]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/sparc/kernel/perf_event.c
sparc64: Fix maybe_change_configuration() PCR setting.
[net-next-2.6.git] / arch / sparc / kernel / perf_event.c
CommitLineData
cdd6c482 1/* Performance event support for sparc64.
59abbd1e 2 *
4f6dbe4a 3 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
59abbd1e 4 *
cdd6c482 5 * This code is based almost entirely upon the x86 perf event
59abbd1e
DM
6 * code, which is:
7 *
8 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
9 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
10 * Copyright (C) 2009 Jaswinder Singh Rajput
11 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
12 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
13 */
14
cdd6c482 15#include <linux/perf_event.h>
59abbd1e 16#include <linux/kprobes.h>
667f0cee 17#include <linux/ftrace.h>
59abbd1e
DM
18#include <linux/kernel.h>
19#include <linux/kdebug.h>
20#include <linux/mutex.h>
21
4f6dbe4a 22#include <asm/stacktrace.h>
59abbd1e 23#include <asm/cpudata.h>
4f6dbe4a 24#include <asm/uaccess.h>
59abbd1e
DM
25#include <asm/atomic.h>
26#include <asm/nmi.h>
27#include <asm/pcr.h>
28
4f6dbe4a
DM
29#include "kstack.h"
30
59abbd1e
DM
31/* Sparc64 chips have two performance counters, 32-bits each, with
32 * overflow interrupts generated on transition from 0xffffffff to 0.
33 * The counters are accessed in one go using a 64-bit register.
34 *
35 * Both counters are controlled using a single control register. The
36 * only way to stop all sampling is to clear all of the context (user,
37 * supervisor, hypervisor) sampling enable bits. But these bits apply
38 * to both counters, thus the two counters can't be enabled/disabled
39 * individually.
40 *
41 * The control register has two event fields, one for each of the two
42 * counters. It's thus nearly impossible to have one counter going
43 * while keeping the other one stopped. Therefore it is possible to
44 * get overflow interrupts for counters not currently "in use" and
45 * that condition must be checked in the overflow interrupt handler.
46 *
47 * So we use a hack, in that we program inactive counters with the
48 * "sw_count0" and "sw_count1" events. These count how many times
49 * the instruction "sethi %hi(0xfc000), %g0" is executed. It's an
50 * unusual way to encode a NOP and therefore will not trigger in
51 * normal code.
52 */
53
cdd6c482 54#define MAX_HWEVENTS 2
59abbd1e
DM
55#define MAX_PERIOD ((1UL << 32) - 1)
56
57#define PIC_UPPER_INDEX 0
58#define PIC_LOWER_INDEX 1
e7bef6b0 59#define PIC_NO_INDEX -1
59abbd1e 60
cdd6c482 61struct cpu_hw_events {
e7bef6b0
DM
62 /* Number of events currently scheduled onto this cpu.
63 * This tells how many entries in the arrays below
64 * are valid.
65 */
66 int n_events;
67
68 /* Number of new events added since the last hw_perf_disable().
69 * This works because the perf event layer always adds new
70 * events inside of a perf_{disable,enable}() sequence.
71 */
72 int n_added;
73
74 /* Array of events current scheduled on this cpu. */
75 struct perf_event *event[MAX_HWEVENTS];
76
77 /* Array of encoded longs, specifying the %pcr register
78 * encoding and the mask of PIC counters this even can
79 * be scheduled on. See perf_event_encode() et al.
80 */
81 unsigned long events[MAX_HWEVENTS];
82
83 /* The current counter index assigned to an event. When the
84 * event hasn't been programmed into the cpu yet, this will
85 * hold PIC_NO_INDEX. The event->hw.idx value tells us where
86 * we ought to schedule the event.
87 */
88 int current_idx[MAX_HWEVENTS];
89
90 /* Software copy of %pcr register on this cpu. */
d1751388 91 u64 pcr;
e7bef6b0
DM
92
93 /* Enabled/disable state. */
d1751388 94 int enabled;
59abbd1e 95};
cdd6c482 96DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
59abbd1e 97
e7bef6b0
DM
98/* An event map describes the characteristics of a performance
99 * counter event. In particular it gives the encoding as well as
100 * a mask telling which counters the event can be measured on.
