]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/s390/include/asm/pgtable.h
Merge branch 'for-rmk' of git://git.pengutronix.de/git/imx/linux-2.6
[net-next-2.6.git] / arch / s390 / include / asm / pgtable.h
CommitLineData
1da177e4
LT
1/*
2 * include/asm-s390/pgtable.h
3 *
4 * S390 version
5 * Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
6 * Author(s): Hartmut Penner (hp@de.ibm.com)
7 * Ulrich Weigand (weigand@de.ibm.com)
8 * Martin Schwidefsky (schwidefsky@de.ibm.com)
9 *
10 * Derived from "include/asm-i386/pgtable.h"
11 */
12
13#ifndef _ASM_S390_PGTABLE_H
14#define _ASM_S390_PGTABLE_H
15
1da177e4
LT
16/*
17 * The Linux memory management assumes a three-level page table setup. For
18 * s390 31 bit we "fold" the mid level into the top-level page table, so
19 * that we physically have the same two-level page table as the s390 mmu
20 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
21 * the hardware provides (region first and region second tables are not
22 * used).
23 *
24 * The "pgd_xxx()" functions are trivial for a folded two-level
25 * setup: the pgd is never bad, and a pmd always exists (as it's folded
26 * into the pgd entry)
27 *
28 * This file contains the functions and defines necessary to modify and use
29 * the S390 page table tree.
30 */
31#ifndef __ASSEMBLY__
9789db08 32#include <linux/sched.h>
2dcea57a 33#include <linux/mm_types.h>
5b7baf05 34#include <asm/bitops.h>
1da177e4
LT
35#include <asm/bug.h>
36#include <asm/processor.h>
1da177e4 37
1da177e4
LT
38extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
39extern void paging_init(void);
2b67fc46 40extern void vmem_map_init(void);
1da177e4
LT
41
42/*
43 * The S390 doesn't have any external MMU info: the kernel page
44 * tables contain all the necessary information.
45 */
4b3073e1 46#define update_mmu_cache(vma, address, ptep) do { } while (0)
1da177e4
LT
47
48/*
49 * ZERO_PAGE is a global shared page that is always zero: used
50 * for zero-mapped memory areas etc..
51 */
52extern char empty_zero_page[PAGE_SIZE];
53#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
54#endif /* !__ASSEMBLY__ */
55
56/*
57 * PMD_SHIFT determines the size of the area a second-level page
58 * table can map
59 * PGDIR_SHIFT determines what a third-level page table entry can map
60 */
61#ifndef __s390x__
146e4b3c
MS
62# define PMD_SHIFT 20
63# define PUD_SHIFT 20
64# define PGDIR_SHIFT 20
1da177e4 65#else /* __s390x__ */
146e4b3c 66# define PMD_SHIFT 20
190a1d72 67# define PUD_SHIFT 31
5a216a20 68# define PGDIR_SHIFT 42
1da177e4
LT
69#endif /* __s390x__ */
70
71#define PMD_SIZE (1UL << PMD_SHIFT)
72#define PMD_MASK (~(PMD_SIZE-1))
190a1d72
MS
73#define PUD_SIZE (1UL << PUD_SHIFT)
74#define PUD_MASK (~(PUD_SIZE-1))
5a216a20
MS
75#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
76#define PGDIR_MASK (~(PGDIR_SIZE-1))
1da177e4
LT
77
78/*
79 * entries per page directory level: the S390 is two-level, so
80 * we don't really have any PMD directory physically.
81 * for S390 segment-table entries are combined to one PGD
82 * that leads to 1024 pte per pgd
83 */
146e4b3c 84#define PTRS_PER_PTE 256
1da177e4 85#ifndef __s390x__
146e4b3c 86#define PTRS_PER_PMD 1
5a216a20 87#define PTRS_PER_PUD 1
1da177e4 88#else /* __s390x__ */
146e4b3c 89#define PTRS_PER_PMD 2048
5a216a20 90#define PTRS_PER_PUD 2048
1da177e4 91#endif /* __s390x__ */
146e4b3c 92#define PTRS_PER_PGD 2048
1da177e4 93
d455a369
HD
94#define FIRST_USER_ADDRESS 0
95
1da177e4
LT
96#define pte_ERROR(e) \
97 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
98#define pmd_ERROR(e) \
99 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
190a1d72
MS
100#define pud_ERROR(e) \
101 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
1da177e4
LT
102#define pgd_ERROR(e) \
103 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
104
105#ifndef __ASSEMBLY__
106/*
5fd9c6e2 107 * The vmalloc area will always be on the topmost area of the kernel
7d3f661e 108 * mapping. We reserve 96MB (31bit) / 128GB (64bit) for vmalloc,
5fd9c6e2
CB
109 * which should be enough for any sane case.
110 * By putting vmalloc at the top, we maximise the gap between physical
111 * memory and vmalloc to catch misplaced memory accesses. As a side
112 * effect, this also makes sure that 64 bit module code cannot be used
113 * as system call address.
8b62bc96 114 */
239a6425
HC
115
116extern unsigned long VMALLOC_START;
117
1da177e4 118#ifndef __s390x__
239a6425 119#define VMALLOC_SIZE (96UL << 20)
5fd9c6e2 120#define VMALLOC_END 0x7e000000UL
0189103c 121#define VMEM_MAP_END 0x80000000UL
1da177e4 122#else /* __s390x__ */
7d3f661e
MS
123#define VMALLOC_SIZE (128UL << 30)
124#define VMALLOC_END 0x3e000000000UL
0189103c 125#define VMEM_MAP_END 0x40000000000UL
1da177e4
LT
126#endif /* __s390x__ */
127
0189103c
HC
128/*
129 * VMEM_MAX_PHYS is the highest physical address that can be added to the 1:1
130 * mapping. This needs to be calculated at compile time since the size of the
131 * VMEM_MAP is static but the size of struct page can change.
