]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/powerpc/oprofile/op_model_cell.c
Merge branch 'perf-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[net-next-2.6.git] / arch / powerpc / oprofile / op_model_cell.c
CommitLineData
18f2190d
MJ
1/*
2 * Cell Broadband Engine OProfile Support
3 *
4 * (C) Copyright IBM Corporation 2006
5 *
6 * Author: David Erb (djerb@us.ibm.com)
7 * Modifications:
1474855d
BN
8 * Carl Love <carll@us.ibm.com>
9 * Maynard Johnson <maynardj@us.ibm.com>
18f2190d
MJ
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17#include <linux/cpufreq.h>
18#include <linux/delay.h>
19#include <linux/init.h>
20#include <linux/jiffies.h>
21#include <linux/kthread.h>
22#include <linux/oprofile.h>
23#include <linux/percpu.h>
24#include <linux/smp.h>
25#include <linux/spinlock.h>
26#include <linux/timer.h>
27#include <asm/cell-pmu.h>
28#include <asm/cputable.h>
29#include <asm/firmware.h>
30#include <asm/io.h>
31#include <asm/oprofile_impl.h>
32#include <asm/processor.h>
33#include <asm/prom.h>
34#include <asm/ptrace.h>
35#include <asm/reg.h>
36#include <asm/rtas.h>
37#include <asm/system.h>
eef686a0 38#include <asm/cell-regs.h>
18f2190d
MJ
39
40#include "../platforms/cell/interrupt.h"
1474855d
BN
41#include "cell/pr_util.h"
42
9b93418e
CL
43#define PPU_PROFILING 0
44#define SPU_PROFILING_CYCLES 1
45#define SPU_PROFILING_EVENTS 2
1474855d 46
88382329
CL
47#define SPU_EVENT_NUM_START 4100
48#define SPU_EVENT_NUM_STOP 4399
49#define SPU_PROFILE_EVENT_ADDR 4363 /* spu, address trace, decimal */
50#define SPU_PROFILE_EVENT_ADDR_MASK_A 0x146 /* sub unit set to zero */
51#define SPU_PROFILE_EVENT_ADDR_MASK_B 0x186 /* sub unit set to zero */
52
1474855d
BN
53#define NUM_SPUS_PER_NODE 8
54#define SPU_CYCLES_EVENT_NUM 2 /* event number for SPU_CYCLES */
18f2190d
MJ
55
56#define PPU_CYCLES_EVENT_NUM 1 /* event number for CYCLES */
1474855d
BN
57#define PPU_CYCLES_GRP_NUM 1 /* special group number for identifying
58 * PPU_CYCLES event
59 */
60#define CBE_COUNT_ALL_CYCLES 0x42800000 /* PPU cycle event specifier */
18f2190d 61
bcb63e25
CL
62#define NUM_THREADS 2 /* number of physical threads in
63 * physical processor
64 */
a1ef4849 65#define NUM_DEBUG_BUS_WORDS 4
bcb63e25
CL
66#define NUM_INPUT_BUS_WORDS 2
67
1474855d 68#define MAX_SPU_COUNT 0xFFFFFF /* maximum 24 bit LFSR value */
18f2190d 69
88382329
CL
70/* Minumum HW interval timer setting to send value to trace buffer is 10 cycle.
71 * To configure counter to send value every N cycles set counter to
72 * 2^32 - 1 - N.
73 */
74#define NUM_INTERVAL_CYC 0xFFFFFFFF - 10
75
9b93418e
CL
76/*
77 * spu_cycle_reset is the number of cycles between samples.
78 * This variable is used for SPU profiling and should ONLY be set
79 * at the beginning of cell_reg_setup; otherwise, it's read-only.