101 */
59abbd1e
DM
102struct perf_event_map {
103 u16 encoding;
104 u8 pic_mask;
105#define PIC_NONE 0x00
106#define PIC_UPPER 0x01
107#define PIC_LOWER 0x02
108};
109
e7bef6b0 110/* Encode a perf_event_map entry into a long. */
a72a8a5f
DM
111static unsigned long perf_event_encode(const struct perf_event_map *pmap)
112{
113 return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
114}
115
e7bef6b0
DM
116static u8 perf_event_get_msk(unsigned long val)
117{
118 return val & 0xff;
119}
120
121static u64 perf_event_get_enc(unsigned long val)
a72a8a5f 122{
e7bef6b0 123 return val >> 16;
a72a8a5f
DM
124}
125
2ce4da2e
DM
126#define C(x) PERF_COUNT_HW_CACHE_##x
127
128#define CACHE_OP_UNSUPPORTED 0xfffe
129#define CACHE_OP_NONSENSE 0xffff
130
131typedef struct perf_event_map cache_map_t
132 [PERF_COUNT_HW_CACHE_MAX]
133 [PERF_COUNT_HW_CACHE_OP_MAX]
134 [PERF_COUNT_HW_CACHE_RESULT_MAX];
135
59abbd1e
DM
136struct sparc_pmu {
137 const struct perf_event_map *(*event_map)(int);
2ce4da2e 138 const cache_map_t *cache_map;
59abbd1e
DM
139 int max_events;
140 int upper_shift;
141 int lower_shift;
142 int event_mask;
91b9286d 143 int hv_bit;
496c07e3 144 int irq_bit;
660d1376
DM
145 int upper_nop;
146 int lower_nop;
59abbd1e
DM
147};
148
28e8f9be 149static const struct perf_event_map ultra3_perfmon_event_map[] = {
59abbd1e
DM
150 [PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
151 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
152 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
153 [PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
154};
155
28e8f9be 156static const struct perf_event_map *ultra3_event_map(int event_id)
59abbd1e 157{
28e8f9be 158 return &ultra3_perfmon_event_map[event_id];
59abbd1e
DM
159}
160
28e8f9be 161static const cache_map_t ultra3_cache_map = {
2ce4da2e
DM
162[C(L1D)] = {
163 [C(OP_READ)] = {
164 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
165 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
166 },
167 [C(OP_WRITE)] = {
168 [C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
169 [C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
170 },
171 [C(OP_PREFETCH)] = {
172 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
173 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
174 },
175},
176[C(L1I)] = {
177 [C(OP_READ)] = {
178 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
179 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
180 },
181 [ C(OP_WRITE) ] = {
182 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
183 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
184 },
185 [ C(OP_PREFETCH) ] = {
186 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
187 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
188 },
189},
190[C(LL)] = {
191 [C(OP_READ)] = {
192 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
193 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
194 },
195 [C(OP_WRITE)] = {
196 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
197 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
198 },
199 [C(OP_PREFETCH)] = {
200 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
201 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
202 },
203},
204[C(DTLB)] = {
205 [C(OP_READ)] = {
206 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
207 [C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
208 },
209 [ C(OP_WRITE) ] = {
210 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
211 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
212 },
213 [ C(OP_PREFETCH) ] = {
214 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
215 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
216 },
217},
218[C(ITLB)] = {
219 [C(OP_READ)] = {
220 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
221 [C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
222 },
223 [ C(OP_WRITE) ] = {
224 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
225 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
226 },
227 [ C(OP_PREFETCH) ] = {
228 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
229 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
230 },
231},
232[C(BPU)] = {
233 [C(OP_READ)] = {
234 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
235 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
236 },
237 [ C(OP_WRITE) ] = {
238 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
239 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
240 },
241 [ C(OP_PREFETCH) ] = {
242 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
243 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
244 },
245},
246};
247
28e8f9be
DM
248static const struct sparc_pmu ultra3_pmu = {
249 .event_map = ultra3_event_map,
250 .cache_map = &ultra3_cache_map,
251 .max_events = ARRAY_SIZE(ultra3_perfmon_event_map),
59abbd1e
DM
252 .upper_shift = 11,
253 .lower_shift = 4,
254 .event_mask = 0x3f,
660d1376
DM
255 .upper_nop = 0x1c,
256 .lower_nop = 0x14,
59abbd1e
DM
257};
258
7eebda60
DM
259/* Niagara1 is very limited. The upper PIC is hard-locked to count
260 * only instructions, so it is free running which creates all kinds of
6e804251 261 * problems. Some hardware designs make one wonder if the creator
7eebda60
DM
262 * even looked at how this stuff gets used by software.
263 */
264static const struct perf_event_map niagara1_perfmon_event_map[] = {
265 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
266 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
267 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
268 [PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
269};
270
271static const struct perf_event_map *niagara1_event_map(int event_id)
272{
273 return &niagara1_perfmon_event_map[event_id];
274}
275
276static const cache_map_t niagara1_cache_map = {
277[C(L1D)] = {
278 [C(OP_READ)] = {
279 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
280 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
281 },
282 [C(OP_WRITE)] = {
283 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
284 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
285 },
286 [C(OP_PREFETCH)] = {
287 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
288 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
289 },
290},
291[C(L1I)] = {
292 [C(OP_READ)] = {
293 [C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
294 [C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
295 },
296 [ C(OP_WRITE) ] = {
297 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
298 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
299 },
300 [ C(OP_PREFETCH) ] = {
301 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
302 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
303 },
304},
305[C(LL)] = {
306 [C(OP_READ)] = {
307 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
308 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
309 },
310 [C(OP_WRITE)] = {
311 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
312 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
313 },
314 [C(OP_PREFETCH)] = {
315 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
316 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
317 },
318},
319[C(DTLB)] = {
320 [C(OP_READ)] = {
321 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
322 [C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
323 },
324 [ C(OP_WRITE) ] = {
325 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
326 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
327 },
328 [ C(OP_PREFETCH) ] = {
329 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
330 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
331 },
332},
333[C(ITLB)] = {
334 [C(OP_READ)] = {
335 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
336 [C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
337 },
338 [ C(OP_WRITE) ] = {
339 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
340 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
341 },
342 [ C(OP_PREFETCH) ] = {
343 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
