cheetah...). We use this virtual address
547 * range for the VPTE table mappings of the nucleus so we need
548 * to zap them when we enter the PROM. -DaveM
549 */
550static void __flush_nucleus_vptes(void)
551{
552 unsigned long prom_reserved_base = 0xfffffffc00000000UL;
553 int i;
554
555 /* Only DTLB must be checked for VPTE entries. */
556 if (tlb_type == spitfire) {
557 for (i = 0; i < 63; i++) {
558 unsigned long tag;
559
560 /* Spitfire Errata #32 workaround */
561 /* NOTE: Always runs on spitfire, so no cheetah+
562 * page size encodings.
563 */
564 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
565 "flush %%g6"
566 : /* No outputs */
567 : "r" (0),
568 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
569
570 tag = spitfire_get_dtlb_tag(i);
571 if (((tag & ~(PAGE_MASK)) == 0) &&
572 ((tag & (PAGE_MASK)) >= prom_reserved_base)) {
573 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
574 "membar #Sync"
575 : /* no outputs */
576 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
577 spitfire_put_dtlb_data(i, 0x0UL);
578 }
579 }
580 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
581 for (i = 0; i < 512; i++) {
582 unsigned long tag = cheetah_get_dtlb_tag(i, 2);
583
584 if ((tag & ~PAGE_MASK) == 0 &&
585 (tag & PAGE_MASK) >= prom_reserved_base) {
586 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
587 "membar #Sync"
588 : /* no outputs */
589 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
590 cheetah_put_dtlb_data(i, 0x0UL, 2);
591 }
592
593 if (tlb_type != cheetah_plus)
594 continue;
595
596 tag = cheetah_get_dtlb_tag(i, 3);
597
598 if ((tag & ~PAGE_MASK) == 0 &&
599 (tag & PAGE_MASK) >= prom_reserved_base) {
600 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
601 "membar #Sync"
602 : /* no outputs */
603 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
604 cheetah_put_dtlb_data(i, 0x0UL, 3);
605 }
606 }
607 } else {
608 /* Implement me :-) */
609 BUG();
610 }
611}
612
613static int prom_ditlb_set;
614struct prom_tlb_entry {
615 int tlb_ent;
616 unsigned long tlb_tag;
617 unsigned long tlb_data;
618};
619struct prom_tlb_entry prom_itlb[16], prom_dtlb[16];
620
621void prom_world(int enter)
622{
623 unsigned long pstate;
624 int i;
625
626 if (!enter)
627 set_fs((mm_segment_t) { get_thread_current_ds() });
628
629 if (!prom_ditlb_set)
630 return;
631
632 /* Make sure the following runs atomically. */
633 __asm__ __volatile__("flushw\n\t"
634 "rdpr %%pstate, %0\n\t"
635 "wrpr %0, %1, %%pstate"
636 : "=r" (pstate)
637 : "i" (PSTATE_IE));
638
639 if (enter) {
640 /* Kick out nucleus VPTEs. */
641 __flush_nucleus_vptes();
642
643 /* Install PROM world. */
644 for (i = 0; i < 16; i++) {
645 if (prom_dtlb[i].tlb_ent != -1) {
646 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
647 "membar #Sync"
648 : : "r" (prom_dtlb[i].tlb_tag), "r" (TLB_TAG_ACCESS),
649 "i" (ASI_DMMU));
650 if (tlb_type == spitfire)
651 spitfire_put_dtlb_data(prom_dtlb[i].tlb_ent,
652 prom_dtlb[i].tlb_data);
653 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
654 cheetah_put_ldtlb_data(prom_dtlb[i].tlb_ent,
655 prom_dtlb[i].tlb_data);
656 }
657 if (prom_itlb[i].tlb_ent != -1) {
658 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
659 "membar #Sync"
660 : : "r" (prom_itlb[i].tlb_tag),
661 "r" (TLB_TAG_ACCESS),
662 "i" (ASI_IMMU));
663 if (tlb_type == spitfire)
664 spitfire_put_itlb_data(prom_itlb[i].tlb_ent,
665 prom_itlb[i].tlb_data);
666 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
667 cheetah_put_litlb_data(prom_itlb[i].tlb_ent,
668 prom_itlb[i].tlb_data);
669 }
670 }
671 } else {
672 for (i = 0; i < 16; i++) {
673 if (prom_dtlb[i].tlb_ent != -1) {
674 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
675 "membar #Sync"
676 : : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
677 if (tlb_type == spitfire)
678 spitfire_put_dtlb_data(prom_dtlb[i].tlb_ent, 0x0UL);
679 else
680 cheetah_put_ldtlb_data(prom_dtlb[i].tlb_ent, 0x0UL);
681 }
682 if (prom_itlb[i].tlb_ent != -1) {
683 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
684 "membar #Sync"
685 : : "r" (TLB_TAG_ACCESS),
686 "i" (ASI_IMMU));
687 if (tlb_type == spitfire)
688 spitfire_put_itlb_data(prom_itlb[i].tlb_ent, 0x0UL);
689 else
690 cheetah_put_litlb_data(prom_itlb[i].tlb_ent, 0x0UL);
691 }
692 }
693 }
694 __asm__ __volatile__("wrpr %0, 0, %%pstate"
695 : : "r" (pstate));
696}
697
698void inherit_locked_prom_mappings(int save_p)
699{
700 int i;
701 int dtlb_seen = 0;
702 int itlb_seen = 0;
703
704 /* Fucking losing PROM has more mappings in the TLB, but
705 * it (conveniently) fails to mention any of these in the
706 * translations property. The only ones that matter are
707 * the locked PROM tlb entries, so we impose the following
708 * irrecovable rule on the PROM, it is allowed 8 locked
709 * entries in the ITLB and 8 in the DTLB.