80 */
81static unsigned int spu_cycle_reset;
82static unsigned int profiling_mode;
88382329 83static int spu_evnt_phys_spu_indx;
9b93418e 84
18f2190d
MJ
85struct pmc_cntrl_data {
86 unsigned long vcntr;
87 unsigned long evnts;
88 unsigned long masks;
89 unsigned long enabled;
90};
91
92/*
93 * ibm,cbe-perftools rtas parameters
94 */
18f2190d
MJ
95struct pm_signal {
96 u16 cpu; /* Processor to modify */
1474855d
BN
97 u16 sub_unit; /* hw subunit this applies to (if applicable)*/
98 short int signal_group; /* Signal Group to Enable/Disable */
18f2190d
MJ
99 u8 bus_word; /* Enable/Disable on this Trace/Trigger/Event
100 * Bus Word(s) (bitmask)
101 */
102 u8 bit; /* Trigger/Event bit (if applicable) */
103};
104
105/*
106 * rtas call arguments
107 */
108enum {
109 SUBFUNC_RESET = 1,
110 SUBFUNC_ACTIVATE = 2,
111 SUBFUNC_DEACTIVATE = 3,
112
113 PASSTHRU_IGNORE = 0,
114 PASSTHRU_ENABLE = 1,
115 PASSTHRU_DISABLE = 2,
116};
117
118struct pm_cntrl {
119 u16 enable;
120 u16 stop_at_max;
121 u16 trace_mode;
122 u16 freeze;
123 u16 count_mode;
88382329
CL
124 u16 spu_addr_trace;
125 u8 trace_buf_ovflw;
18f2190d
MJ
126};
127
128static struct {
129 u32 group_control;
130 u32 debug_bus_control;
131 struct pm_cntrl pm_cntrl;
132 u32 pm07_cntrl[NR_PHYS_CTRS];
133} pm_regs;
134
18f2190d
MJ
135#define GET_SUB_UNIT(x) ((x & 0x0000f000) >> 12)
136#define GET_BUS_WORD(x) ((x & 0x000000f0) >> 4)
137#define GET_BUS_TYPE(x) ((x & 0x00000300) >> 8)
138#define GET_POLARITY(x) ((x & 0x00000002) >> 1)
139#define GET_COUNT_CYCLES(x) (x & 0x00000001)
140#define GET_INPUT_CONTROL(x) ((x & 0x00000004) >> 2)
141
18f2190d 142static DEFINE_PER_CPU(unsigned long[NR_PHYS_CTRS], pmc_values);
88382329 143static unsigned long spu_pm_cnt[MAX_NUMNODES * NUM_SPUS_PER_NODE];
18f2190d
MJ
144static struct pmc_cntrl_data pmc_cntrl[NUM_THREADS][NR_PHYS_CTRS];
145
1474855d
BN
146/*
147 * The CELL profiling code makes rtas calls to setup the debug bus to
148 * route the performance signals. Additionally, SPU profiling requires
149 * a second rtas call to setup the hardware to capture the SPU PCs.
150 * The EIO error value is returned if the token lookups or the rtas
151 * call fail. The EIO error number is the best choice of the existing
152 * error numbers. The probability of rtas related error is very low. But
153 * by returning EIO and printing additional information to dmsg the user
154 * will know that OProfile did not start and dmesg will tell them why.
155 * OProfile does not support returning errors on Stop. Not a huge issue
156 * since failure to reset the debug bus or stop the SPU PC collection is
157 * not a fatel issue. Chances are if the Stop failed, Start doesn't work
158 * either.
159 */
160
161/*
162 * Interpetation of hdw_thread:
18f2190d
MJ
163 * 0 - even virtual cpus 0, 2, 4,...
164 * 1 - odd virtual cpus 1, 3, 5, ...
1474855d
BN
165 *
166 * FIXME: this is strictly wrong, we need to clean this up in a number
167 * of places. It works for now. -arnd
18f2190d
MJ
168 */
169static u32 hdw_thread;
170
171static u32 virt_cntr_inter_mask;
172static struct timer_list timer_virt_cntr;
88382329 173static struct timer_list timer_spu_event_swap;
18f2190d 174
1474855d
BN
175/*
176 * pm_signal needs to be global since it is initialized in
18f2190d
MJ
177 * cell_reg_setup at the time when the necessary information
178 * is available.