344 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
345 },
346},
347[C(BPU)] = {
348 [C(OP_READ)] = {
349 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
350 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
351 },
352 [ C(OP_WRITE) ] = {
353 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
354 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
355 },
356 [ C(OP_PREFETCH) ] = {
357 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
358 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
359 },
360},
361};
362
363static const struct sparc_pmu niagara1_pmu = {
364 .event_map = niagara1_event_map,
365 .cache_map = &niagara1_cache_map,
366 .max_events = ARRAY_SIZE(niagara1_perfmon_event_map),
367 .upper_shift = 0,
368 .lower_shift = 4,
369 .event_mask = 0x7,
370 .upper_nop = 0x0,
371 .lower_nop = 0x0,
372};
373
b73d8847
DM
374static const struct perf_event_map niagara2_perfmon_event_map[] = {
375 [PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
376 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
377 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
378 [PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
379 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
380 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
381};
382
cdd6c482 383static const struct perf_event_map *niagara2_event_map(int event_id)
b73d8847 384{
cdd6c482 385 return &niagara2_perfmon_event_map[event_id];
b73d8847
DM
386}
387
d0b86480
DM
388static const cache_map_t niagara2_cache_map = {
389[C(L1D)] = {
390 [C(OP_READ)] = {
391 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
392 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
393 },
394 [C(OP_WRITE)] = {
395 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
396 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
397 },
398 [C(OP_PREFETCH)] = {
399 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
400 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
401 },
402},
403[C(L1I)] = {
404 [C(OP_READ)] = {
405 [C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
406 [C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
407 },
408 [ C(OP_WRITE) ] = {
409 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
410 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
411 },
412 [ C(OP_PREFETCH) ] = {
413 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
414 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
415 },
416},
417[C(LL)] = {
418 [C(OP_READ)] = {
419 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
420 [C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
421 },
422 [C(OP_WRITE)] = {
423 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
424 [C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
425 },
426 [C(OP_PREFETCH)] = {
427 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
428 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
429 },
430},
431[C(DTLB)] = {
432 [C(OP_READ)] = {
433 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
434 [C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
435 },
436 [ C(OP_WRITE) ] = {
437 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
438 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
439 },
440 [ C(OP_PREFETCH) ] = {
441 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
442 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
443 },
444},
445[C(ITLB)] = {
446 [C(OP_READ)] = {
447 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
448 [C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
449 },
450 [ C(OP_WRITE) ] = {
451 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
452 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
453 },
454 [ C(OP_PREFETCH) ] = {
455 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
456 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
457 },
458},
459[C(BPU)] = {
460 [C(OP_READ)] = {
461 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
462 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
463 },
464 [ C(OP_WRITE) ] = {
465 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
466 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
467 },
468 [ C(OP_PREFETCH) ] = {
469 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
470 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
471 },
472},
473};
474
b73d8847
DM
475static const struct sparc_pmu niagara2_pmu = {
476 .event_map = niagara2_event_map,
d0b86480 477 .cache_map = &niagara2_cache_map,
b73d8847
DM
478 .max_events = ARRAY_SIZE(niagara2_perfmon_event_map),
479 .upper_shift = 19,
480 .lower_shift = 6,
481 .event_mask = 0xfff,
482 .hv_bit = 0x8,
de23cf3c 483 .irq_bit = 0x30,
b73d8847
DM
484 .upper_nop = 0x220,
485 .lower_nop = 0x220,
486};
487
59abbd1e
DM
488static const struct sparc_pmu *sparc_pmu __read_mostly;
489
cdd6c482 490static u64 event_encoding(u64 event_id, int idx)
59abbd1e
DM
491{
492 if (idx == PIC_UPPER_INDEX)
cdd6c482 493 event_id <<= sparc_pmu->upper_shift;
59abbd1e 494 else
cdd6c482
IM
495 event_id <<= sparc_pmu->lower_shift;
496 return event_id;
59abbd1e
DM
497}
498
499static u64 mask_for_index(int idx)
500{
501 return event_encoding(sparc_pmu->event_mask, idx);
502}
503
504static u64 nop_for_index(int idx)
505{
506 return event_encoding(idx == PIC_UPPER_INDEX ?
660d1376
DM
507 sparc_pmu->upper_nop :
508 sparc_pmu->lower_nop, idx);
59abbd1e
DM
509}
510
d1751388 511static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
59abbd1e
DM
512{
513 u64 val, mask = mask_for_index(idx);
514
d1751388
DM
515 val = cpuc->pcr;
516 val &= ~mask;
517 val |= hwc->config;
518 cpuc->pcr = val;
519
520 pcr_ops->write(cpuc->pcr);
59abbd1e
DM
521}
522
d1751388 523static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
59abbd1e
DM
524{
525 u64 mask = mask_for_index(idx);
526 u64 nop = nop_for_index(idx);
d1751388 527 u64 val;
59abbd1e 528
d1751388
DM
529 val = cpuc->pcr;
530 val &= ~mask;
531 val |= nop;
532 cpuc->pcr = val;
533
534 pcr_ops->write(cpuc->pcr);
59abbd1e
DM
535}
536
59abbd1e
DM
537static u32 read_pmc(int idx)
538{
539 u64 val;
540
541 read_pic(val);
542 if (idx == PIC_UPPER_INDEX)
543 val >>= 32;
544
545 return val & 0xffffffff;
546}
547
548static void write_pmc(int idx, u64 val)
549{
550 u64 shift, mask, pic;
551
552 shift = 0;
553 if (idx == PIC_UPPER_INDEX)
554 shift = 32;
555
556 mask = ((u64) 0xffffffff) << shift;
557 val <<= shift;
558
559 read_pic(pic);
560 pic &= ~mask;
561 pic |= val;
562 write_pic(pic);
563}
564
e7bef6b0
DM
565static u64 sparc_perf_event_update(struct perf_event *event,
566 struct hw_perf_event *hwc, int idx)
567{
568 int shift = 64 - 32;
569 u64 prev_raw_count, new_raw_count;
570 s64 delta;
571
572again:
573 prev_raw_count = atomic64_read(&hwc->prev_count);
574 new_raw_count = read_pmc(idx);
575
576 if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
577 new_raw_count) != prev_raw_count)
578 goto again;
579
580 delta = (new_raw_count << shift) - (prev_raw_count << shift);
581 delta >>= shift;
582
583 atomic64_add(delta, &event->count);
584 atomic64_sub(delta, &hwc->period_left);
585
586 return new_raw_count;
587}
588
cdd6c482 589static int sparc_perf_event_set_period(struct perf_event *event,
d29862f0 590 struct hw_perf_event *hwc, int idx)
59abbd1e
DM
591{
592 s64 left = atomic64_read(&hwc->period_left);
593 s64 period = hwc->sample_period;
594 int ret = 0;
595
596 if (unlikely(left <= -period)) {
597 left = period;
598 atomic64_set(&hwc->period_left, left);
599 hwc->last_period = period;
600 ret = 1;
601 }
602
603 if (unlikely(left <= 0)) {
604 left += period;
605 atomic64_set(&hwc->period_left, left);
606 hwc->last_period = period;
607 ret = 1;
608 }
609 if (left > MAX_PERIOD)
610 left = MAX_PERIOD;
611
612 atomic64_set(&hwc->prev_count, (u64)-left);
613
614 write_pmc(idx, (u64)(-left) & 0xffffffff);
615
cdd6c482 616 perf_event_update_userpage(event);
59abbd1e
DM
617
618 return ret;
619}
620
e7bef6b0
DM
621/* If performance event entries have been added, move existing
622 * events around (if necessary) and then assign new entries to
623 * counters.