710 *
711 * Supposedly the upper 16GB of the address space is
712 * reserved for OBP, BUT I WISH THIS WAS DOCUMENTED
713 * SOMEWHERE!!!!!!!!!!!!!!!!! Furthermore the entire interface
714 * used between the client program and the firmware on sun5
715 * systems to coordinate mmu mappings is also COMPLETELY
716 * UNDOCUMENTED!!!!!! Thanks S(t)un!
717 */
718 if (save_p) {
719 for (i = 0; i < 16; i++) {
720 prom_itlb[i].tlb_ent = -1;
721 prom_dtlb[i].tlb_ent = -1;
722 }
723 }
724 if (tlb_type == spitfire) {
725 int high = SPITFIRE_HIGHEST_LOCKED_TLBENT - bigkernel;
726 for (i = 0; i < high; i++) {
727 unsigned long data;
728
729 /* Spitfire Errata #32 workaround */
730 /* NOTE: Always runs on spitfire, so no cheetah+
731 * page size encodings.
732 */
733 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
734 "flush %%g6"
735 : /* No outputs */
736 : "r" (0),
737 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
738
739 data = spitfire_get_dtlb_data(i);
740 if ((data & (_PAGE_L|_PAGE_VALID)) == (_PAGE_L|_PAGE_VALID)) {
741 unsigned long tag;
742
743 /* Spitfire Errata #32 workaround */
744 /* NOTE: Always runs on spitfire, so no
745 * cheetah+ page size encodings.
746 */
747 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
748 "flush %%g6"
749 : /* No outputs */
750 : "r" (0),
751 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
752
753 tag = spitfire_get_dtlb_tag(i);
754 if (save_p) {
755 prom_dtlb[dtlb_seen].tlb_ent = i;
756 prom_dtlb[dtlb_seen].tlb_tag = tag;
757 prom_dtlb[dtlb_seen].tlb_data = data;
758 }
759 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
760 "membar #Sync"
761 : : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
762 spitfire_put_dtlb_data(i, 0x0UL);
763
764 dtlb_seen++;
765 if (dtlb_seen > 15)
766 break;
767 }
768 }
769
770 for (i = 0; i < high; i++) {
771 unsigned long data;
772
773 /* Spitfire Errata #32 workaround */
774 /* NOTE: Always runs on spitfire, so no
775 * cheetah+ page size encodings.
776 */
777 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
778 "flush %%g6"
779 : /* No outputs */
780 : "r" (0),
781 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
782
783 data = spitfire_get_itlb_data(i);
784 if ((data & (_PAGE_L|_PAGE_VALID)) == (_PAGE_L|_PAGE_VALID)) {
785 unsigned long tag;
786
787 /* Spitfire Errata #32 workaround */
788 /* NOTE: Always runs on spitfire, so no
789 * cheetah+ page size encodings.
790 */
791 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
792 "flush %%g6"
793 : /* No outputs */
794 : "r" (0),
795 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
796
797 tag = spitfire_get_itlb_tag(i);
798 if (save_p) {
799 prom_itlb[itlb_seen].tlb_ent = i;
800 prom_itlb[itlb_seen].tlb_tag = tag;
801 prom_itlb[itlb_seen].tlb_data = data;
802 }
803 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
804 "membar #Sync"
805 : : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
806 spitfire_put_itlb_data(i, 0x0UL);
807
808 itlb_seen++;
809 if (itlb_seen > 15)
810 break;
811 }
812 }
813 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
814 int high = CHEETAH_HIGHEST_LOCKED_TLBENT - bigkernel;
815
816 for (i = 0; i < high; i++) {
817 unsigned long data;
818
819 data = cheetah_get_ldtlb_data(i);
820 if ((data & (_PAGE_L|_PAGE_VALID)) == (_PAGE_L|_PAGE_VALID)) {
821 unsigned long tag;
822
823 tag = cheetah_get_ldtlb_tag(i);
824 if (save_p) {
825 prom_dtlb[dtlb_seen].tlb_ent = i;
826 prom_dtlb[dtlb_seen].tlb_tag = tag;
827 prom_dtlb[dtlb_seen].tlb_data = data;
828 }
829 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
830 "membar #Sync"
831 : : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
832 cheetah_put_ldtlb_data(i, 0x0UL);
833
834 dtlb_seen++;
835 if (dtlb_seen > 15)
836 break;
837 }
838 }
839
840 for (i = 0; i < high; i++) {
841 unsigned long data;
842
843 data = cheetah_get_litlb_data(i);
844 if ((data & (_PAGE_L|_PAGE_VALID)) == (_PAGE_L|_PAGE_VALID)) {
845 unsigned long tag;
846
847 tag = cheetah_get_litlb_tag(i);
848 if (save_p) {
849 prom_itlb[itlb_seen].tlb_ent = i;
850 prom_itlb[itlb_seen].tlb_tag = tag;
851 prom_itlb[itlb_seen].tlb_data = data;
852 }
853 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
854 "membar #Sync"
855 : : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
856 cheetah_put_litlb_data(i, 0x0UL);
857
858 itlb_seen++;
859 if (itlb_seen > 15)
860 break;
861 }
862 }
863 } else {
864 /* Implement me :-) */