132 */
522d8dc0
MS
133#define VMEM_MAX_PAGES ((VMEM_MAP_END - VMALLOC_END) / sizeof(struct page))
134#define VMEM_MAX_PFN min(VMALLOC_START >> PAGE_SHIFT, VMEM_MAX_PAGES)
135#define VMEM_MAX_PHYS ((VMEM_MAX_PFN << PAGE_SHIFT) & ~((16 << 20) - 1))
17f34580 136#define vmemmap ((struct page *) VMALLOC_END)
5fd9c6e2 137
1da177e4
LT
138/*
139 * A 31 bit pagetable entry of S390 has following format:
140 * | PFRA | | OS |
141 * 0 0IP0
142 * 00000000001111111111222222222233
143 * 01234567890123456789012345678901
144 *
145 * I Page-Invalid Bit: Page is not available for address-translation
146 * P Page-Protection Bit: Store access not possible for page
147 *
148 * A 31 bit segmenttable entry of S390 has following format:
149 * | P-table origin | |PTL
150 * 0 IC
151 * 00000000001111111111222222222233
152 * 01234567890123456789012345678901
153 *
154 * I Segment-Invalid Bit: Segment is not available for address-translation
155 * C Common-Segment Bit: Segment is not private (PoP 3-30)
156 * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256)
157 *
158 * The 31 bit segmenttable origin of S390 has following format:
159 *
160 * |S-table origin | | STL |
161 * X **GPS
162 * 00000000001111111111222222222233
163 * 01234567890123456789012345678901
164 *
165 * X Space-Switch event:
166 * G Segment-Invalid Bit: *
167 * P Private-Space Bit: Segment is not private (PoP 3-30)
168 * S Storage-Alteration:
169 * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048)
170 *
171 * A 64 bit pagetable entry of S390 has following format:
6a985c61 172 * | PFRA |0IPC| OS |
1da177e4
LT
173 * 0000000000111111111122222222223333333333444444444455555555556666
174 * 0123456789012345678901234567890123456789012345678901234567890123
175 *
176 * I Page-Invalid Bit: Page is not available for address-translation
177 * P Page-Protection Bit: Store access not possible for page
6a985c61 178 * C Change-bit override: HW is not required to set change bit
1da177e4
LT
179 *
180 * A 64 bit segmenttable entry of S390 has following format:
181 * | P-table origin | TT
182 * 0000000000111111111122222222223333333333444444444455555555556666
183 * 0123456789012345678901234567890123456789012345678901234567890123
184 *
185 * I Segment-Invalid Bit: Segment is not available for address-translation
186 * C Common-Segment Bit: Segment is not private (PoP 3-30)
187 * P Page-Protection Bit: Store access not possible for page
188 * TT Type 00
189 *
190 * A 64 bit region table entry of S390 has following format:
191 * | S-table origin | TF TTTL
192 * 0000000000111111111122222222223333333333444444444455555555556666
193 * 0123456789012345678901234567890123456789012345678901234567890123
194 *
195 * I Segment-Invalid Bit: Segment is not available for address-translation
196 * TT Type 01
197 * TF
190a1d72 198 * TL Table length
1da177e4
LT
199 *
200 * The 64 bit regiontable origin of S390 has following format:
201 * | region table origon | DTTL
202 * 0000000000111111111122222222223333333333444444444455555555556666
203 * 0123456789012345678901234567890123456789012345678901234567890123
204 *
205 * X Space-Switch event:
206 * G Segment-Invalid Bit:
207 * P Private-Space Bit:
208 * S Storage-Alteration:
209 * R Real space
210 * TL Table-Length:
211 *
212 * A storage key has the following format:
213 * | ACC |F|R|C|0|
214 * 0 3 4 5 6 7
215 * ACC: access key
216 * F : fetch protection bit
217 * R : referenced bit
218 * C : changed bit
219 */
220
221/* Hardware bits in the page table entry */
6a985c61 222#define _PAGE_CO 0x100 /* HW Change-bit override */
83377484
MS
223#define _PAGE_RO 0x200 /* HW read-only bit */
224#define _PAGE_INVALID 0x400 /* HW invalid bit */
3610cce8
MS
225
226/* Software bits in the page table entry */
83377484
MS
227#define _PAGE_SWT 0x001 /* SW pte type bit t */
228#define _PAGE_SWX 0x002 /* SW pte type bit x */
a08cb629
NP
229#define _PAGE_SPECIAL 0x004 /* SW associated with special page */
230#define __HAVE_ARCH_PTE_SPECIAL
1da177e4 231
138c9021
NP
232/* Set of bits not changed in pte_modify */
233#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL)
234
83377484 235/* Six different types of pages. */
9282ed92
GS
236#define _PAGE_TYPE_EMPTY 0x400
237#define _PAGE_TYPE_NONE 0x401
83377484
MS
238#define _PAGE_TYPE_SWAP 0x403
239#define _PAGE_TYPE_FILE 0x601 /* bit 0x002 is used for offset !! */
9282ed92
GS
240#define _PAGE_TYPE_RO 0x200
241#define _PAGE_TYPE_RW 0x000
c1821c2e
GS
242#define _PAGE_TYPE_EX_RO 0x202
243#define _PAGE_TYPE_EX_RW 0x002
1da177e4 244
53492b1d
GS
245/*
246 * Only four types for huge pages, using the invalid bit and protection bit
247 * of a segment table entry.