624 */
625static u64 maybe_change_configuration(struct cpu_hw_events *cpuc, u64 pcr)
59abbd1e 626{
e7bef6b0 627 int i;
59abbd1e 628
e7bef6b0
DM
629 if (!cpuc->n_added)
630 goto out;
59abbd1e 631
e7bef6b0
DM
632 /* Read in the counters which are moving. */
633 for (i = 0; i < cpuc->n_events; i++) {
634 struct perf_event *cp = cpuc->event[i];
59abbd1e 635
e7bef6b0
DM
636 if (cpuc->current_idx[i] != PIC_NO_INDEX &&
637 cpuc->current_idx[i] != cp->hw.idx) {
638 sparc_perf_event_update(cp, &cp->hw,
639 cpuc->current_idx[i]);
640 cpuc->current_idx[i] = PIC_NO_INDEX;
641 }
642 }
59abbd1e 643
e7bef6b0
DM
644 /* Assign to counters all unassigned events. */
645 for (i = 0; i < cpuc->n_events; i++) {
646 struct perf_event *cp = cpuc->event[i];
647 struct hw_perf_event *hwc = &cp->hw;
648 int idx = hwc->idx;
649 u64 enc;
650
651 if (cpuc->current_idx[i] != PIC_NO_INDEX)
652 continue;
653
654 sparc_perf_event_set_period(cp, hwc, idx);
655 cpuc->current_idx[i] = idx;
656
657 enc = perf_event_get_enc(cpuc->events[i]);
b7d45c3f 658 pcr &= ~mask_for_index(idx);
e7bef6b0
DM
659 pcr |= event_encoding(enc, idx);
660 }
661out:
662 return pcr;
59abbd1e
DM
663}
664
e7bef6b0 665void hw_perf_enable(void)
59abbd1e 666{
e7bef6b0
DM
667 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
668 u64 pcr;
59abbd1e 669
e7bef6b0
DM
670 if (cpuc->enabled)
671 return;
59abbd1e 672
e7bef6b0
DM
673 cpuc->enabled = 1;
674 barrier();
59abbd1e 675
e7bef6b0
DM
676 pcr = cpuc->pcr;
677 if (!cpuc->n_events) {
678 pcr = 0;
679 } else {
680 pcr = maybe_change_configuration(cpuc, pcr);
59abbd1e 681
e7bef6b0
DM
682 /* We require that all of the events have the same
683 * configuration, so just fetch the settings from the
684 * first entry.
685 */
686 cpuc->pcr = pcr | cpuc->event[0]->hw.config_base;
687 }
59abbd1e 688
e7bef6b0
DM
689 pcr_ops->write(cpuc->pcr);
690}
691
692void hw_perf_disable(void)
693{
694 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
695 u64 val;
696
697 if (!cpuc->enabled)
698 return;
699
700 cpuc->enabled = 0;
701 cpuc->n_added = 0;
702
703 val = cpuc->pcr;
704 val &= ~(PCR_UTRACE | PCR_STRACE |
705 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
706 cpuc->pcr = val;
707
708 pcr_ops->write(cpuc->pcr);
59abbd1e
DM
709}
710
cdd6c482 711static void sparc_pmu_disable(struct perf_event *event)
59abbd1e 712{
cdd6c482
IM
713 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
714 struct hw_perf_event *hwc = &event->hw;
e7bef6b0
DM
715 unsigned long flags;
716 int i;
59abbd1e 717
e7bef6b0
DM
718 local_irq_save(flags);
719 perf_disable();
720
721 for (i = 0; i < cpuc->n_events; i++) {
722 if (event == cpuc->event[i]) {
723 int idx = cpuc->current_idx[i];
724
725 /* Shift remaining entries down into
726 * the existing slot.
727 */
728 while (++i < cpuc->n_events) {
729 cpuc->event[i - 1] = cpuc->event[i];
730 cpuc->events[i - 1] = cpuc->events[i];
731 cpuc->current_idx[i - 1] =
732 cpuc->current_idx[i];
733 }
734
735 /* Absorb the final count and turn off the
736 * event.