865 BUG();
866 }
867 if (save_p)
868 prom_ditlb_set = 1;
869}
870
871/* Give PROM back his world, done during reboots... */
872void prom_reload_locked(void)
873{
874 int i;
875
876 for (i = 0; i < 16; i++) {
877 if (prom_dtlb[i].tlb_ent != -1) {
878 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
879 "membar #Sync"
880 : : "r" (prom_dtlb[i].tlb_tag), "r" (TLB_TAG_ACCESS),
881 "i" (ASI_DMMU));
882 if (tlb_type == spitfire)
883 spitfire_put_dtlb_data(prom_dtlb[i].tlb_ent,
884 prom_dtlb[i].tlb_data);
885 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
886 cheetah_put_ldtlb_data(prom_dtlb[i].tlb_ent,
887 prom_dtlb[i].tlb_data);
888 }
889
890 if (prom_itlb[i].tlb_ent != -1) {
891 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
892 "membar #Sync"
893 : : "r" (prom_itlb[i].tlb_tag),
894 "r" (TLB_TAG_ACCESS),
895 "i" (ASI_IMMU));
896 if (tlb_type == spitfire)
897 spitfire_put_itlb_data(prom_itlb[i].tlb_ent,
898 prom_itlb[i].tlb_data);
899 else
900 cheetah_put_litlb_data(prom_itlb[i].tlb_ent,
901 prom_itlb[i].tlb_data);
902 }
903 }
904}
905
906#ifdef DCACHE_ALIASING_POSSIBLE
907void __flush_dcache_range(unsigned long start, unsigned long end)
908{
909 unsigned long va;
910
911 if (tlb_type == spitfire) {
912 int n = 0;
913
914 for (va = start; va < end; va += 32) {
915 spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
916 if (++n >= 512)
917 break;
918 }
919 } else {
920 start = __pa(start);
921 end = __pa(end);
922 for (va = start; va < end; va += 32)
923 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
924 "membar #Sync"
925 : /* no outputs */
926 : "r" (va),
927 "i" (ASI_DCACHE_INVALIDATE));
928 }
929}
930#endif /* DCACHE_ALIASING_POSSIBLE */
931
932/* If not locked, zap it. */
933void __flush_tlb_all(void)
934{
935 unsigned long pstate;
936 int i;
937
938 __asm__ __volatile__("flushw\n\t"
939 "rdpr %%pstate, %0\n\t"
940 "wrpr %0, %1, %%pstate"
941 : "=r" (pstate)
942 : "i" (PSTATE_IE));
943 if (tlb_type == spitfire) {
944 for (i = 0; i < 64; i++) {
945 /* Spitfire Errata #32 workaround */
946 /* NOTE: Always runs on spitfire, so no
947 * cheetah+ page size encodings.
948 */
949 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
950 "flush %%g6"
951 : /* No outputs */
952 : "r" (0),
953 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
954
955 if (!(spitfire_get_dtlb_data(i) & _PAGE_L)) {
956 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
957 "membar #Sync"
958 : /* no outputs */
959 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
960 spitfire_put_dtlb_data(i, 0x0UL);
961 }
962
963 /* Spitfire Errata #32 workaround */
964 /* NOTE: Always runs on spitfire, so no
965 * cheetah+ page size encodings.
966 */
967 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
968 "flush %%g6"
969 : /* No outputs */
970 : "r" (0),
971 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
972
973 if (!(spitfire_get_itlb_data(i) & _PAGE_L)) {
974 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
975 "membar #Sync"
976 : /* no outputs */
977 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
978 spitfire_put_itlb_data(i, 0x0UL);
979 }
980 }
981 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
982 cheetah_flush_dtlb_all();
983 cheetah_flush_itlb_all();
984 }
985 __asm__ __volatile__("wrpr %0, 0, %%pstate"
986 : : "r" (pstate));
987}
988
989/* Caller does TLB context flushing on local CPU if necessary.
990 * The caller also ensures that CTX_VALID(mm->context) is false.
991 *
992 * We must be careful about boundary cases so that we never
993 * let the user have CTX 0 (nucleus) or we ever use a CTX
994 * version of zero (and thus NO_CONTEXT would not be caught
995 * by version mis-match tests in mmu_context.h).
996 */
997void get_new_mmu_context(struct mm_struct *mm)
998{
999 unsigned long ctx, new_ctx;
1000 unsigned long orig_pgsz_bits;
1001
1002
1003 spin_lock(&ctx_alloc_lock);
1004 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
1005 ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
1006 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
1007 if (new_ctx >= (1 << CTX_NR_BITS)) {
1008 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
1009 if (new_ctx >= ctx) {
1010 int i;
1011 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
1012 CTX_FIRST_VERSION;
1013 if (new_ctx == 1)
1014 new_ctx = CTX_FIRST_VERSION;
1015
1016 /* Don't call memset, for 16 entries that's just
1017 * plain silly...