248 */
249#define _HPAGE_TYPE_EMPTY 0x020 /* _SEGMENT_ENTRY_INV */
250#define _HPAGE_TYPE_NONE 0x220
251#define _HPAGE_TYPE_RO 0x200 /* _SEGMENT_ENTRY_RO */
252#define _HPAGE_TYPE_RW 0x000
253
83377484
MS
254/*
255 * PTE type bits are rather complicated. handle_pte_fault uses pte_present,
256 * pte_none and pte_file to find out the pte type WITHOUT holding the page
257 * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to
258 * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs
259 * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards.
260 * This change is done while holding the lock, but the intermediate step
261 * of a previously valid pte with the hw invalid bit set can be observed by
262 * handle_pte_fault. That makes it necessary that all valid pte types with
263 * the hw invalid bit set must be distinguishable from the four pte types
264 * empty, none, swap and file.
265 *
266 * irxt ipte irxt
267 * _PAGE_TYPE_EMPTY 1000 -> 1000
268 * _PAGE_TYPE_NONE 1001 -> 1001
269 * _PAGE_TYPE_SWAP 1011 -> 1011
270 * _PAGE_TYPE_FILE 11?1 -> 11?1
271 * _PAGE_TYPE_RO 0100 -> 1100
272 * _PAGE_TYPE_RW 0000 -> 1000
c1821c2e
GS
273 * _PAGE_TYPE_EX_RO 0110 -> 1110
274 * _PAGE_TYPE_EX_RW 0010 -> 1010
83377484 275 *
c1821c2e 276 * pte_none is true for bits combinations 1000, 1010, 1100, 1110
83377484
MS
277 * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001
278 * pte_file is true for bits combinations 1101, 1111
c1821c2e 279 * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid.
83377484
MS
280 */
281
5b7baf05
CB
282/* Page status table bits for virtualization */
283#define RCP_PCL_BIT 55
284#define RCP_HR_BIT 54
285#define RCP_HC_BIT 53
286#define RCP_GR_BIT 50
287#define RCP_GC_BIT 49
288
15e86b0c
FF
289/* User dirty bit for KVM's migration feature */
290#define KVM_UD_BIT 47
291
1da177e4
LT
292#ifndef __s390x__
293
3610cce8
MS
294/* Bits in the segment table address-space-control-element */
295#define _ASCE_SPACE_SWITCH 0x80000000UL /* space switch event */
296#define _ASCE_ORIGIN_MASK 0x7ffff000UL /* segment table origin */
297#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
298#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
299#define _ASCE_TABLE_LENGTH 0x7f /* 128 x 64 entries = 8k */
1da177e4 300
3610cce8
MS
301/* Bits in the segment table entry */
302#define _SEGMENT_ENTRY_ORIGIN 0x7fffffc0UL /* page table origin */
303#define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
304#define _SEGMENT_ENTRY_COMMON 0x10 /* common segment bit */
305#define _SEGMENT_ENTRY_PTL 0x0f /* page table length */
1da177e4 306
3610cce8
MS
307#define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PTL)
308#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
1da177e4
LT
309
310#else /* __s390x__ */
311
3610cce8
MS
312/* Bits in the segment/region table address-space-control-element */
313#define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
314#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
315#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
316#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
317#define _ASCE_REAL_SPACE 0x20 /* real space control */
318#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
319#define _ASCE_TYPE_REGION1 0x0c /* region first table type */
320#define _ASCE_TYPE_REGION2 0x08 /* region second table type */
321#define _ASCE_TYPE_REGION3 0x04 /* region third table type */
322#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
323#define _ASCE_TABLE_LENGTH 0x03 /* region table length */
324
325/* Bits in the region table entry */
326#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
327#define _REGION_ENTRY_INV 0x20 /* invalid region table entry */
328#define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
329#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
330#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
331#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
332#define _REGION_ENTRY_LENGTH 0x03 /* region third length */
333
334#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
335#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV)
336#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
337#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV)
338#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
339#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV)
340
1da177e4 341/* Bits in the segment table entry */
3610cce8
MS
342#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
343#define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */
344#define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
1da177e4 345
3610cce8
MS
346#define _SEGMENT_ENTRY (0)
347#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
348
53492b1d
GS
349#define _SEGMENT_ENTRY_LARGE 0x400 /* STE-format control, large page */
350#define _SEGMENT_ENTRY_CO 0x100 /* change-recording override */
351
3610cce8 352#endif /* __s390x__ */
1da177e4
LT
353
354/*
3610cce8
MS
355 * A user page table pointer has the space-switch-event bit, the
356 * private-space-control bit and the storage-alteration-event-control
357 * bit set. A kernel page table pointer doesn't need them.
1da177e4 358 */
3610cce8
MS
359#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
360 _ASCE_ALT_EVENT)
1da177e4 361
3610cce8 362/* Bits int the storage key */
1da177e4
LT
363#define _PAGE_CHANGED 0x02 /* HW changed bit */
364#define _PAGE_REFERENCED 0x04 /* HW referenced bit */
365
1da177e4 366/*
9282ed92 367 * Page protection definitions.
1da177e4 368 */
9282ed92
GS
369#define PAGE_NONE __pgprot(_PAGE_TYPE_NONE)
370#define PAGE_RO __pgprot(_PAGE_TYPE_RO)
371#define PAGE_RW __pgprot(_PAGE_TYPE_RW)
c1821c2e
GS
372#define PAGE_EX_RO __pgprot(_PAGE_TYPE_EX_RO)
373#define PAGE_EX_RW __pgprot(_PAGE_TYPE_EX_RW)
9282ed92
GS
374
375#define PAGE_KERNEL PAGE_RW
376#define PAGE_COPY PAGE_RO
1da177e4
LT
377
378/*
c1821c2e
GS
379 * Dependent on the EXEC_PROTECT option s390 can do execute protection.