737 */
738 sparc_pmu_disable_event(cpuc, hwc, idx);
739 barrier();
740 sparc_perf_event_update(event, hwc, idx);
59abbd1e 741
e7bef6b0 742 perf_event_update_userpage(event);
59abbd1e 743
e7bef6b0
DM
744 cpuc->n_events--;
745 break;
746 }
747 }
59abbd1e 748
e7bef6b0
DM
749 perf_enable();
750 local_irq_restore(flags);
751}
752
753static int active_event_index(struct cpu_hw_events *cpuc,
754 struct perf_event *event)
755{
756 int i;
757
758 for (i = 0; i < cpuc->n_events; i++) {
759 if (cpuc->event[i] == event)
760 break;
761 }
762 BUG_ON(i == cpuc->n_events);
763 return cpuc->current_idx[i];
59abbd1e
DM
764}
765
cdd6c482 766static void sparc_pmu_read(struct perf_event *event)
59abbd1e 767{
e7bef6b0
DM
768 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
769 int idx = active_event_index(cpuc, event);
cdd6c482 770 struct hw_perf_event *hwc = &event->hw;
d1751388 771
e7bef6b0 772 sparc_perf_event_update(event, hwc, idx);
59abbd1e
DM
773}
774
cdd6c482 775static void sparc_pmu_unthrottle(struct perf_event *event)
59abbd1e 776{
d1751388 777 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
e7bef6b0 778 int idx = active_event_index(cpuc, event);
cdd6c482 779 struct hw_perf_event *hwc = &event->hw;
d1751388 780
e7bef6b0 781 sparc_pmu_enable_event(cpuc, hwc, idx);
59abbd1e
DM
782}
783
cdd6c482 784static atomic_t active_events = ATOMIC_INIT(0);
59abbd1e
DM
785static DEFINE_MUTEX(pmc_grab_mutex);
786
d1751388
DM
787static void perf_stop_nmi_watchdog(void *unused)
788{
789 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
790
791 stop_nmi_watchdog(NULL);
792 cpuc->pcr = pcr_ops->read();
793}
794
cdd6c482 795void perf_event_grab_pmc(void)
59abbd1e 796{
cdd6c482 797 if (atomic_inc_not_zero(&active_events))
59abbd1e
DM
798 return;
799
800 mutex_lock(&pmc_grab_mutex);
cdd6c482 801 if (atomic_read(&active_events) == 0) {
59abbd1e 802 if (atomic_read(&nmi_active) > 0) {
d1751388 803 on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
59abbd1e
DM
804 BUG_ON(atomic_read(&nmi_active) != 0);
805 }
cdd6c482 806 atomic_inc(&active_events);
59abbd1e
DM
807 }
808 mutex_unlock(&pmc_grab_mutex);
809}
810
cdd6c482 811void perf_event_release_pmc(void)
59abbd1e 812{
cdd6c482 813 if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
59abbd1e
DM
814 if (atomic_read(&nmi_active) == 0)
815 on_each_cpu(start_nmi_watchdog, NULL, 1);
816 mutex_unlock(&pmc_grab_mutex);
817 }
818}
819
2ce4da2e
DM
820static const struct perf_event_map *sparc_map_cache_event(u64 config)
821{
822 unsigned int cache_type, cache_op, cache_result;
823 const struct perf_event_map *pmap;
824
825 if (!sparc_pmu->cache_map)
826 return ERR_PTR(-ENOENT);
827
828 cache_type = (config >> 0) & 0xff;
829 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
830 return ERR_PTR(-EINVAL);
831
832 cache_op = (config >> 8) & 0xff;
833 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
834 return ERR_PTR(-EINVAL);
835
836 cache_result = (config >> 16) & 0xff;
837 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
838 return ERR_PTR(-EINVAL);
839
840 pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
841
842 if (pmap->encoding == CACHE_OP_UNSUPPORTED)
843 return ERR_PTR(-ENOENT);
844
845 if (pmap->encoding == CACHE_OP_NONSENSE)
846 return ERR_PTR(-EINVAL);
847
848 return pmap;
849}
850
cdd6c482 851static void hw_perf_event_destroy(struct perf_event *event)
59abbd1e 852{
cdd6c482 853 perf_event_release_pmc();
59abbd1e
DM
854}
855
a72a8a5f
DM
856/* Make sure all events can be scheduled into the hardware at
857 * the same time. This is simplified by the fact that we only
858 * need to support 2 simultaneous HW events.
e7bef6b0
DM
859 *
860 * As a side effect, the evts[]->hw.idx values will be assigned
861 * on success. These are pending indexes. When the events are
862 * actually programmed into the chip, these values will propagate
863 * to the per-cpu cpuc->current_idx[] slots, see the code in
864 * maybe_change_configuration() for details.
a72a8a5f 865 */
e7bef6b0
DM
866static int sparc_check_constraints(struct perf_event **evts,
867 unsigned long *events, int n_ev)
a72a8a5f 868{
e7bef6b0
DM
869 u8 msk0 = 0, msk1 = 0;
870 int idx0 = 0;
871
872 /* This case is possible when we are invoked from
873 * hw_perf_group_sched_in().
874 */
875 if (!n_ev)
876 return 0;
877
878 if (n_ev > perf_max_events)
879 return -1;
880
881 msk0 = perf_event_get_msk(events[0]);
882 if (n_ev == 1) {
883 if (msk0 & PIC_LOWER)
884 idx0 = 1;
885 goto success;
886 }
887 BUG_ON(n_ev != 2);
888 msk1 = perf_event_get_msk(events[1]);
889
890 /* If both events can go on any counter, OK. */
891 if (msk0 == (PIC_UPPER | PIC_LOWER) &&
892 msk1 == (PIC_UPPER | PIC_LOWER))
893 goto success;
894
895 /* If one event is limited to a specific counter,
896 * and the other can go on both, OK.
