]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/s390/kernel/kprobes.c
Merge branch 'pm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/suspe...
[net-next-2.6.git] / arch / s390 / kernel / kprobes.c
CommitLineData
4ba069b8
MG
1/*
2 * Kernel Probes (KProbes)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2002, 2006
19 *
20 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
21 */
22
4ba069b8
MG
23#include <linux/kprobes.h>
24#include <linux/ptrace.h>
25#include <linux/preempt.h>
26#include <linux/stop_machine.h>
1eeb66a1 27#include <linux/kdebug.h>
a2b53673 28#include <linux/uaccess.h>
4ba069b8 29#include <asm/cacheflush.h>
4ba069b8 30#include <asm/sections.h>
4ba069b8 31#include <linux/module.h>
5a0e3ad6 32#include <linux/slab.h>
4ba069b8
MG
33
34DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
35DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
36
f438d914
MH
37struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
38
4ba069b8
MG
39int __kprobes arch_prepare_kprobe(struct kprobe *p)
40{
41 /* Make sure the probe isn't going on a difficult instruction */
42 if (is_prohibited_opcode((kprobe_opcode_t *) p->addr))
43 return -EINVAL;
44
5532bd0f 45 if ((unsigned long)p->addr & 0x01)
4ba069b8 46 return -EINVAL;
4ba069b8
MG
47
48 /* Use the get_insn_slot() facility for correctness */
49 if (!(p->ainsn.insn = get_insn_slot()))
50 return -ENOMEM;
51
52 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
53
54 get_instruction_type(&p->ainsn);
55 p->opcode = *p->addr;
56 return 0;
57}
58
59int __kprobes is_prohibited_opcode(kprobe_opcode_t *instruction)
60{
61 switch (*(__u8 *) instruction) {
62 case 0x0c: /* bassm */
63 case 0x0b: /* bsm */
64 case 0x83: /* diag */
65 case 0x44: /* ex */
bac9f154
HC
66 case 0xac: /* stnsm */
67 case 0xad: /* stosm */
4ba069b8
MG
68 return -EINVAL;
69 }
70 switch (*(__u16 *) instruction) {
71 case 0x0101: /* pr */
72 case 0xb25a: /* bsa */
73 case 0xb240: /* bakr */
74 case 0xb258: /* bsg */
75 case 0xb218: /* pc */
76 case 0xb228: /* pt */
bac9f154 77 case 0xb98d: /* epsw */
4ba069b8
MG
78 return -EINVAL;
79 }
80 return 0;
81}
82
83void __kprobes get_instruction_type(struct arch_specific_insn *ainsn)
84{
85 /* default fixup method */
86 ainsn->fixup = FIXUP_PSW_NORMAL;
87
88 /* save r1 operand */
89 ainsn->reg = (*ainsn->insn & 0xf0) >> 4;
90
91 /* save the instruction length (pop 5-5) in bytes */
9c5f225f 92 switch (*(__u8 *) (ainsn->insn) >> 6) {
4ba069b8
MG
93 case 0:
94 ainsn->ilen = 2;
95 break;
96 case 1:
97 case 2:
98 ainsn->ilen = 4;
99 break;
100 case 3:
101 ainsn->ilen = 6;
102 break;
103 }
104
105 switch (*(__u8 *) ainsn->insn) {
106 case 0x05: /* balr */
107 case 0x0d: /* basr */
108 ainsn->fixup = FIXUP_RETURN_REGISTER;
109 /* if r2 = 0, no branch will be taken */
110 if ((*ainsn->insn & 0x0f) == 0)
111 ainsn->fixup |= FIXUP_BRANCH_NOT_TAKEN;
112 break;
113 case 0x06: /* bctr */
114 case 0x07: /* bcr */
115 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
116 break;
117 case 0x45: /* bal */
118 case 0x4d: /* bas */
119 ainsn->fixup = FIXUP_RETURN_REGISTER;
120 break;
121 case 0x47: /* bc */
122 case 0x46: /* bct */
123 case 0x86: /* bxh */
124 case 0x87: /* bxle */
125 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
126 break;
127 case 0x82: /* lpsw */
128 ainsn->fixup = FIXUP_NOT_REQUIRED;
129 break;
130 case 0xb2: /* lpswe */
131 if (*(((__u8 *) ainsn->insn) + 1) == 0xb2) {
132 ainsn->fixup = FIXUP_NOT_REQUIRED;
133 }
134 break;
135 case 0xa7: /* bras */
136 if ((*ainsn->insn & 0x0f) == 0x05) {
137 ainsn->fixup |= FIXUP_RETURN_REGISTER;
138 }
139 break;
140 case 0xc0:
141 if ((*ainsn->insn & 0x0f) == 0x00 /* larl */
142 || (*ainsn->insn & 0x0f) == 0x05) /* brasl */
143 ainsn->fixup |= FIXUP_RETURN_REGISTER;
144 break;
145 case 0xeb:
146 if (*(((__u8 *) ainsn->insn) + 5 ) == 0x44 || /* bxhg */
147 *(((__u8 *) ainsn->insn) + 5) == 0x45) {/* bxleg */
148 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
149 }
150 break;
151 case 0xe3: /* bctg */
152 if (*(((__u8 *) ainsn->insn) + 5) == 0x46) {
153 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
154 }
155 break;
156 }
157}
158