1018 */
1019 mmu_context_bmap[0] = 3;
1020 mmu_context_bmap[1] = 0;
1021 mmu_context_bmap[2] = 0;
1022 mmu_context_bmap[3] = 0;
1023 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
1024 mmu_context_bmap[i + 0] = 0;
1025 mmu_context_bmap[i + 1] = 0;
1026 mmu_context_bmap[i + 2] = 0;
1027 mmu_context_bmap[i + 3] = 0;
1028 }
1029 goto out;
1030 }
1031 }
1032 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
1033 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
1034out:
1035 tlb_context_cache = new_ctx;
1036 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
1037 spin_unlock(&ctx_alloc_lock);
1038}
1039
1040#ifndef CONFIG_SMP
1041struct pgtable_cache_struct pgt_quicklists;
1042#endif
1043
1044/* OK, we have to color these pages. The page tables are accessed
1045 * by non-Dcache enabled mapping in the VPTE area by the dtlb_backend.S
1046 * code, as well as by PAGE_OFFSET range direct-mapped addresses by
1047 * other parts of the kernel. By coloring, we make sure that the tlbmiss
1048 * fast handlers do not get data from old/garbage dcache lines that
1049 * correspond to an old/stale virtual address (user/kernel) that
1050 * previously mapped the pagetable page while accessing vpte range
1051 * addresses. The idea is that if the vpte color and PAGE_OFFSET range
1052 * color is the same, then when the kernel initializes the pagetable
1053 * using the later address range, accesses with the first address
1054 * range will see the newly initialized data rather than the garbage.
1055 */
1056#ifdef DCACHE_ALIASING_POSSIBLE
1057#define DC_ALIAS_SHIFT 1
1058#else
1059#define DC_ALIAS_SHIFT 0
1060#endif
8edf72eb 1061pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
1da177e4
LT
1062{
1063 struct page *page;
1064 unsigned long color;
1065
1066 {
1067 pte_t *ptep = pte_alloc_one_fast(mm, address);
1068
1069 if (ptep)
1070 return ptep;
1071 }
1072
1073 color = VPTE_COLOR(address);
1074 page = alloc_pages(GFP_KERNEL|__GFP_REPEAT, DC_ALIAS_SHIFT);
1075 if (page) {
1076 unsigned long *to_free;
1077 unsigned long paddr;
1078 pte_t *pte;
1079
1080#ifdef DCACHE_ALIASING_POSSIBLE
1081 set_page_count(page, 1);
1082 ClearPageCompound(page);
1083
1084 set_page_count((page + 1), 1);
1085 ClearPageCompound(page + 1);
1086#endif
1087 paddr = (unsigned long) page_address(page);
1088 memset((char *)paddr, 0, (PAGE_SIZE << DC_ALIAS_SHIFT));
1089
1090 if (!color) {
1091 pte = (pte_t *) paddr;
1092 to_free = (unsigned long *) (paddr + PAGE_SIZE);
1093 } else {
1094 pte = (pte_t *) (paddr + PAGE_SIZE);
1095 to_free = (unsigned long *) paddr;
1096 }
1097
1098#ifdef DCACHE_ALIASING_POSSIBLE
1099 /* Now free the other one up, adjust cache size. */
1100 preempt_disable();
1101 *to_free = (unsigned long) pte_quicklist[color ^ 0x1];
1102 pte_quicklist[color ^ 0x1] = to_free;
1103 pgtable_cache_size++;
1104 preempt_enable();
1105#endif
1106
1107 return pte;
1108 }
1109 return NULL;
1110}
1111
1112void sparc_ultra_dump_itlb(void)
1113{
1114 int slot;
1115
1116 if (tlb_type == spitfire) {
1117 printk ("Contents of itlb: ");
1118 for (slot = 0; slot < 14; slot++) printk (" ");
1119 printk ("%2x:%016lx,%016lx\n",
1120 0,
1121 spitfire_get_itlb_tag(0), spitfire_get_itlb_data(0));
1122 for (slot = 1; slot < 64; slot+=3) {
1123 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",
1124 slot,
1125 spitfire_get_itlb_tag(slot), spitfire_get_itlb_data(slot),
1126 slot+1,
1127 spitfire_get_itlb_tag(slot+1), spitfire_get_itlb_data(slot+1),
1128 slot+2,
1129 spitfire_get_itlb_tag(slot+2), spitfire_get_itlb_data(slot+2));
1130 }
1131 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1132 printk ("Contents of itlb0:\n");
1133 for (slot = 0; slot < 16; slot+=2) {
1134 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
1135 slot,
1136 cheetah_get_litlb_tag(slot), cheetah_get_litlb_data(slot),
1137 slot+1,
1138 cheetah_get_litlb_tag(slot+1), cheetah_get_litlb_data(slot+1));
1139 }
1140 printk ("Contents of itlb2:\n");
1141 for (slot = 0; slot < 128; slot+=2) {
1142 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
1143 slot,
1144 cheetah_get_itlb_tag(slot), cheetah_get_itlb_data(slot),
1145 slot+1,
1146 cheetah_get_itlb_tag(slot+1), cheetah_get_itlb_data(slot+1));
1147 }
1148 }
1149}
1150
1151void sparc_ultra_dump_dtlb(void)
1152{
1153 int slot;
1154
1155 if (tlb_type == spitfire) {
1156 printk ("Contents of dtlb: ");