179 */
180static struct pm_signal pm_signal[NR_PHYS_CTRS];
1474855d
BN
181static int pm_rtas_token; /* token for debug bus setup call */
182static int spu_rtas_token; /* token for SPU cycle profiling */
18f2190d
MJ
183
184static u32 reset_value[NR_PHYS_CTRS];
185static int num_counters;
186static int oprofile_running;
9b93418e 187static DEFINE_SPINLOCK(cntr_lock);
18f2190d
MJ
188
189static u32 ctr_enabled;
190
bcb63e25 191static unsigned char input_bus[NUM_INPUT_BUS_WORDS];
18f2190d
MJ
192
193/*
194 * Firmware interface functions
195 */
196static int
197rtas_ibm_cbe_perftools(int subfunc, int passthru,
198 void *address, unsigned long length)
199{
200 u64 paddr = __pa(address);
201
1474855d
BN
202 return rtas_call(pm_rtas_token, 5, 1, NULL, subfunc,
203 passthru, paddr >> 32, paddr & 0xffffffff, length);
18f2190d
MJ
204}
205
206static void pm_rtas_reset_signals(u32 node)
207{
208 int ret;
209 struct pm_signal pm_signal_local;
210
1474855d
BN
211 /*
212 * The debug bus is being set to the passthru disable state.
213 * However, the FW still expects atleast one legal signal routing
214 * entry or it will return an error on the arguments. If we don't
215 * supply a valid entry, we must ignore all return values. Ignoring
216 * all return values means we might miss an error we should be
217 * concerned about.
18f2190d
MJ
218 */
219
220 /* fw expects physical cpu #. */
221 pm_signal_local.cpu = node;
222 pm_signal_local.signal_group = 21;
223 pm_signal_local.bus_word = 1;
224 pm_signal_local.sub_unit = 0;
225 pm_signal_local.bit = 0;
226
227 ret = rtas_ibm_cbe_perftools(SUBFUNC_RESET, PASSTHRU_DISABLE,
228 &pm_signal_local,
229 sizeof(struct pm_signal));
230
1474855d
BN
231 if (unlikely(ret))
232 /*
233 * Not a fatal error. For Oprofile stop, the oprofile
234 * functions do not support returning an error for
235 * failure to stop OProfile.
236 */
18f2190d 237 printk(KERN_WARNING "%s: rtas returned: %d\n",
e48b1b45 238 __func__, ret);
18f2190d
MJ
239}
240
1474855d 241static int pm_rtas_activate_signals(u32 node, u32 count)
18f2190d
MJ
242{
243 int ret;
c7eb7347 244 int i, j;
18f2190d
MJ
245 struct pm_signal pm_signal_local[NR_PHYS_CTRS];
246
1474855d
BN
247 /*
248 * There is no debug setup required for the cycles event.
c7eb7347
MJ
249 * Note that only events in the same group can be used.
250 * Otherwise, there will be conflicts in correctly routing
06fe9fb4 251 * the signals on the debug bus. It is the responsibility
c7eb7347
MJ
252 * of the OProfile user tool to check the events are in
253 * the same group.