159static int __kprobes swap_instruction(void *aref)
160{
acf01800
HC
161 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
162 unsigned long status = kcb->kprobe_status;
4ba069b8 163 struct ins_replace_args *args = aref;
acf01800 164 int rc;
a2b53673 165
acf01800
HC
166 kcb->kprobe_status = KPROBE_SWAP_INST;
167 rc = probe_kernel_write(args->ptr, &args->new, sizeof(args->new));
168 kcb->kprobe_status = status;
169 return rc;
4ba069b8
MG
170}
171
172void __kprobes arch_arm_kprobe(struct kprobe *p)
173{
4ba069b8
MG
174 struct ins_replace_args args;
175
176 args.ptr = p->addr;
177 args.old = p->opcode;
178 args.new = BREAKPOINT_INSTRUCTION;
9b1a4d38 179 stop_machine(swap_instruction, &args, NULL);
4ba069b8
MG
180}
181
182void __kprobes arch_disarm_kprobe(struct kprobe *p)
183{
4ba069b8
MG
184 struct ins_replace_args args;
185
186 args.ptr = p->addr;
187 args.old = BREAKPOINT_INSTRUCTION;
188 args.new = p->opcode;
9b1a4d38 189 stop_machine(swap_instruction, &args, NULL);
4ba069b8
MG
190}
191
192void __kprobes arch_remove_kprobe(struct kprobe *p)
193{
12941560
MH
194 if (p->ainsn.insn) {
195 free_insn_slot(p->ainsn.insn, 0);
196 p->ainsn.insn = NULL;
197 }
4ba069b8
MG
198}
199
200static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
201{
202 per_cr_bits kprobe_per_regs[1];
203
204 memset(kprobe_per_regs, 0, sizeof(per_cr_bits));
205 regs->psw.addr = (unsigned long)p->ainsn.insn | PSW_ADDR_AMODE;
206
207 /* Set up the per control reg info, will pass to lctl */
208 kprobe_per_regs[0].em_instruction_fetch = 1;
209 kprobe_per_regs[0].starting_addr = (unsigned long)p->ainsn.insn;
210 kprobe_per_regs[0].ending_addr = (unsigned long)p->ainsn.insn + 1;
211
212 /* Set the PER control regs, turns on single step for this address */
213 __ctl_load(kprobe_per_regs, 9, 11);
214 regs->psw.mask |= PSW_MASK_PER;
215 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
216}
217
218static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
219{
220 kcb->prev_kprobe.kp = kprobe_running();
221 kcb->prev_kprobe.status = kcb->kprobe_status;
222 kcb->prev_kprobe.kprobe_saved_imask = kcb->kprobe_saved_imask;
223 memcpy(kcb->prev_kprobe.kprobe_saved_ctl, kcb->kprobe_saved_ctl,
224 sizeof(kcb->kprobe_saved_ctl));
225}
226
227static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
228{
229 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
230 kcb->kprobe_status = kcb->prev_kprobe.status;
231 kcb->kprobe_saved_imask = kcb->prev_kprobe.kprobe_saved_imask;
232 memcpy(kcb->kprobe_saved_ctl, kcb->prev_kprobe.kprobe_saved_ctl,
233 sizeof(kcb->kprobe_saved_ctl));
234}
235
236static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
237 struct kprobe_ctlblk *kcb)
238{
239 __get_cpu_var(current_kprobe) = p;
240 /* Save the interrupt and per flags */
241 kcb->kprobe_saved_imask = regs->psw.mask &
242 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
243 /* Save the control regs that govern PER */
244 __ctl_store(kcb->kprobe_saved_ctl, 9, 11);
245}
246
4c4308cb 247void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
4ba069b8
MG
248 struct pt_regs *regs)
249{
4c4308cb 250 ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
4ba069b8 251
4c4308cb
CH
252 /* Replace the return addr with trampoline addr */
253 regs->gprs[14] = (unsigned long)&kretprobe_trampoline;
4ba069b8
MG
254}
255
256static int __kprobes kprobe_handler(struct pt_regs *regs)
257{
258 struct kprobe *p;
259 int ret = 0;
260 unsigned long *addr = (unsigned long *)
261 ((regs->psw.addr & PSW_ADDR_INSN) - 2);
262 struct kprobe_ctlblk *kcb;
263
264 /*
265 * We don't want to be preempted for the entire
266 * duration of kprobe processing
267 */
268 preempt_disable();
269 kcb = get_kprobe_ctlblk();
270
271 /* Check we're not actually recursing */
272 if (kprobe_running()) {
273 p = get_kprobe(addr);
274 if (p) {
275 if (kcb->kprobe_status == KPROBE_HIT_SS &&
276 *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
277 regs->psw.mask &= ~PSW_MASK_PER;
278 regs->psw.mask |= kcb->kprobe_saved_imask;
279 goto no_kprobe;
280 }
281 /* We have reentered the kprobe_handler(), since
282 * another probe was hit while within the handler.