897 */
898 if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
899 msk1 == (PIC_UPPER | PIC_LOWER)) {
900 if (msk0 & PIC_LOWER)
901 idx0 = 1;
902 goto success;
a72a8a5f
DM
903 }
904
e7bef6b0
DM
905 if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
906 msk0 == (PIC_UPPER | PIC_LOWER)) {
907 if (msk1 & PIC_UPPER)
908 idx0 = 1;
909 goto success;
910 }
911
912 /* If the events are fixed to different counters, OK. */
913 if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
914 (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
915 if (msk0 & PIC_LOWER)
916 idx0 = 1;
917 goto success;
918 }
919
920 /* Otherwise, there is a conflict. */
a72a8a5f 921 return -1;
e7bef6b0
DM
922
923success:
924 evts[0]->hw.idx = idx0;
925 if (n_ev == 2)
926 evts[1]->hw.idx = idx0 ^ 1;
927 return 0;
a72a8a5f
DM
928}
929
01552f76
DM
930static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
931{
932 int eu = 0, ek = 0, eh = 0;
933 struct perf_event *event;
934 int i, n, first;
935
936 n = n_prev + n_new;
937 if (n <= 1)
938 return 0;
939
940 first = 1;
941 for (i = 0; i < n; i++) {
942 event = evts[i];
943 if (first) {
944 eu = event->attr.exclude_user;
945 ek = event->attr.exclude_kernel;
946 eh = event->attr.exclude_hv;
947 first = 0;
948 } else if (event->attr.exclude_user != eu ||
949 event->attr.exclude_kernel != ek ||
950 event->attr.exclude_hv != eh) {
951 return -EAGAIN;
952 }
953 }
954
955 return 0;
956}
957
958static int collect_events(struct perf_event *group, int max_count,
e7bef6b0
DM
959 struct perf_event *evts[], unsigned long *events,
960 int *current_idx)
01552f76
DM
961{
962 struct perf_event *event;
963 int n = 0;
964
965 if (!is_software_event(group)) {
966 if (n >= max_count)
967 return -1;
968 evts[n] = group;
e7bef6b0
DM
969 events[n] = group->hw.event_base;
970 current_idx[n++] = PIC_NO_INDEX;
01552f76
DM
971 }
972 list_for_each_entry(event, &group->sibling_list, group_entry) {
973 if (!is_software_event(event) &&
974 event->state != PERF_EVENT_STATE_OFF) {
975 if (n >= max_count)
976 return -1;
977 evts[n] = event;
e7bef6b0
DM
978 events[n] = event->hw.event_base;
979 current_idx[n++] = PIC_NO_INDEX;
01552f76
DM
980 }
981 }
982 return n;
983}
984
6e37738a 985static void event_sched_in(struct perf_event *event)
e7bef6b0
DM
986{
987 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 988 event->oncpu = smp_processor_id();
e7bef6b0
DM
989 event->tstamp_running += event->ctx->time - event->tstamp_stopped;
990 if (is_software_event(event))
991 event->pmu->enable(event);
992}
993
994int hw_perf_group_sched_in(struct perf_event *group_leader,
995 struct perf_cpu_context *cpuctx,
6e37738a 996 struct perf_event_context *ctx)
e7bef6b0
DM
997{
998 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
999 struct perf_event *sub;
1000 int n0, n;
1001
1002 if (!sparc_pmu)
1003 return 0;
1004
1005 n0 = cpuc->n_events;
1006 n = collect_events(group_leader, perf_max_events - n0,
1007 &cpuc->event[n0], &cpuc->events[n0],
1008 &cpuc->current_idx[n0]);
1009 if (n < 0)
1010 return -EAGAIN;
1011 if (check_excludes(cpuc->event, n0, n))
1012 return -EINVAL;
1013 if (sparc_check_constraints(cpuc->event, cpuc->events, n + n0))
1014 return -EAGAIN;
1015 cpuc->n_events = n0 + n;
1016 cpuc->n_added += n;
1017
1018 cpuctx->active_oncpu += n;
1019 n = 1;
6e37738a 1020 event_sched_in(group_leader);
e7bef6b0
DM
1021 list_for_each_entry(sub, &group_leader->sibling_list, group_entry) {
1022 if (sub->state != PERF_EVENT_STATE_OFF) {
6e37738a 1023 event_sched_in(sub);
e7bef6b0
DM
1024 n++;
1025 }
1026 }
1027 ctx->nr_active += n;
1028
1029 return 1;
1030}
1031
1032static int sparc_pmu_enable(struct perf_event *event)
1033{
1034 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1035 int n0, ret = -EAGAIN;
1036 unsigned long flags;
1037
1038 local_irq_save(flags);
1039 perf_disable();
1040
1041 n0 = cpuc->n_events;
1042 if (n0 >= perf_max_events)
1043 goto out;
1044
1045 cpuc->event[n0] = event;
1046 cpuc->events[n0] = event->hw.event_base;
1047 cpuc->current_idx[n0] = PIC_NO_INDEX;
1048
1049 if (check_excludes(cpuc->event, n0, 1))
1050 goto out;
1051 if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1052 goto out;
1053
1054 cpuc->n_events++;
1055 cpuc->n_added++;
1056
1057 ret = 0;
1058out:
1059 perf_enable();
1060 local_irq_restore(flags);
1061 return ret;
1062}
1063
cdd6c482 1064static int __hw_perf_event_init(struct perf_event *event)
59abbd1e 1065{
cdd6c482 1066 struct perf_event_attr *attr = &event->attr;
01552f76 1067 struct perf_event *evts[MAX_HWEVENTS];
cdd6c482 1068 struct hw_perf_event *hwc = &event->hw;
a72a8a5f 1069 unsigned long events[MAX_HWEVENTS];
e7bef6b0 1070 int current_idx_dmy[MAX_HWEVENTS];
59abbd1e 1071 const struct perf_event_map *pmap;
01552f76 1072 int n;
59abbd1e
DM
1073
1074 if (atomic_read(&nmi_active) < 0)
1075 return -ENODEV;
1076
2ce4da2e
DM
1077 if (attr->type == PERF_TYPE_HARDWARE) {
1078 if (attr->config >= sparc_pmu->max_events)
1079 return -EINVAL;
1080 pmap = sparc_pmu->event_map(attr->config);
1081 } else if (attr->type == PERF_TYPE_HW_CACHE) {
1082 pmap = sparc_map_cache_event(attr->config);
1083 if (IS_ERR(pmap))
1084 return PTR_ERR(pmap);
1085 } else
59abbd1e
DM
1086 return -EOPNOTSUPP;
1087
e7bef6b0 1088 /* We save the enable bits in the config_base. */
496c07e3 1089 hwc->config_base = sparc_pmu->irq_bit;
59abbd1e
DM
1090 if (!attr->exclude_user)
1091 hwc->config_base |= PCR_UTRACE;
1092 if (!attr->exclude_kernel)
1093 hwc->config_base |= PCR_STRACE;
91b9286d
DM
1094 if (!attr->exclude_hv)
1095 hwc->config_base |= sparc_pmu->hv_bit;
59abbd1e 1096
a72a8a5f
DM
1097 hwc->event_base = perf_event_encode(pmap);
1098
01552f76
DM
1099 n = 0;
1100 if (event->group_leader != event) {
1101 n = collect_events(event->group_leader,
1102 perf_max_events - 1,
e7bef6b0 1103 evts, events, current_idx_dmy);
01552f76
DM
1104 if (n < 0)
1105 return -EINVAL;
1106 }
a72a8a5f 1107 events[n] = hwc->event_base;
01552f76
DM
1108 evts[n] = event;
1109
1110 if (check_excludes(evts, n, 1))
1111 return -EINVAL;
1112
e7bef6b0 1113 if (sparc_check_constraints(evts, events, n + 1))
a72a8a5f
DM
1114 return -EINVAL;
1115
e7bef6b0
DM
1116 hwc->idx = PIC_NO_INDEX;
1117
01552f76
DM
1118 /* Try to do all error checking before this point, as unwinding
1119 * state after grabbing the PMC is difficult.