380 * Write permission always implies read permission. In theory with a
381 * primary/secondary page table execute only can be implemented but
382 * it would cost an additional bit in the pte to distinguish all the
383 * different pte types. To avoid that execute permission currently
384 * implies read permission as well.
1da177e4
LT
385 */
386 /*xwr*/
9282ed92
GS
387#define __P000 PAGE_NONE
388#define __P001 PAGE_RO
389#define __P010 PAGE_RO
390#define __P011 PAGE_RO
c1821c2e
GS
391#define __P100 PAGE_EX_RO
392#define __P101 PAGE_EX_RO
393#define __P110 PAGE_EX_RO
394#define __P111 PAGE_EX_RO
9282ed92
GS
395
396#define __S000 PAGE_NONE
397#define __S001 PAGE_RO
398#define __S010 PAGE_RW
399#define __S011 PAGE_RW
c1821c2e
GS
400#define __S100 PAGE_EX_RO
401#define __S101 PAGE_EX_RO
402#define __S110 PAGE_EX_RW
403#define __S111 PAGE_EX_RW
404
405#ifndef __s390x__
3610cce8 406# define PxD_SHADOW_SHIFT 1
c1821c2e 407#else /* __s390x__ */
3610cce8 408# define PxD_SHADOW_SHIFT 2
c1821c2e
GS
409#endif /* __s390x__ */
410
3610cce8 411static inline void *get_shadow_table(void *table)
c1821c2e 412{
3610cce8
MS
413 unsigned long addr, offset;
414 struct page *page;
415
416 addr = (unsigned long) table;
417 offset = addr & ((PAGE_SIZE << PxD_SHADOW_SHIFT) - 1);
418 page = virt_to_page((void *)(addr ^ offset));
419 return (void *)(addr_t)(page->index ? (page->index | offset) : 0UL);
c1821c2e 420}
1da177e4
LT
421
422/*
423 * Certain architectures need to do special things when PTEs
424 * within a page table are directly modified. Thus, the following
425 * hook is made available.
426 */
ba8a9229 427static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
146e4b3c 428 pte_t *ptep, pte_t entry)
1da177e4 429{
146e4b3c
MS
430 *ptep = entry;
431 if (mm->context.noexec) {
432 if (!(pte_val(entry) & _PAGE_INVALID) &&
433 (pte_val(entry) & _PAGE_SWX))
434 pte_val(entry) |= _PAGE_RO;
c1821c2e 435 else
146e4b3c
MS
436 pte_val(entry) = _PAGE_TYPE_EMPTY;
437 ptep[PTRS_PER_PTE] = entry;
c1821c2e 438 }
1da177e4 439}
1da177e4
LT
440
441/*
442 * pgd/pmd/pte query functions
443 */
444#ifndef __s390x__
445
4448aaf0
AB
446static inline int pgd_present(pgd_t pgd) { return 1; }
447static inline int pgd_none(pgd_t pgd) { return 0; }
448static inline int pgd_bad(pgd_t pgd) { return 0; }
1da177e4 449
190a1d72
MS
450static inline int pud_present(pud_t pud) { return 1; }
451static inline int pud_none(pud_t pud) { return 0; }
452static inline int pud_bad(pud_t pud) { return 0; }
453
1da177e4
LT
454#else /* __s390x__ */
455
5a216a20
MS
456static inline int pgd_present(pgd_t pgd)
457{
6252d702
MS
458 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
459 return 1;
5a216a20
MS
460 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
461}
462
463static inline int pgd_none(pgd_t pgd)
464{
6252d702
MS
465 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
466 return 0;
5a216a20
MS
467 return (pgd_val(pgd) & _REGION_ENTRY_INV) != 0UL;
468}
469
470static inline int pgd_bad(pgd_t pgd)
471{
6252d702
MS
472 /*
473 * With dynamic page table levels the pgd can be a region table
474 * entry or a segment table entry. Check for the bit that are
475 * invalid for either table entry.
476 */
5a216a20 477 unsigned long mask =
6252d702 478 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
5a216a20
MS
479 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
480 return (pgd_val(pgd) & mask) != 0;
481}
190a1d72
MS
482
483static inline int pud_present(pud_t pud)
1da177e4 484{
6252d702
MS
485 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
486 return 1;
0d017923 487 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
1da177e4
LT
488}
489
190a1d72 490static inline int pud_none(pud_t pud)
1da177e4 491{
6252d702
MS
492 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
493 return 0;
0d017923 494 return (pud_val(pud) & _REGION_ENTRY_INV) != 0UL;
1da177e4
LT
495}
496
190a1d72 497static inline int pud_bad(pud_t pud)
1da177e4 498{
6252d702
MS
499 /*
500 * With dynamic page table levels the pud can be a region table
501 * entry or a segment table entry. Check for the bit that are
502 * invalid for either table entry.