1157 for (slot = 0; slot < 14; slot++) printk (" ");
1158 printk ("%2x:%016lx,%016lx\n", 0,
1159 spitfire_get_dtlb_tag(0), spitfire_get_dtlb_data(0));
1160 for (slot = 1; slot < 64; slot+=3) {
1161 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",
1162 slot,
1163 spitfire_get_dtlb_tag(slot), spitfire_get_dtlb_data(slot),
1164 slot+1,
1165 spitfire_get_dtlb_tag(slot+1), spitfire_get_dtlb_data(slot+1),
1166 slot+2,
1167 spitfire_get_dtlb_tag(slot+2), spitfire_get_dtlb_data(slot+2));
1168 }
1169 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1170 printk ("Contents of dtlb0:\n");
1171 for (slot = 0; slot < 16; slot+=2) {
1172 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
1173 slot,
1174 cheetah_get_ldtlb_tag(slot), cheetah_get_ldtlb_data(slot),
1175 slot+1,
1176 cheetah_get_ldtlb_tag(slot+1), cheetah_get_ldtlb_data(slot+1));
1177 }
1178 printk ("Contents of dtlb2:\n");
1179 for (slot = 0; slot < 512; slot+=2) {
1180 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
1181 slot,
1182 cheetah_get_dtlb_tag(slot, 2), cheetah_get_dtlb_data(slot, 2),
1183 slot+1,
1184 cheetah_get_dtlb_tag(slot+1, 2), cheetah_get_dtlb_data(slot+1, 2));
1185 }
1186 if (tlb_type == cheetah_plus) {
1187 printk ("Contents of dtlb3:\n");
1188 for (slot = 0; slot < 512; slot+=2) {
1189 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
1190 slot,
1191 cheetah_get_dtlb_tag(slot, 3), cheetah_get_dtlb_data(slot, 3),
1192 slot+1,
1193 cheetah_get_dtlb_tag(slot+1, 3), cheetah_get_dtlb_data(slot+1, 3));
1194 }
1195 }
1196 }
1197}
1198
1199extern unsigned long cmdline_memory_size;
1200
1201unsigned long __init bootmem_init(unsigned long *pages_avail)
1202{
1203 unsigned long bootmap_size, start_pfn, end_pfn;
1204 unsigned long end_of_phys_memory = 0UL;
1205 unsigned long bootmap_pfn, bytes_avail, size;
1206 int i;
1207
1208#ifdef CONFIG_DEBUG_BOOTMEM
1209 prom_printf("bootmem_init: Scan sp_banks, ");
1210#endif
1211
1212 bytes_avail = 0UL;
1213 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
1214 end_of_phys_memory = sp_banks[i].base_addr +
1215 sp_banks[i].num_bytes;
1216 bytes_avail += sp_banks[i].num_bytes;
1217 if (cmdline_memory_size) {
1218 if (bytes_avail > cmdline_memory_size) {
1219 unsigned long slack = bytes_avail - cmdline_memory_size;
1220
1221 bytes_avail -= slack;
1222 end_of_phys_memory -= slack;
1223
1224 sp_banks[i].num_bytes -= slack;
1225 if (sp_banks[i].num_bytes == 0) {
1226 sp_banks[i].base_addr = 0xdeadbeef;
1227 } else {
1228 sp_banks[i+1].num_bytes = 0;
1229 sp_banks[i+1].base_addr = 0xdeadbeef;
1230 }
1231 break;
1232 }
1233 }
1234 }
1235
1236 *pages_avail = bytes_avail >> PAGE_SHIFT;
1237
1238 /* Start with page aligned address of last symbol in kernel
1239 * image. The kernel is hard mapped below PAGE_OFFSET in a
1240 * 4MB locked TLB translation.
1241 */
1242 start_pfn = PAGE_ALIGN(kern_base + kern_size) >> PAGE_SHIFT;
1243
1244 bootmap_pfn = start_pfn;
1245
1246 end_pfn = end_of_phys_memory >> PAGE_SHIFT;
1247
1248#ifdef CONFIG_BLK_DEV_INITRD
1249 /* Now have to check initial ramdisk, so that bootmap does not overwrite it */
1250 if (sparc_ramdisk_image || sparc_ramdisk_image64) {
1251 unsigned long ramdisk_image = sparc_ramdisk_image ?
1252 sparc_ramdisk_image : sparc_ramdisk_image64;
1253 if (ramdisk_image >= (unsigned long)_end - 2 * PAGE_SIZE)
1254 ramdisk_image -= KERNBASE;
1255 initrd_start = ramdisk_image + phys_base;
1256 initrd_end = initrd_start + sparc_ramdisk_size;
1257 if (initrd_end > end_of_phys_memory) {
1258 printk(KERN_CRIT "initrd extends beyond end of memory "
1259 "(0x%016lx > 0x%016lx)\ndisabling initrd\n",
1260 initrd_end, end_of_phys_memory);
1261 initrd_start = 0;
1262 }
1263 if (initrd_start) {
1264 if (initrd_start >= (start_pfn << PAGE_SHIFT) &&
1265 initrd_start < (start_pfn << PAGE_SHIFT) + 2 * PAGE_SIZE)
1266 bootmap_pfn = PAGE_ALIGN (initrd_end) >> PAGE_SHIFT;
1267 }
1268 }
1269#endif
1270 /* Initialize the boot-time allocator. */
1271 max_pfn = max_low_pfn = end_pfn;
1272 min_low_pfn = pfn_base;
1273
1274#ifdef CONFIG_DEBUG_BOOTMEM
1275 prom_printf("init_bootmem(min[%lx], bootmap[%lx], max[%lx])\n",
1276 min_low_pfn, bootmap_pfn, max_low_pfn);
1277#endif
1278 bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn, pfn_base, end_pfn);
1279
1da177e4
LT
1280 /* Now register the available physical memory with the
1281 * allocator.