283 * We here save the original kprobes variables and
284 * just single step on the instruction of the new probe
285 * without calling any user handlers.
286 */
287 save_previous_kprobe(kcb);
288 set_current_kprobe(p, regs, kcb);
289 kprobes_inc_nmissed_count(p);
290 prepare_singlestep(p, regs);
291 kcb->kprobe_status = KPROBE_REENTER;
292 return 1;
293 } else {
294 p = __get_cpu_var(current_kprobe);
295 if (p->break_handler && p->break_handler(p, regs)) {
296 goto ss_probe;
297 }
298 }
299 goto no_kprobe;
300 }
301
302 p = get_kprobe(addr);
f794c827
MS
303 if (!p)
304 /*
305 * No kprobe at this address. The fault has not been
306 * caused by a kprobe breakpoint. The race of breakpoint
307 * vs. kprobe remove does not exist because on s390 we
9b1a4d38 308 * use stop_machine to arm/disarm the breakpoints.
f794c827 309 */
4ba069b8 310 goto no_kprobe;
4ba069b8
MG
311
312 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
313 set_current_kprobe(p, regs, kcb);
314 if (p->pre_handler && p->pre_handler(p, regs))
315 /* handler has already set things up, so skip ss setup */
316 return 1;
317
318ss_probe:
9ec27080
MS
319 if (regs->psw.mask & (PSW_MASK_PER | PSW_MASK_IO))
320 local_irq_disable();
4ba069b8
MG
321 prepare_singlestep(p, regs);
322 kcb->kprobe_status = KPROBE_HIT_SS;
323 return 1;
324
325no_kprobe:
326 preempt_enable_no_resched();
327 return ret;
328}
329
330/*
331 * Function return probe trampoline:
332 * - init_kprobes() establishes a probepoint here
333 * - When the probed function returns, this probe
334 * causes the handlers to fire
335 */
a806170e 336static void __used kretprobe_trampoline_holder(void)
4ba069b8
MG
337{
338 asm volatile(".global kretprobe_trampoline\n"
339 "kretprobe_trampoline: bcr 0,0\n");
340}
341
342/*
343 * Called when the probe at kretprobe trampoline is hit
344 */
2b67fc46
HC
345static int __kprobes trampoline_probe_handler(struct kprobe *p,
346 struct pt_regs *regs)
4ba069b8
MG
347{
348 struct kretprobe_instance *ri = NULL;
99219a3f 349 struct hlist_head *head, empty_rp;
4ba069b8
MG
350 struct hlist_node *node, *tmp;
351 unsigned long flags, orig_ret_address = 0;
352 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
353
99219a3f 354 INIT_HLIST_HEAD(&empty_rp);
ef53d9c5 355 kretprobe_hash_lock(current, &head, &flags);
4ba069b8
MG
356
357 /*
358 * It is possible to have multiple instances associated with a given
359 * task either because an multiple functions in the call path
025dfdaf 360 * have a return probe installed on them, and/or more than one return
4ba069b8
MG
361 * return probe was registered for a target function.