503 */
5a216a20 504 unsigned long mask =
6252d702 505 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
5a216a20
MS
506 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
507 return (pud_val(pud) & mask) != 0;
1da177e4
LT
508}
509
3610cce8
MS
510#endif /* __s390x__ */
511
4448aaf0 512static inline int pmd_present(pmd_t pmd)
1da177e4 513{
0d017923 514 return (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) != 0UL;
1da177e4
LT
515}
516
4448aaf0 517static inline int pmd_none(pmd_t pmd)
1da177e4 518{
0d017923 519 return (pmd_val(pmd) & _SEGMENT_ENTRY_INV) != 0UL;
1da177e4
LT
520}
521
4448aaf0 522static inline int pmd_bad(pmd_t pmd)
1da177e4 523{
3610cce8
MS
524 unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_SEGMENT_ENTRY_INV;
525 return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY;
1da177e4
LT
526}
527
4448aaf0 528static inline int pte_none(pte_t pte)
1da177e4 529{
83377484 530 return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT);
1da177e4
LT
531}
532
4448aaf0 533static inline int pte_present(pte_t pte)
1da177e4 534{
83377484
MS
535 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX;
536 return (pte_val(pte) & mask) == _PAGE_TYPE_NONE ||
537 (!(pte_val(pte) & _PAGE_INVALID) &&
538 !(pte_val(pte) & _PAGE_SWT));
1da177e4
LT
539}
540
4448aaf0 541static inline int pte_file(pte_t pte)
1da177e4 542{
83377484
MS
543 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT;
544 return (pte_val(pte) & mask) == _PAGE_TYPE_FILE;
1da177e4
LT
545}
546
7e675137
NP
547static inline int pte_special(pte_t pte)
548{
a08cb629 549 return (pte_val(pte) & _PAGE_SPECIAL);
7e675137
NP
550}
551
ba8a9229
MS
552#define __HAVE_ARCH_PTE_SAME
553#define pte_same(a,b) (pte_val(a) == pte_val(b))
1da177e4 554
5b7baf05
CB
555static inline void rcp_lock(pte_t *ptep)
556{
557#ifdef CONFIG_PGSTE
558 unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
559 preempt_disable();
560 while (test_and_set_bit(RCP_PCL_BIT, pgste))
561 ;
562#endif
563}
564
565static inline void rcp_unlock(pte_t *ptep)
566{
567#ifdef CONFIG_PGSTE
568 unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
569 clear_bit(RCP_PCL_BIT, pgste);
570 preempt_enable();
571#endif
572}
573
574/* forward declaration for SetPageUptodate in page-flags.h*/
575static inline void page_clear_dirty(struct page *page);
576#include <linux/page-flags.h>
577
578static inline void ptep_rcp_copy(pte_t *ptep)
579{
580#ifdef CONFIG_PGSTE
581 struct page *page = virt_to_page(pte_val(*ptep));
582 unsigned int skey;
583 unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
584
585 skey = page_get_storage_key(page_to_phys(page));
15e86b0c 586 if (skey & _PAGE_CHANGED) {
c71799c1 587 set_bit_simple(RCP_GC_BIT, pgste);
15e86b0c
FF
588 set_bit_simple(KVM_UD_BIT, pgste);
589 }
5b7baf05 590 if (skey & _PAGE_REFERENCED)
c71799c1 591 set_bit_simple(RCP_GR_BIT, pgste);
15e86b0c 592 if (test_and_clear_bit_simple(RCP_HC_BIT, pgste)) {
5b7baf05 593 SetPageDirty(page);
15e86b0c
FF
594 set_bit_simple(KVM_UD_BIT, pgste);
595 }
c71799c1 596 if (test_and_clear_bit_simple(RCP_HR_BIT, pgste))
5b7baf05
CB
597 SetPageReferenced(page);
598#endif
599}
600
1da177e4
LT
601/*
602 * query functions pte_write/pte_dirty/pte_young only work if
603 * pte_present() is true. Undefined behaviour if not..
604 */
4448aaf0 605static inline int pte_write(pte_t pte)
1da177e4
LT
606{
607 return (pte_val(pte) & _PAGE_RO) == 0;
608}
609
4448aaf0 610static inline int pte_dirty(pte_t pte)
1da177e4
LT
611{
612 /* A pte is neither clean nor dirty on s/390. The dirty bit
613 * is in the storage key. See page_test_and_clear_dirty for
614 * details.
615 */
616 return 0;
617}
618
4448aaf0 619static inline int pte_young(pte_t pte)
1da177e4
LT
620{
621 /* A pte is neither young nor old on s/390. The young bit
622 * is in the storage key. See page_test_and_clear_young for
623 * details.
624 */
625 return 0;
626}
627
1da177e4
LT
628/*
629 * pgd/pmd/pte modification functions
630 */
631
632#ifndef __s390x__
633
190a1d72
MS
634#define pgd_clear(pgd) do { } while (0)
635#define pud_clear(pud) do { } while (0)
1da177e4 636
1da177e4
LT
637#else /* __s390x__ */
638
5a216a20
MS
639static inline void pgd_clear_kernel(pgd_t * pgd)
640{
6252d702
MS
641 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
642 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
5a216a20
MS
643}
644
645static inline void pgd_clear(pgd_t * pgd)
646{
647 pgd_t *shadow = get_shadow_table(pgd);
648
649 pgd_clear_kernel(pgd);
650 if (shadow)
651 pgd_clear_kernel(shadow);
652}
190a1d72
MS
653
654static inline void pud_clear_kernel(pud_t *pud)
1da177e4 655{
6252d702
MS
656 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
657 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
1da177e4
LT
658}
659
6252d702 660static inline void pud_clear(pud_t *pud)
c1821c2e 661{
190a1d72 662 pud_t *shadow = get_shadow_table(pud);
c1821c2e 663
190a1d72
MS
664 pud_clear_kernel(pud);
665 if (shadow)
666 pud_clear_kernel(shadow);
c1821c2e
GS
667}
668
146e4b3c
MS
669#endif /* __s390x__ */
670
c1821c2e 671static inline void pmd_clear_kernel(pmd_t * pmdp)
1da177e4 672{
3610cce8 673 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
1da177e4
LT
674}
675
146e4b3c 676static inline void pmd_clear(pmd_t *pmd)
c1821c2e 677{
146e4b3c 678 pmd_t *shadow = get_shadow_table(pmd);
c1821c2e 679
146e4b3c
MS
680 pmd_clear_kernel(pmd);
681 if (shadow)
682 pmd_clear_kernel(shadow);
c1821c2e
GS
683}
684
4448aaf0 685static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
1da177e4 686{
9282ed92 687 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
146e4b3c
MS
688 if (mm->context.noexec)
689 pte_val(ptep[PTRS_PER_PTE]) = _PAGE_TYPE_EMPTY;
1da177e4
LT
690}
691
692/*
693 * The following pte modification functions only work if
694 * pte_present() is true. Undefined behaviour if not..