254 */
255 i = 0;
18f2190d 256 for (j = 0; j < count; j++) {
c7eb7347
MJ
257 if (pm_signal[j].signal_group != PPU_CYCLES_GRP_NUM) {
258
259 /* fw expects physical cpu # */
260 pm_signal_local[i].cpu = node;
261 pm_signal_local[i].signal_group
262 = pm_signal[j].signal_group;
263 pm_signal_local[i].bus_word = pm_signal[j].bus_word;
264 pm_signal_local[i].sub_unit = pm_signal[j].sub_unit;
265 pm_signal_local[i].bit = pm_signal[j].bit;
266 i++;
267 }
18f2190d
MJ
268 }
269
c7eb7347
MJ
270 if (i != 0) {
271 ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE, PASSTHRU_ENABLE,
272 pm_signal_local,
273 i * sizeof(struct pm_signal));
18f2190d 274
1474855d 275 if (unlikely(ret)) {
c7eb7347 276 printk(KERN_WARNING "%s: rtas returned: %d\n",
e48b1b45 277 __func__, ret);
1474855d
BN
278 return -EIO;
279 }
c7eb7347 280 }
1474855d
BN
281
282 return 0;
18f2190d
MJ
283}
284
285/*
286 * PM Signal functions
287 */
288static void set_pm_event(u32 ctr, int event, u32 unit_mask)
289{
290 struct pm_signal *p;
291 u32 signal_bit;
292 u32 bus_word, bus_type, count_cycles, polarity, input_control;
293 int j, i;
294
295 if (event == PPU_CYCLES_EVENT_NUM) {
296 /* Special Event: Count all cpu cycles */
297 pm_regs.pm07_cntrl[ctr] = CBE_COUNT_ALL_CYCLES;
298 p = &(pm_signal[ctr]);
c7eb7347 299 p->signal_group = PPU_CYCLES_GRP_NUM;
18f2190d
MJ
300 p->bus_word = 1;
301 p->sub_unit = 0;
302 p->bit = 0;
303 goto out;
304 } else {
305 pm_regs.pm07_cntrl[ctr] = 0;
306 }
307
308 bus_word = GET_BUS_WORD(unit_mask);
309 bus_type = GET_BUS_TYPE(unit_mask);
310 count_cycles = GET_COUNT_CYCLES(unit_mask);
311 polarity = GET_POLARITY(unit_mask);
312 input_control = GET_INPUT_CONTROL(unit_mask);
313 signal_bit = (event % 100);
314
315 p = &(pm_signal[ctr]);
316
317 p->signal_group = event / 100;
318 p->bus_word = bus_word;
a1ef4849 319 p->sub_unit = GET_SUB_UNIT(unit_mask);
18f2190d
MJ
320
321 pm_regs.pm07_cntrl[ctr] = 0;
322 pm_regs.pm07_cntrl[ctr] |= PM07_CTR_COUNT_CYCLES(count_cycles);
323 pm_regs.pm07_cntrl[ctr] |= PM07_CTR_POLARITY(polarity);
324 pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_CONTROL(input_control);
325
1474855d
BN
326 /*
327 * Some of the islands signal selection is based on 64 bit words.
bcb63e25
CL
328 * The debug bus words are 32 bits, the input words to the performance
329 * counters are defined as 32 bits. Need to convert the 64 bit island
330 * specification to the appropriate 32 input bit and bus word for the
1474855d 331 * performance counter event selection. See the CELL Performance
bcb63e25
CL
332 * monitoring signals manual and the Perf cntr hardware descriptions
333 * for the details.
334 */
18f2190d
MJ
335 if (input_control == 0) {
336 if (signal_bit > 31) {
337 signal_bit -= 32;
338 if (bus_word == 0x3)
339 bus_word = 0x2;
340 else if (bus_word == 0xc)
341 bus_word = 0x8;
342 }
343
344 if ((bus_type == 0) && p->signal_group >= 60)
345 bus_type = 2;
346 if ((bus_type == 1) && p->signal_group >= 50)
347 bus_type = 0;
348
349 pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_MUX(signal_bit);
350 } else {