1282 */
1283 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
1284#ifdef CONFIG_DEBUG_BOOTMEM
1285 prom_printf("free_bootmem(sp_banks:%d): base[%lx] size[%lx]\n",
1286 i, sp_banks[i].base_addr, sp_banks[i].num_bytes);
1287#endif
1288 free_bootmem(sp_banks[i].base_addr, sp_banks[i].num_bytes);
1289 }
1290
1291#ifdef CONFIG_BLK_DEV_INITRD
1292 if (initrd_start) {
1293 size = initrd_end - initrd_start;
1294
1295 /* Resert the initrd image area. */
1296#ifdef CONFIG_DEBUG_BOOTMEM
1297 prom_printf("reserve_bootmem(initrd): base[%llx] size[%lx]\n",
1298 initrd_start, initrd_end);
1299#endif
1300 reserve_bootmem(initrd_start, size);
1301 *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
1302
1303 initrd_start += PAGE_OFFSET;
1304 initrd_end += PAGE_OFFSET;
1305 }
1306#endif
1307 /* Reserve the kernel text/data/bss. */
1308#ifdef CONFIG_DEBUG_BOOTMEM
1309 prom_printf("reserve_bootmem(kernel): base[%lx] size[%lx]\n", kern_base, kern_size);
1310#endif
1311 reserve_bootmem(kern_base, kern_size);
1312 *pages_avail -= PAGE_ALIGN(kern_size) >> PAGE_SHIFT;
1313
1314 /* Reserve the bootmem map. We do not account for it
1315 * in pages_avail because we will release that memory
1316 * in free_all_bootmem.
1317 */
1318 size = bootmap_size;
1319#ifdef CONFIG_DEBUG_BOOTMEM
1320 prom_printf("reserve_bootmem(bootmap): base[%lx] size[%lx]\n",
1321 (bootmap_pfn << PAGE_SHIFT), size);
1322#endif
1323 reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size);
1324 *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
1325
1326 return end_pfn;
1327}
1328
56425306
DM
1329#ifdef CONFIG_DEBUG_PAGEALLOC
1330static unsigned long kernel_map_range(unsigned long pstart, unsigned long pend, pgprot_t prot)
1331{
1332 unsigned long vstart = PAGE_OFFSET + pstart;
1333 unsigned long vend = PAGE_OFFSET + pend;
1334 unsigned long alloc_bytes = 0UL;
1335
1336 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1337 prom_printf("kernel_map: Unaligned sp_banks[%lx:%lx]\n",
1338 vstart, vend);
1339 prom_halt();
1340 }
1341
1342 while (vstart < vend) {
1343 unsigned long this_end, paddr = __pa(vstart);
1344 pgd_t *pgd = pgd_offset_k(vstart);
1345 pud_t *pud;
1346 pmd_t *pmd;
1347 pte_t *pte;
1348
1349 pud = pud_offset(pgd, vstart);
1350 if (pud_none(*pud)) {
1351 pmd_t *new;
1352
1353 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1354 alloc_bytes += PAGE_SIZE;
1355 pud_populate(&init_mm, pud, new);
1356 }
1357
1358 pmd = pmd_offset(pud, vstart);
1359 if (!pmd_present(*pmd)) {
1360 pte_t *new;
1361
1362 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1363 alloc_bytes += PAGE_SIZE;
1364 pmd_populate_kernel(&init_mm, pmd, new);
1365 }
1366
1367 pte = pte_offset_kernel(pmd, vstart);
1368 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1369 if (this_end > vend)
1370 this_end = vend;
1371
1372 while (vstart < this_end) {
1373 pte_val(*pte) = (paddr | pgprot_val(prot));
1374
1375 vstart += PAGE_SIZE;
1376 paddr += PAGE_SIZE;
1377 pte++;
1378 }
1379 }
1380
1381 return alloc_bytes;
1382}
1383
1384extern struct linux_mlist_p1275 *prom_ptot_ptr;
1385extern unsigned int kvmap_linear_patch[1];
1386
1387static void __init kernel_physical_mapping_init(void)
1388{
1389 struct linux_mlist_p1275 *p = prom_ptot_ptr;
1390 unsigned long mem_alloced = 0UL;
1391
1392 while (p) {
1393 unsigned long phys_start, phys_end;
1394
1395 phys_start = p->start_adr;
1396 phys_end = phys_start + p->num_bytes;
1397 mem_alloced += kernel_map_range(phys_start, phys_end,
1398 PAGE_KERNEL);
1399
1400 p = p->theres_more;
1401 }
1402
1403 printk("Allocated %ld bytes for kernel page tables.\n",
1404 mem_alloced);
1405
1406 kvmap_linear_patch[0] = 0x01000000; /* nop */
1407 flushi(&kvmap_linear_patch[0]);
1408
1409 __flush_tlb_all();
1410}
1411
1412void kernel_map_pages(struct page *page, int numpages, int enable)
1413{
1414 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1415 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1416
1417 kernel_map_range(phys_start, phys_end,
1418 (enable ? PAGE_KERNEL : __pgprot(0)));
1419
1420 /* we should perform an IPI and flush all tlbs,
1421 * but that can deadlock->flush only current cpu.
1422 */
1423 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1424 PAGE_OFFSET + phys_end);
1425}
1426#endif
1427
1da177e4
LT
1428/* paging_init() sets up the page tables */
1429
1430extern void cheetah_ecache_flush_init(void);
1431
1432static unsigned long last_valid_pfn;
56425306 1433pgd_t swapper_pg_dir[2048];
1da177e4
LT
1434
1435void __init paging_init(void)
1436{
2bdb3cb2 1437 unsigned long end_pfn, pages_avail, shift;
1da177e4
LT
1438 unsigned long real_end;
1439
1440 set_bit(0, mmu_context_bmap);
1441
2bdb3cb2
DM
1442 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1443
1da177e4
LT
1444 real_end = (unsigned long)_end;
1445 if ((real_end > ((unsigned long)KERNBASE + 0x400000)))
1446 bigkernel = 1;
2bdb3cb2
DM
1447 if ((real_end > ((unsigned long)KERNBASE + 0x800000))) {
1448 prom_printf("paging_init: Kernel > 8MB, too large.\n");
1449 prom_halt();
1da177e4 1450 }
2bdb3cb2
DM
1451
1452 /* Set kernel pgd to upper alias so physical page computations
1da177e4
LT
1453 * work.