695 */
4448aaf0 696static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
1da177e4 697{
138c9021 698 pte_val(pte) &= _PAGE_CHG_MASK;
1da177e4
LT
699 pte_val(pte) |= pgprot_val(newprot);
700 return pte;
701}
702
4448aaf0 703static inline pte_t pte_wrprotect(pte_t pte)
1da177e4 704{
9282ed92 705 /* Do not clobber _PAGE_TYPE_NONE pages! */
1da177e4
LT
706 if (!(pte_val(pte) & _PAGE_INVALID))
707 pte_val(pte) |= _PAGE_RO;
708 return pte;
709}
710
4448aaf0 711static inline pte_t pte_mkwrite(pte_t pte)
1da177e4
LT
712{
713 pte_val(pte) &= ~_PAGE_RO;
714 return pte;
715}
716
4448aaf0 717static inline pte_t pte_mkclean(pte_t pte)
1da177e4
LT
718{
719 /* The only user of pte_mkclean is the fork() code.
720 We must *not* clear the *physical* page dirty bit
721 just because fork() wants to clear the dirty bit in
722 *one* of the page's mappings. So we just do nothing. */
723 return pte;
724}
725
4448aaf0 726static inline pte_t pte_mkdirty(pte_t pte)
1da177e4
LT
727{
728 /* We do not explicitly set the dirty bit because the
729 * sske instruction is slow. It is faster to let the
730 * next instruction set the dirty bit.
731 */
732 return pte;
733}
734
4448aaf0 735static inline pte_t pte_mkold(pte_t pte)
1da177e4
LT
736{
737 /* S/390 doesn't keep its dirty/referenced bit in the pte.
738 * There is no point in clearing the real referenced bit.
739 */
740 return pte;
741}
742
4448aaf0 743static inline pte_t pte_mkyoung(pte_t pte)
1da177e4
LT
744{
745 /* S/390 doesn't keep its dirty/referenced bit in the pte.
746 * There is no point in setting the real referenced bit.
747 */
748 return pte;
749}
750
7e675137
NP
751static inline pte_t pte_mkspecial(pte_t pte)
752{
a08cb629 753 pte_val(pte) |= _PAGE_SPECIAL;
7e675137
NP
754 return pte;
755}
756
15e86b0c
FF
757#ifdef CONFIG_PGSTE
758/*
759 * Get (and clear) the user dirty bit for a PTE.
760 */
761static inline int kvm_s390_test_and_clear_page_dirty(struct mm_struct *mm,
762 pte_t *ptep)
763{
764 int dirty;
765 unsigned long *pgste;
766 struct page *page;
767 unsigned int skey;
768
250cf776 769 if (!mm->context.has_pgste)
15e86b0c
FF
770 return -EINVAL;
771 rcp_lock(ptep);
772 pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
773 page = virt_to_page(pte_val(*ptep));
774 skey = page_get_storage_key(page_to_phys(page));
775 if (skey & _PAGE_CHANGED) {
776 set_bit_simple(RCP_GC_BIT, pgste);
777 set_bit_simple(KVM_UD_BIT, pgste);
778 }
779 if (test_and_clear_bit_simple(RCP_HC_BIT, pgste)) {
780 SetPageDirty(page);
781 set_bit_simple(KVM_UD_BIT, pgste);
782 }
783 dirty = test_and_clear_bit_simple(KVM_UD_BIT, pgste);
784 if (skey & _PAGE_CHANGED)
785 page_clear_dirty(page);
786 rcp_unlock(ptep);
787 return dirty;
788}
789#endif
790
ba8a9229
MS
791#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
792static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
793 unsigned long addr, pte_t *ptep)
1da177e4 794{
5b7baf05
CB
795#ifdef CONFIG_PGSTE
796 unsigned long physpage;
797 int young;
798 unsigned long *pgste;
799
250cf776 800 if (!vma->vm_mm->context.has_pgste)
5b7baf05
CB
801 return 0;
802 physpage = pte_val(*ptep) & PAGE_MASK;
803 pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
804
805 young = ((page_get_storage_key(physpage) & _PAGE_REFERENCED) != 0);
806 rcp_lock(ptep);
807 if (young)
c71799c1
HC
808 set_bit_simple(RCP_GR_BIT, pgste);
809 young |= test_and_clear_bit_simple(RCP_HR_BIT, pgste);
5b7baf05
CB
810 rcp_unlock(ptep);
811 return young;
812#endif
1da177e4
LT
813 return 0;
814}
815
ba8a9229
MS
816#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
817static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
818 unsigned long address, pte_t *ptep)
1da177e4 819{
5b7baf05
CB
820 /* No need to flush TLB
821 * On s390 reference bits are in storage key and never in TLB
822 * With virtualization we handle the reference bit, without we
823 * we can simply return */
824#ifdef CONFIG_PGSTE
825 return ptep_test_and_clear_young(vma, address, ptep);
826#endif
ba8a9229 827 return 0;
1da177e4
LT
828}
829
9282ed92 830static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
1da177e4 831{
9282ed92 832 if (!(pte_val(*ptep) & _PAGE_INVALID)) {
1da177e4 833#ifndef __s390x__
146e4b3c 834 /* pto must point to the start of the segment table */
1da177e4 835 pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00);
9282ed92
GS
836#else
837 /* ipte in zarch mode can do the math */
838 pte_t *pto = ptep;
839#endif
94c12cc7
MS
840 asm volatile(
841 " ipte %2,%3"
842 : "=m" (*ptep) : "m" (*ptep),
843 "a" (pto), "a" (address));
1da177e4 844 }
9282ed92
GS
845}
846
146e4b3c
MS
847static inline void ptep_invalidate(struct mm_struct *mm,
848 unsigned long address, pte_t *ptep)
9282ed92 849{
250cf776 850 if (mm->context.has_pgste) {
5b7baf05
CB
851 rcp_lock(ptep);
852 __ptep_ipte(address, ptep);
853 ptep_rcp_copy(ptep);
854 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
855 rcp_unlock(ptep);
856 return;
857 }
9282ed92 858 __ptep_ipte(address, ptep);
5b7baf05
CB
859 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
860 if (mm->context.noexec) {
146e4b3c 861 __ptep_ipte(address, ptep + PTRS_PER_PTE);
5b7baf05
CB
862 pte_val(*(ptep + PTRS_PER_PTE)) = _PAGE_TYPE_EMPTY;
863 }
f0e47c22
MS
864}
865
ba8a9229
MS
866/*
867 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
868 * both clear the TLB for the unmapped pte. The reason is that
869 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
870 * to modify an active pte. The sequence is
871 * 1) ptep_get_and_clear
872 * 2) set_pte_at
873 * 3) flush_tlb_range
874 * On s390 the tlb needs to get flushed with the modification of the pte
875 * if the pte is active. The only way how this can be implemented is to
876 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
877 * is a nop.