351 pm_regs.pm07_cntrl[ctr] = 0;
352 p->bit = signal_bit;
353 }
354
a1ef4849 355 for (i = 0; i < NUM_DEBUG_BUS_WORDS; i++) {
18f2190d
MJ
356 if (bus_word & (1 << i)) {
357 pm_regs.debug_bus_control |=
25006644 358 (bus_type << (30 - (2 * i)));
18f2190d 359
bcb63e25 360 for (j = 0; j < NUM_INPUT_BUS_WORDS; j++) {
18f2190d
MJ
361 if (input_bus[j] == 0xff) {
362 input_bus[j] = i;
363 pm_regs.group_control |=
25006644 364 (i << (30 - (2 * j)));
1474855d 365
18f2190d
MJ
366 break;
367 }
368 }
369 }
370 }
371out:
372 ;
373}
374
bcb63e25 375static void write_pm_cntrl(int cpu)
18f2190d 376{
1474855d
BN
377 /*
378 * Oprofile will use 32 bit counters, set bits 7:10 to 0
bcb63e25
CL
379 * pmregs.pm_cntrl is a global
380 */
381
18f2190d 382 u32 val = 0;
bcb63e25 383 if (pm_regs.pm_cntrl.enable == 1)
18f2190d
MJ
384 val |= CBE_PM_ENABLE_PERF_MON;
385
bcb63e25 386 if (pm_regs.pm_cntrl.stop_at_max == 1)
18f2190d
MJ
387 val |= CBE_PM_STOP_AT_MAX;
388
9b93418e 389 if (pm_regs.pm_cntrl.trace_mode != 0)
bcb63e25 390 val |= CBE_PM_TRACE_MODE_SET(pm_regs.pm_cntrl.trace_mode);
18f2190d 391
88382329
CL
392 if (pm_regs.pm_cntrl.trace_buf_ovflw == 1)
393 val |= CBE_PM_TRACE_BUF_OVFLW(pm_regs.pm_cntrl.trace_buf_ovflw);
bcb63e25 394 if (pm_regs.pm_cntrl.freeze == 1)
18f2190d
MJ
395 val |= CBE_PM_FREEZE_ALL_CTRS;
396
88382329
CL
397 val |= CBE_PM_SPU_ADDR_TRACE_SET(pm_regs.pm_cntrl.spu_addr_trace);
398
1474855d
BN
399 /*
400 * Routine set_count_mode must be called previously to set
18f2190d
MJ
401 * the count mode based on the user selection of user and kernel.
402 */
bcb63e25 403 val |= CBE_PM_COUNT_MODE_SET(pm_regs.pm_cntrl.count_mode);
18f2190d
MJ
404 cbe_write_pm(cpu, pm_control, val);
405}
406
407static inline void
bcb63e25 408set_count_mode(u32 kernel, u32 user)
18f2190d 409{
1474855d
BN
410 /*
411 * The user must specify user and kernel if they want them. If
bcb63e25
CL
412 * neither is specified, OProfile will count in hypervisor mode.
413 * pm_regs.pm_cntrl is a global
18f2190d
MJ
414 */
415 if (kernel) {
416 if (user)
bcb63e25 417 pm_regs.pm_cntrl.count_mode = CBE_COUNT_ALL_MODES;
18f2190d 418 else
bcb63e25
CL
419 pm_regs.pm_cntrl.count_mode =
420 CBE_COUNT_SUPERVISOR_MODE;
18f2190d
MJ
421 } else {
422 if (user)
bcb63e25 423 pm_regs.pm_cntrl.count_mode = CBE_COUNT_PROBLEM_MODE;
18f2190d 424 else
bcb63e25
CL
425 pm_regs.pm_cntrl.count_mode =
426 CBE_COUNT_HYPERVISOR_MODE;
18f2190d
MJ
427 }
428}
429
25ad2913 430static inline void enable_ctr(u32 cpu, u32 ctr, u32 *pm07_cntrl)
18f2190d
MJ
431{
432
bcb63e25 433 pm07_cntrl[ctr] |= CBE_PM_CTR_ENABLE;
18f2190d
MJ
434 cbe_write_pm07_control(cpu, ctr, pm07_cntrl[ctr]);
435}
436
437/*
438 * Oprofile is expected to collect data on all CPUs simultaneously.
1474855d 439 * However, there is one set of performance counters per node. There are
18f2190d
MJ
440 * two hardware threads or virtual CPUs on each node. Hence, OProfile must
441 * multiplex in time the performance counter collection on the two virtual
442 * CPUs. The multiplexing of the performance counters is done by this
443 * virtual counter routine.