1120 */
1121 perf_event_grab_pmc();
1122 event->destroy = hw_perf_event_destroy;
1123
59abbd1e
DM
1124 if (!hwc->sample_period) {
1125 hwc->sample_period = MAX_PERIOD;
1126 hwc->last_period = hwc->sample_period;
1127 atomic64_set(&hwc->period_left, hwc->sample_period);
1128 }
1129
59abbd1e
DM
1130 return 0;
1131}
1132
1133static const struct pmu pmu = {
1134 .enable = sparc_pmu_enable,
1135 .disable = sparc_pmu_disable,
1136 .read = sparc_pmu_read,
1137 .unthrottle = sparc_pmu_unthrottle,
1138};
1139
cdd6c482 1140const struct pmu *hw_perf_event_init(struct perf_event *event)
59abbd1e 1141{
cdd6c482 1142 int err = __hw_perf_event_init(event);
59abbd1e
DM
1143
1144 if (err)
1145 return ERR_PTR(err);
1146 return &pmu;
1147}
1148
cdd6c482 1149void perf_event_print_debug(void)
59abbd1e
DM
1150{
1151 unsigned long flags;
1152 u64 pcr, pic;
1153 int cpu;
1154
1155 if (!sparc_pmu)
1156 return;
1157
1158 local_irq_save(flags);
1159
1160 cpu = smp_processor_id();
1161
1162 pcr = pcr_ops->read();
1163 read_pic(pic);
1164
1165 pr_info("\n");
1166 pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n",
1167 cpu, pcr, pic);
1168
1169 local_irq_restore(flags);
1170}
1171
cdd6c482 1172static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
d29862f0 1173 unsigned long cmd, void *__args)
59abbd1e
DM
1174{
1175 struct die_args *args = __args;
1176 struct perf_sample_data data;
cdd6c482 1177 struct cpu_hw_events *cpuc;
59abbd1e 1178 struct pt_regs *regs;
e7bef6b0 1179 int i;
59abbd1e 1180
cdd6c482 1181 if (!atomic_read(&active_events))
59abbd1e
DM
1182 return NOTIFY_DONE;
1183
1184 switch (cmd) {
1185 case DIE_NMI:
1186 break;
1187
1188 default:
1189 return NOTIFY_DONE;
1190 }
1191
1192 regs = args->regs;
1193
dc1d628a 1194 perf_sample_data_init(&data, 0);
59abbd1e 1195
cdd6c482 1196 cpuc = &__get_cpu_var(cpu_hw_events);
e04ed38d
DM
1197
1198 /* If the PMU has the TOE IRQ enable bits, we need to do a
1199 * dummy write to the %pcr to clear the overflow bits and thus
1200 * the interrupt.
1201 *
1202 * Do this before we peek at the counters to determine
1203 * overflow so we don't lose any events.