878 */
879#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
880#define ptep_get_and_clear(__mm, __address, __ptep) \
881({ \
882 pte_t __pte = *(__ptep); \
050eef36
MS
883 (__mm)->context.flush_mm = 1; \
884 if (atomic_read(&(__mm)->context.attach_count) > 1 || \
ba8a9229 885 (__mm) != current->active_mm) \
146e4b3c 886 ptep_invalidate(__mm, __address, __ptep); \
ba8a9229
MS
887 else \
888 pte_clear((__mm), (__address), (__ptep)); \
889 __pte; \
890})
891
892#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
f0e47c22
MS
893static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
894 unsigned long address, pte_t *ptep)
895{
896 pte_t pte = *ptep;
146e4b3c 897 ptep_invalidate(vma->vm_mm, address, ptep);
1da177e4
LT
898 return pte;
899}
900
ba8a9229
MS
901/*
902 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
903 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
904 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
905 * cannot be accessed while the batched unmap is running. In this case
906 * full==1 and a simple pte_clear is enough. See tlb.h.
907 */
908#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
909static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
910 unsigned long addr,
911 pte_t *ptep, int full)
1da177e4 912{
ba8a9229
MS
913 pte_t pte = *ptep;
914
915 if (full)
916 pte_clear(mm, addr, ptep);
917 else
146e4b3c 918 ptep_invalidate(mm, addr, ptep);
ba8a9229 919 return pte;
1da177e4
LT
920}
921
ba8a9229
MS
922#define __HAVE_ARCH_PTEP_SET_WRPROTECT
923#define ptep_set_wrprotect(__mm, __addr, __ptep) \
924({ \
925 pte_t __pte = *(__ptep); \
926 if (pte_write(__pte)) { \
050eef36
MS
927 (__mm)->context.flush_mm = 1; \
928 if (atomic_read(&(__mm)->context.attach_count) > 1 || \
ba8a9229 929 (__mm) != current->active_mm) \
146e4b3c 930 ptep_invalidate(__mm, __addr, __ptep); \
ba8a9229
MS
931 set_pte_at(__mm, __addr, __ptep, pte_wrprotect(__pte)); \
932 } \
933})
934
935#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
f0e47c22
MS
936#define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __dirty) \
937({ \
938 int __changed = !pte_same(*(__ptep), __entry); \
939 if (__changed) { \
146e4b3c 940 ptep_invalidate((__vma)->vm_mm, __addr, __ptep); \
f0e47c22
MS
941 set_pte_at((__vma)->vm_mm, __addr, __ptep, __entry); \
942 } \
943 __changed; \
8dab5241 944})
1da177e4
LT
945
946/*
947 * Test and clear dirty bit in storage key.
948 * We can't clear the changed bit atomically. This is a potential
949 * race against modification of the referenced bit. This function
950 * should therefore only be called if it is not mapped in any
951 * address space.
952 */
ba8a9229 953#define __HAVE_ARCH_PAGE_TEST_DIRTY
6c210482 954static inline int page_test_dirty(struct page *page)
2dcea57a 955{
6c210482
MS
956 return (page_get_storage_key(page_to_phys(page)) & _PAGE_CHANGED) != 0;
957}
2dcea57a 958
ba8a9229 959#define __HAVE_ARCH_PAGE_CLEAR_DIRTY
6c210482
MS
960static inline void page_clear_dirty(struct page *page)
961{
962 page_set_storage_key(page_to_phys(page), PAGE_DEFAULT_KEY);
2dcea57a 963}
1da177e4
LT
964
965/*
966 * Test and clear referenced bit in storage key.
967 */
ba8a9229 968#define __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
2dcea57a
HC
969static inline int page_test_and_clear_young(struct page *page)
970{
0b2b6e1d 971 unsigned long physpage = page_to_phys(page);
2dcea57a
HC
972 int ccode;
973
0b2b6e1d
HC
974 asm volatile(
975 " rrbe 0,%1\n"
976 " ipm %0\n"
977 " srl %0,28\n"
2dcea57a
HC
978 : "=d" (ccode) : "a" (physpage) : "cc" );
979 return ccode & 2;
980}
1da177e4
LT
981
982/*
983 * Conversion functions: convert a page and protection to a page entry,
984 * and a page entry and page directory to the page they refer to.