1454 */
1455 init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1456
56425306 1457 memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1da177e4
LT
1458
1459 /* Now can init the kernel/bad page tables. */
1460 pud_set(pud_offset(&swapper_pg_dir[0], 0),
56425306 1461 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1da177e4 1462
2bdb3cb2 1463 swapper_pgd_zero = pgd_val(swapper_pg_dir[0]);
1da177e4 1464
5085b4a5
DM
1465 /* Inherit non-locked OBP mappings. */
1466 inherit_prom_mappings();
1467
1da177e4
LT
1468 /* Ok, we can use our TLB miss and window trap handlers safely.
1469 * We need to do a quick peek here to see if we are on StarFire
1470 * or not, so setup_tba can setup the IRQ globals correctly (it
1471 * needs to get the hard smp processor id correctly).
1472 */
1473 {
1474 extern void setup_tba(int);
1475 setup_tba(this_is_starfire);
1476 }
1477
1478 inherit_locked_prom_mappings(1);
1479
1da177e4
LT
1480 __flush_tlb_all();
1481
2bdb3cb2
DM
1482 /* Setup bootmem... */
1483 pages_avail = 0;
1484 last_valid_pfn = end_pfn = bootmem_init(&pages_avail);
1485
56425306
DM
1486#ifdef CONFIG_DEBUG_PAGEALLOC
1487 kernel_physical_mapping_init();
1488#endif
1489
1da177e4
LT
1490 {
1491 unsigned long zones_size[MAX_NR_ZONES];
1492 unsigned long zholes_size[MAX_NR_ZONES];
1493 unsigned long npages;
1494 int znum;
1495
1496 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1497 zones_size[znum] = zholes_size[znum] = 0;
1498
1499 npages = end_pfn - pfn_base;
1500 zones_size[ZONE_DMA] = npages;
1501 zholes_size[ZONE_DMA] = npages - pages_avail;
1502
1503 free_area_init_node(0, &contig_page_data, zones_size,
1504 phys_base >> PAGE_SHIFT, zholes_size);
1505 }
1506
1507 device_scan();
1508}
1509
1510/* Ok, it seems that the prom can allocate some more memory chunks
1511 * as a side effect of some prom calls we perform during the
1512 * boot sequence. My most likely theory is that it is from the
1513 * prom_set_traptable() call, and OBP is allocating a scratchpad
1514 * for saving client program register state etc.
1515 */
1516static void __init sort_memlist(struct linux_mlist_p1275 *thislist)
1517{
1518 int swapi = 0;
1519 int i, mitr;
1520 unsigned long tmpaddr, tmpsize;
1521 unsigned long lowest;
1522
1523 for (i = 0; thislist[i].theres_more != 0; i++) {
1524 lowest = thislist[i].start_adr;
1525 for (mitr = i+1; thislist[mitr-1].theres_more != 0; mitr++)
1526 if (thislist[mitr].start_adr < lowest) {
1527 lowest = thislist[mitr].start_adr;
1528 swapi = mitr;
1529 }
1530 if (lowest == thislist[i].start_adr)
1531 continue;
1532 tmpaddr = thislist[swapi].start_adr;
1533 tmpsize = thislist[swapi].num_bytes;
1534 for (mitr = swapi; mitr > i; mitr--) {
1535 thislist[mitr].start_adr = thislist[mitr-1].start_adr;
1536 thislist[mitr].num_bytes = thislist[mitr-1].num_bytes;
1537 }
1538 thislist[i].start_adr = tmpaddr;
1539 thislist[i].num_bytes = tmpsize;
1540 }
1541}
1542
1543void __init rescan_sp_banks(void)
1544{
1545 struct linux_prom64_registers memlist[64];
1546 struct linux_mlist_p1275 avail[64], *mlist;
1547 unsigned long bytes, base_paddr;
1548 int num_regs, node = prom_finddevice("/memory");
1549 int i;
1550
1551 num_regs = prom_getproperty(node, "available",
1552 (char *) memlist, sizeof(memlist));
1553 num_regs = (num_regs / sizeof(struct linux_prom64_registers));
1554 for (i = 0; i < num_regs; i++) {
1555 avail[i].start_adr = memlist[i].phys_addr;
1556 avail[i].num_bytes = memlist[i].reg_size;
1557 avail[i].theres_more = &avail[i + 1];
1558 }
1559 avail[i - 1].theres_more = NULL;
1560 sort_memlist(avail);
1561
1562 mlist = &avail[0];
1563 i = 0;
1564 bytes = mlist->num_bytes;
1565 base_paddr = mlist->start_adr;
1566
1567 sp_banks[0].base_addr = base_paddr;
1568 sp_banks[0].num_bytes = bytes;
1569
1570 while (mlist->theres_more != NULL){
1571 i++;
1572 mlist = mlist->theres_more;
1573 bytes = mlist->num_bytes;
1574 if (i >= SPARC_PHYS_BANKS-1) {
1575 printk ("The machine has more banks than "
1576 "this kernel can support\n"
1577 "Increase the SPARC_PHYS_BANKS "
1578 "setting (currently %d)\n",
1579 SPARC_PHYS_BANKS);
1580 i = SPARC_PHYS_BANKS-1;
1581 break;
1582 }
1583
1584 sp_banks[i].base_addr = mlist->start_adr;
1585 sp_banks[i].num_bytes = mlist->num_bytes;
1586 }
1587
1588 i++;
1589 sp_banks[i].base_addr = 0xdeadbeefbeefdeadUL;
1590 sp_banks[i].num_bytes = 0;
1591
1592 for (i = 0; sp_banks[i].num_bytes != 0; i++)
1593 sp_banks[i].num_bytes &= PAGE_MASK;
1594}
1595
1596static void __init taint_real_pages(void)
1597{
1598 struct sparc_phys_banks saved_sp_banks[SPARC_PHYS_BANKS];
1599 int i;
1600
1601 for (i = 0; i < SPARC_PHYS_BANKS; i++) {
1602 saved_sp_banks[i].base_addr =
1603 sp_banks[i].base_addr;
1604 saved_sp_banks[i].num_bytes =
1605 sp_banks[i].num_bytes;
1606 }
1607
1608 rescan_sp_banks();
1609
1610 /* Find changes discovered in the sp_bank rescan and
1611 * reserve the lost portions in the bootmem maps.