362 *
363 * We can handle this because:
364 * - instances are always inserted at the head of the list
365 * - when multiple return probes are registered for the same
366 * function, the first instance's ret_addr will point to the
367 * real return address, and all the rest will point to
368 * kretprobe_trampoline
369 */
370 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
371 if (ri->task != current)
372 /* another task is sharing our hash bucket */
373 continue;
374
375 if (ri->rp && ri->rp->handler)
376 ri->rp->handler(ri, regs);
377
378 orig_ret_address = (unsigned long)ri->ret_addr;
99219a3f 379 recycle_rp_inst(ri, &empty_rp);
4ba069b8
MG
380
381 if (orig_ret_address != trampoline_address) {
382 /*
383 * This is the real return address. Any other
384 * instances associated with this task are for
385 * other calls deeper on the call stack
386 */
387 break;
388 }
389 }
a5a60a2b 390 kretprobe_assert(ri, orig_ret_address, trampoline_address);
4ba069b8
MG
391 regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE;
392
393 reset_current_kprobe();
ef53d9c5 394 kretprobe_hash_unlock(current, &flags);
4ba069b8
MG
395 preempt_enable_no_resched();
396
99219a3f 397 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
398 hlist_del(&ri->hlist);
399 kfree(ri);
400 }
4ba069b8
MG
401 /*
402 * By returning a non-zero value, we are telling
403 * kprobe_handler() that we don't want the post_handler
404 * to run (and have re-enabled preemption)
405 */
406 return 1;
407}
408
409/*
410 * Called after single-stepping. p->addr is the address of the
411 * instruction whose first byte has been replaced by the "breakpoint"
412 * instruction. To avoid the SMP problems that can occur when we
413 * temporarily put back the original opcode to single-step, we
414 * single-stepped a copy of the instruction. The address of this
415 * copy is p->ainsn.insn.
416 */
417static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
418{
419 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
420
421 regs->psw.addr &= PSW_ADDR_INSN;
422
423 if (p->ainsn.fixup & FIXUP_PSW_NORMAL)
424 regs->psw.addr = (unsigned long)p->addr +
425 ((unsigned long)regs->psw.addr -
426 (unsigned long)p->ainsn.insn);
427
428 if (p->ainsn.fixup & FIXUP_BRANCH_NOT_TAKEN)
429 if ((unsigned long)regs->psw.addr -
430 (unsigned long)p->ainsn.insn == p->ainsn.ilen)
431 regs->psw.addr = (unsigned long)p->addr + p->ainsn.ilen;
432
433 if (p->ainsn.fixup & FIXUP_RETURN_REGISTER)
434 regs->gprs[p->ainsn.reg] = ((unsigned long)p->addr +
435 (regs->gprs[p->ainsn.reg] -
436 (unsigned long)p->ainsn.insn))
437 | PSW_ADDR_AMODE;
438
439 regs->psw.addr |= PSW_ADDR_AMODE;
440 /* turn off PER mode */
441 regs->psw.mask &= ~PSW_MASK_PER;
442 /* Restore the original per control regs */
443 __ctl_load(kcb->kprobe_saved_ctl, 9, 11);
444 regs->psw.mask |= kcb->kprobe_saved_imask;
445}
446
447static int __kprobes post_kprobe_handler(struct pt_regs *regs)
448{
449 struct kprobe *cur = kprobe_running();
450 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
451
452 if (!cur)
453 return 0;
454
455 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
456 kcb->kprobe_status = KPROBE_HIT_SSDONE;
457 cur->post_handler(cur, regs, 0);
458 }
459
460 resume_execution(cur, regs);
461
462 /*Restore back the original saved kprobes variables and continue. */
463 if (kcb->kprobe_status == KPROBE_REENTER) {
464 restore_previous_kprobe(kcb);
465 goto out;
466 }
467 reset_current_kprobe();
9ec27080
MS
468 if (regs->psw.mask & (PSW_MASK_PER | PSW_MASK_IO))
469 local_irq_enable();
4ba069b8
MG
470out:
471 preempt_enable_no_resched();
472
473 /*
474 * if somebody else is singlestepping across a probe point, psw mask
475 * will have PER set, in which case, continue the remaining processing
476 * of do_single_step, as if this is not a probe hit.
477 */
478 if (regs->psw.mask & PSW_MASK_PER) {
479 return 0;
480 }
481
482 return 1;
483}
484
33464e3b 485int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
4ba069b8
MG
486{
487 struct kprobe *cur = kprobe_running();
488 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
489 const struct exception_table_entry *entry;
490
491 switch(kcb->kprobe_status) {
492 case KPROBE_SWAP_INST:
493 /* We are here because the instruction replacement failed */
494 return 0;
495 case KPROBE_HIT_SS:
496 case KPROBE_REENTER:
497 /*
498 * We are here because the instruction being single
499 * stepped caused a page fault. We reset the current
500 * kprobe and the nip points back to the probe address
501 * and allow the page fault handler to continue as a
502 * normal page fault.