985 */
986static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
987{
988 pte_t __pte;
989 pte_val(__pte) = physpage + pgprot_val(pgprot);
990 return __pte;
991}
992
2dcea57a
HC
993static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
994{
0b2b6e1d 995 unsigned long physpage = page_to_phys(page);
1da177e4 996
2dcea57a
HC
997 return mk_pte_phys(physpage, pgprot);
998}
999
190a1d72
MS
1000#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1001#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1002#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1003#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1da177e4 1004
190a1d72
MS
1005#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1006#define pgd_offset_k(address) pgd_offset(&init_mm, address)
1da177e4 1007
190a1d72 1008#ifndef __s390x__
1da177e4 1009
190a1d72
MS
1010#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1011#define pud_deref(pmd) ({ BUG(); 0UL; })
1012#define pgd_deref(pmd) ({ BUG(); 0UL; })
46a82b2d 1013
190a1d72
MS
1014#define pud_offset(pgd, address) ((pud_t *) pgd)
1015#define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
1da177e4 1016
190a1d72 1017#else /* __s390x__ */
1da177e4 1018
190a1d72
MS
1019#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1020#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
5a216a20 1021#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1da177e4 1022
5a216a20
MS
1023static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1024{
6252d702
MS
1025 pud_t *pud = (pud_t *) pgd;
1026 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1027 pud = (pud_t *) pgd_deref(*pgd);
5a216a20
MS
1028 return pud + pud_index(address);
1029}
1da177e4 1030
190a1d72 1031static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1da177e4 1032{
6252d702
MS
1033 pmd_t *pmd = (pmd_t *) pud;
1034 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1035 pmd = (pmd_t *) pud_deref(*pud);
190a1d72 1036 return pmd + pmd_index(address);
1da177e4
LT
1037}
1038
190a1d72 1039#endif /* __s390x__ */
1da177e4 1040
190a1d72
MS
1041#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1042#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1043#define pte_page(x) pfn_to_page(pte_pfn(x))
1da177e4 1044
190a1d72 1045#define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
1da177e4 1046
190a1d72
MS
1047/* Find an entry in the lowest level page table.. */
1048#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1049#define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1da177e4
LT
1050#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1051#define pte_offset_map_nested(pmd, address) pte_offset_kernel(pmd, address)
1052#define pte_unmap(pte) do { } while (0)
1053#define pte_unmap_nested(pte) do { } while (0)
1054
1055/*
1056 * 31 bit swap entry format:
1057 * A page-table entry has some bits we have to treat in a special way.
1058 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
1059 * exception will occur instead of a page translation exception. The
1060 * specifiation exception has the bad habit not to store necessary
1061 * information in the lowcore.
1062 * Bit 21 and bit 22 are the page invalid bit and the page protection
1063 * bit. We set both to indicate a swapped page.
1064 * Bit 30 and 31 are used to distinguish the different page types. For
1065 * a swapped page these bits need to be zero.
1066 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
1067 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
1068 * plus 24 for the offset.
1069 * 0| offset |0110|o|type |00|
1070 * 0 0000000001111111111 2222 2 22222 33
1071 * 0 1234567890123456789 0123 4 56789 01
1072 *
1073 * 64 bit swap entry format:
1074 * A page-table entry has some bits we have to treat in a special way.
1075 * Bits 52 and bit 55 have to be zero, otherwise an specification
1076 * exception will occur instead of a page translation exception. The
1077 * specifiation exception has the bad habit not to store necessary
1078 * information in the lowcore.
1079 * Bit 53 and bit 54 are the page invalid bit and the page protection
1080 * bit. We set both to indicate a swapped page.
1081 * Bit 62 and 63 are used to distinguish the different page types. For
1082 * a swapped page these bits need to be zero.
1083 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
1084 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
1085 * plus 56 for the offset.
1086 * | offset |0110|o|type |00|
1087 * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66
1088 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23
1089 */
1090#ifndef __s390x__
1091#define __SWP_OFFSET_MASK (~0UL >> 12)
1092#else
1093#define __SWP_OFFSET_MASK (~0UL >> 11)
1094#endif
4448aaf0 1095static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1da177e4
LT
1096{
1097 pte_t pte;
1098 offset &= __SWP_OFFSET_MASK;
9282ed92 1099 pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) |
1da177e4
LT
1100 ((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
1101 return pte;
1102}
1103
1104#define __swp_type(entry) (((entry).val >> 2) & 0x1f)
1105#define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1))
1106#define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
1107
1108#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1109#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1110
1111#ifndef __s390x__
1112# define PTE_FILE_MAX_BITS 26
1113#else /* __s390x__ */
1114# define PTE_FILE_MAX_BITS 59
1115#endif /* __s390x__ */
1116
1117#define pte_to_pgoff(__pte) \
1118 ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
1119
1120#define pgoff_to_pte(__off) \
1121 ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
9282ed92 1122 | _PAGE_TYPE_FILE })
1da177e4
LT
1123
1124#endif /* !__ASSEMBLY__ */
1125
1126#define kern_addr_valid(addr) (1)
1127
17f34580
HC
1128extern int vmem_add_mapping(unsigned long start, unsigned long size);
1129extern int vmem_remove_mapping(unsigned long start, unsigned long size);
402b0862 1130extern int s390_enable_sie(void);
f4eb07c1 1131
1da177e4
LT
1132/*
1133 * No page table caches to initialise
1134 */
1135#define pgtable_cache_init() do { } while (0)
1136
1da177e4
LT
1137#include <asm-generic/pgtable.h>
1138
1139#endif /* _S390_PAGE_H */