1204 */
1205 if (sparc_pmu->irq_bit)
1206 pcr_ops->write(cpuc->pcr);
1207
e7bef6b0
DM
1208 for (i = 0; i < cpuc->n_events; i++) {
1209 struct perf_event *event = cpuc->event[i];
1210 int idx = cpuc->current_idx[i];
cdd6c482 1211 struct hw_perf_event *hwc;
59abbd1e
DM
1212 u64 val;
1213
cdd6c482
IM
1214 hwc = &event->hw;
1215 val = sparc_perf_event_update(event, hwc, idx);
59abbd1e
DM
1216 if (val & (1ULL << 31))
1217 continue;
1218
cdd6c482
IM
1219 data.period = event->hw.last_period;
1220 if (!sparc_perf_event_set_period(event, hwc, idx))
59abbd1e
DM
1221 continue;
1222
cdd6c482 1223 if (perf_event_overflow(event, 1, &data, regs))
d1751388 1224 sparc_pmu_disable_event(cpuc, hwc, idx);
59abbd1e
DM
1225 }
1226
1227 return NOTIFY_STOP;
1228}
1229
cdd6c482
IM
1230static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1231 .notifier_call = perf_event_nmi_handler,
59abbd1e
DM
1232};
1233
1234static bool __init supported_pmu(void)
1235{
28e8f9be
DM
1236 if (!strcmp(sparc_pmu_type, "ultra3") ||
1237 !strcmp(sparc_pmu_type, "ultra3+") ||
1238 !strcmp(sparc_pmu_type, "ultra3i") ||
1239 !strcmp(sparc_pmu_type, "ultra4+")) {
1240 sparc_pmu = &ultra3_pmu;
59abbd1e
DM
1241 return true;
1242 }
7eebda60
DM
1243 if (!strcmp(sparc_pmu_type, "niagara")) {
1244 sparc_pmu = &niagara1_pmu;
1245 return true;
1246 }
b73d8847
DM
1247 if (!strcmp(sparc_pmu_type, "niagara2")) {
1248 sparc_pmu = &niagara2_pmu;
1249 return true;
1250 }
59abbd1e
DM
1251 return false;
1252}
1253
cdd6c482 1254void __init init_hw_perf_events(void)
59abbd1e 1255{
cdd6c482 1256 pr_info("Performance events: ");
59abbd1e
DM
1257
1258 if (!supported_pmu()) {
1259 pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1260 return;
1261 }
1262
1263 pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1264
e7bef6b0
DM
1265 /* All sparc64 PMUs currently have 2 events. */
1266 perf_max_events = 2;
59abbd1e 1267
cdd6c482 1268 register_die_notifier(&perf_event_nmi_notifier);
59abbd1e 1269}
4f6dbe4a
DM
1270
1271static inline void callchain_store(struct perf_callchain_entry *entry, u64 ip)
1272{
1273 if (entry->nr < PERF_MAX_STACK_DEPTH)
1274 entry->ip[entry->nr++] = ip;
1275}
1276
1277static void perf_callchain_kernel(struct pt_regs *regs,
1278 struct perf_callchain_entry *entry)
1279{
1280 unsigned long ksp, fp;
667f0cee
DM
1281#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1282 int graph = 0;
1283#endif
4f6dbe4a
DM
1284
1285 callchain_store(entry, PERF_CONTEXT_KERNEL);
1286 callchain_store(entry, regs->tpc);
1287
1288 ksp = regs->u_regs[UREG_I6];
1289 fp = ksp + STACK_BIAS;
1290 do {
1291 struct sparc_stackf *sf;
1292 struct pt_regs *regs;
1293 unsigned long pc;
1294
1295 if (!kstack_valid(current_thread_info(), fp))
1296 break;
1297
1298 sf = (struct sparc_stackf *) fp;
1299 regs = (struct pt_regs *) (sf + 1);
1300
1301 if (kstack_is_trap_frame(current_thread_info(), regs)) {
1302 if (user_mode(regs))
1303 break;
1304 pc = regs->tpc;
1305 fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1306 } else {
1307 pc = sf->callers_pc;
1308 fp = (unsigned long)sf->fp + STACK_BIAS;
1309 }
1310 callchain_store(entry, pc);
667f0cee
DM
1311#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1312 if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1313 int index = current->curr_ret_stack;
1314 if (current->ret_stack && index >= graph) {
1315 pc = current->ret_stack[index - graph].ret;
1316 callchain_store(entry, pc);
1317 graph++;
1318 }
1319 }
1320#endif
4f6dbe4a
DM
1321 } while (entry->nr < PERF_MAX_STACK_DEPTH);
1322}
1323
1324static void perf_callchain_user_64(struct pt_regs *regs,
1325 struct perf_callchain_entry *entry)
1326{
1327 unsigned long ufp;
1328
1329 callchain_store(entry, PERF_CONTEXT_USER);
1330 callchain_store(entry, regs->tpc);
1331
1332 ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
1333 do {
1334 struct sparc_stackf *usf, sf;
1335 unsigned long pc;
1336
1337 usf = (struct sparc_stackf *) ufp;
1338 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1339 break;
1340
1341 pc = sf.callers_pc;
1342 ufp = (unsigned long)sf.fp + STACK_BIAS;
1343 callchain_store(entry, pc);
1344 } while (entry->nr < PERF_MAX_STACK_DEPTH);
1345}
1346
1347static void perf_callchain_user_32(struct pt_regs *regs,
1348 struct perf_callchain_entry *entry)
1349{
1350 unsigned long ufp;
1351
1352 callchain_store(entry, PERF_CONTEXT_USER);
1353 callchain_store(entry, regs->tpc);
1354
9e8307ec 1355 ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
4f6dbe4a
DM
1356 do {
1357 struct sparc_stackf32 *usf, sf;
1358 unsigned long pc;
1359
1360 usf = (struct sparc_stackf32 *) ufp;
1361 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1362 break;
1363
1364 pc = sf.callers_pc;
1365 ufp = (unsigned long)sf.fp;
1366 callchain_store(entry, pc);
1367 } while (entry->nr < PERF_MAX_STACK_DEPTH);
1368}
1369
1370/* Like powerpc we can't get PMU interrupts within the PMU handler,
3ad2f3fb 1371 * so no need for separate NMI and IRQ chains as on x86.
4f6dbe4a
DM
1372 */
1373static DEFINE_PER_CPU(struct perf_callchain_entry, callchain);
1374
1375struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1376{
1377 struct perf_callchain_entry *entry = &__get_cpu_var(callchain);
1378
1379 entry->nr = 0;
1380 if (!user_mode(regs)) {
1381 stack_trace_flush();
1382 perf_callchain_kernel(regs, entry);
1383 if (current->mm)
1384 regs = task_pt_regs(current);
1385 else
1386 regs = NULL;
1387 }
1388 if (regs) {
1389 flushw_user();
1390 if (test_thread_flag(TIF_32BIT))
1391 perf_callchain_user_32(regs, entry);
1392 else
1393 perf_callchain_user_64(regs, entry);
1394 }
1395 return entry;
1396}