503 */
504 regs->psw.addr = (unsigned long)cur->addr | PSW_ADDR_AMODE;
505 regs->psw.mask &= ~PSW_MASK_PER;
506 regs->psw.mask |= kcb->kprobe_saved_imask;
507 if (kcb->kprobe_status == KPROBE_REENTER)
508 restore_previous_kprobe(kcb);
9ec27080 509 else {
4ba069b8 510 reset_current_kprobe();
9ec27080
MS
511 if (regs->psw.mask & (PSW_MASK_PER | PSW_MASK_IO))
512 local_irq_enable();
513 }
4ba069b8
MG
514 preempt_enable_no_resched();
515 break;
516 case KPROBE_HIT_ACTIVE:
517 case KPROBE_HIT_SSDONE:
518 /*
519 * We increment the nmissed count for accounting,
520 * we can also use npre/npostfault count for accouting
521 * these specific fault cases.
522 */
523 kprobes_inc_nmissed_count(cur);
524
525 /*
526 * We come here because instructions in the pre/post
527 * handler caused the page_fault, this could happen
528 * if handler tries to access user space by
529 * copy_from_user(), get_user() etc. Let the
530 * user-specified handler try to fix it first.
531 */
532 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
533 return 1;
534
535 /*
536 * In case the user-specified fault handler returned
537 * zero, try to fix up.
538 */
539 entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
540 if (entry) {
541 regs->psw.addr = entry->fixup | PSW_ADDR_AMODE;
542 return 1;
543 }
544
545 /*
546 * fixup_exception() could not handle it,
547 * Let do_page_fault() fix it.
548 */
549 break;
550 default:
551 break;
552 }
553 return 0;
554}
555
556/*
557 * Wrapper routine to for handling exceptions.
558 */
559int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
560 unsigned long val, void *data)
561{
562 struct die_args *args = (struct die_args *)data;
563 int ret = NOTIFY_DONE;
564
565 switch (val) {
566 case DIE_BPT:
567 if (kprobe_handler(args->regs))
568 ret = NOTIFY_STOP;
569 break;
570 case DIE_SSTEP:
571 if (post_kprobe_handler(args->regs))
572 ret = NOTIFY_STOP;
573 break;
574 case DIE_TRAP:
4ba069b8
MG
575 /* kprobe_running() needs smp_processor_id() */
576 preempt_disable();
577 if (kprobe_running() &&
578 kprobe_fault_handler(args->regs, args->trapnr))
579 ret = NOTIFY_STOP;
580 preempt_enable();
581 break;
582 default:
583 break;
584 }
585 return ret;
586}
587
588int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
589{
590 struct jprobe *jp = container_of(p, struct jprobe, kp);
591 unsigned long addr;
592 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
593
594 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
595
596 /* setup return addr to the jprobe handler routine */
597 regs->psw.addr = (unsigned long)(jp->entry) | PSW_ADDR_AMODE;
598
599 /* r14 is the function return address */
600 kcb->jprobe_saved_r14 = (unsigned long)regs->gprs[14];
601 /* r15 is the stack pointer */
602 kcb->jprobe_saved_r15 = (unsigned long)regs->gprs[15];
603 addr = (unsigned long)kcb->jprobe_saved_r15;
604
605 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *) addr,
606 MIN_STACK_SIZE(addr));
607 return 1;
608}
609
610void __kprobes jprobe_return(void)
611{
612 asm volatile(".word 0x0002");
613}
614
615void __kprobes jprobe_return_end(void)
616{
617 asm volatile("bcr 0,0");
618}
619
620int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
621{
622 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
623 unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_r15);
624
625 /* Put the regs back */
626 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
627 /* put the stack back */
628 memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
629 MIN_STACK_SIZE(stack_addr));
630 preempt_enable_no_resched();
631 return 1;
632}
633
634static struct kprobe trampoline_p = {
635 .addr = (kprobe_opcode_t *) & kretprobe_trampoline,
636 .pre_handler = trampoline_probe_handler
637};
638
639int __init arch_init_kprobes(void)
640{
641 return register_kprobe(&trampoline_p);
642}
bf8f6e5b
AM
643
644int __kprobes arch_trampoline_kprobe(struct kprobe *p)
645{
646 if (p->addr == (kprobe_opcode_t *) & kretprobe_trampoline)
647 return 1;
648 return 0;
649}