1612 */
1613 for (i = 0; saved_sp_banks[i].num_bytes; i++) {
1614 unsigned long old_start, old_end;
1615
1616 old_start = saved_sp_banks[i].base_addr;
1617 old_end = old_start +
1618 saved_sp_banks[i].num_bytes;
1619 while (old_start < old_end) {
1620 int n;
1621
1622 for (n = 0; sp_banks[n].num_bytes; n++) {
1623 unsigned long new_start, new_end;
1624
1625 new_start = sp_banks[n].base_addr;
1626 new_end = new_start + sp_banks[n].num_bytes;
1627
1628 if (new_start <= old_start &&
1629 new_end >= (old_start + PAGE_SIZE)) {
1630 set_bit (old_start >> 22,
1631 sparc64_valid_addr_bitmap);
1632 goto do_next_page;
1633 }
1634 }
1635 reserve_bootmem(old_start, PAGE_SIZE);
1636
1637 do_next_page:
1638 old_start += PAGE_SIZE;
1639 }
1640 }
1641}
1642
1643void __init mem_init(void)
1644{
1645 unsigned long codepages, datapages, initpages;
1646 unsigned long addr, last;
1647 int i;
1648
1649 i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
1650 i += 1;
2bdb3cb2 1651 sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
1da177e4
LT
1652 if (sparc64_valid_addr_bitmap == NULL) {
1653 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
1654 prom_halt();
1655 }
1656 memset(sparc64_valid_addr_bitmap, 0, i << 3);
1657
1658 addr = PAGE_OFFSET + kern_base;
1659 last = PAGE_ALIGN(kern_size) + addr;
1660 while (addr < last) {
1661 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1662 addr += PAGE_SIZE;
1663 }
1664
1665 taint_real_pages();
1666
1667 max_mapnr = last_valid_pfn - pfn_base;
1668 high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1669
1670#ifdef CONFIG_DEBUG_BOOTMEM
1671 prom_printf("mem_init: Calling free_all_bootmem().\n");
1672#endif
1673 totalram_pages = num_physpages = free_all_bootmem() - 1;
1674
1675 /*
1676 * Set up the zero page, mark it reserved, so that page count
1677 * is not manipulated when freeing the page from user ptes.
1678 */
1679 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1680 if (mem_map_zero == NULL) {
1681 prom_printf("paging_init: Cannot alloc zero page.\n");
1682 prom_halt();
1683 }
1684 SetPageReserved(mem_map_zero);
1685
1686 codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1687 codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1688 datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1689 datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1690 initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1691 initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1692
1693 printk("Memory: %uk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1694 nr_free_pages() << (PAGE_SHIFT-10),
1695 codepages << (PAGE_SHIFT-10),
1696 datapages << (PAGE_SHIFT-10),
1697 initpages << (PAGE_SHIFT-10),
1698 PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1699
1700 if (tlb_type == cheetah || tlb_type == cheetah_plus)
1701 cheetah_ecache_flush_init();
1702}
1703
898cf0ec 1704void free_initmem(void)
1da177e4
LT
1705{
1706 unsigned long addr, initend;
1707
1708 /*
1709 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1710 */
1711 addr = PAGE_ALIGN((unsigned long)(__init_begin));
1712 initend = (unsigned long)(__init_end) & PAGE_MASK;
1713 for (; addr < initend; addr += PAGE_SIZE) {
1714 unsigned long page;
1715 struct page *p;
1716
1717 page = (addr +
1718 ((unsigned long) __va(kern_base)) -
1719 ((unsigned long) KERNBASE));
1720 memset((void *)addr, 0xcc, PAGE_SIZE);
1721 p = virt_to_page(page);
1722
1723 ClearPageReserved(p);
1724 set_page_count(p, 1);
1725 __free_page(p);
1726 num_physpages++;
1727 totalram_pages++;
1728 }
1729}
1730
1731#ifdef CONFIG_BLK_DEV_INITRD
1732void free_initrd_mem(unsigned long start, unsigned long end)
1733{
1734 if (start < end)
1735 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1736 for (; start < end; start += PAGE_SIZE) {
1737 struct page *p = virt_to_page(start);
1738
1739 ClearPageReserved(p);
1740 set_page_count(p, 1);
1741 __free_page(p);
1742 num_physpages++;
1743 totalram_pages++;
1744 }
1745}
1746#endif