444 *
445 * The pmc_values used below is defined as 'per-cpu' but its use is
446 * more akin to 'per-node'. We need to store two sets of counter
447 * values per node -- one for the previous run and one for the next.
448 * The per-cpu[NR_PHYS_CTRS] gives us the storage we need. Each odd/even
449 * pair of per-cpu arrays is used for storing the previous and next
450 * pmc values for a given node.
451 * NOTE: We use the per-cpu variable to improve cache performance.
1474855d
BN
452 *
453 * This routine will alternate loading the virtual counters for
454 * virtual CPUs
18f2190d
MJ
455 */
456static void cell_virtual_cntr(unsigned long data)
457{
18f2190d
MJ
458 int i, prev_hdw_thread, next_hdw_thread;
459 u32 cpu;
460 unsigned long flags;
461
1474855d
BN
462 /*
463 * Make sure that the interrupt_hander and the virt counter are
464 * not both playing with the counters on the same node.
18f2190d
MJ
465 */
466
9b93418e 467 spin_lock_irqsave(&cntr_lock, flags);
18f2190d
MJ
468
469 prev_hdw_thread = hdw_thread;
470
471 /* switch the cpu handling the interrupts */
472 hdw_thread = 1 ^ hdw_thread;
473 next_hdw_thread = hdw_thread;
474
a1ef4849
BN
475 pm_regs.group_control = 0;
476 pm_regs.debug_bus_control = 0;
477
478 for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
479 input_bus[i] = 0xff;
480
1474855d
BN
481 /*
482 * There are some per thread events. Must do the
bcb63e25
CL
483 * set event, for the thread that is being started
484 */
1474855d 485 for (i = 0; i < num_counters; i++)
bcb63e25
CL
486 set_pm_event(i,
487 pmc_cntrl[next_hdw_thread][i].evnts,
488 pmc_cntrl[next_hdw_thread][i].masks);
489
1474855d
BN
490 /*
491 * The following is done only once per each node, but
18f2190d
MJ
492 * we need cpu #, not node #, to pass to the cbe_xxx functions.
493 */
494 for_each_online_cpu(cpu) {
495 if (cbe_get_hw_thread_id(cpu))
496 continue;
497
1474855d
BN
498 /*
499 * stop counters, save counter values, restore counts
18f2190d
MJ
500 * for previous thread
501 */
502 cbe_disable_pm(cpu);
503 cbe_disable_pm_interrupts(cpu);
504 for (i = 0; i < num_counters; i++) {
505 per_cpu(pmc_values, cpu + prev_hdw_thread)[i]
25006644 506 = cbe_read_ctr(cpu, i);
18f2190d
MJ
507
508 if (per_cpu(pmc_values, cpu + next_hdw_thread)[i]
509 == 0xFFFFFFFF)
510 /* If the cntr value is 0xffffffff, we must
511 * reset that to 0xfffffff0 when the current
1474855d 512 * thread is restarted. This will generate a
bcb63e25
CL
513 * new interrupt and make sure that we never
514 * restore the counters to the max value. If
515 * the counters were restored to the max value,
516 * they do not increment and no interrupts are
517 * generated. Hence no more samples will be
518 * collected on that cpu.
18f2190d
MJ
519 */
520 cbe_write_ctr(cpu, i, 0xFFFFFFF0);
521 else
522 cbe_write_ctr(cpu, i,
523 per_cpu(pmc_values,
524 cpu +
525 next_hdw_thread)[i]);
526 }
527
1474855d
BN
528 /*
529 * Switch to the other thread. Change the interrupt
18f2190d
MJ
530 * and control regs to be scheduled on the CPU
531 * corresponding to the thread to execute.
532 */
533 for (i = 0; i < num_counters; i++) {
534 if (pmc_cntrl[next_hdw_thread][i].enabled) {
1474855d
BN
535 /*
536 * There are some per thread events.
18f2190d
MJ
537 * Must do the set event, enable_cntr
538 * for each cpu.
539 */
18f2190d
MJ
540 enable_ctr(cpu, i,
541 pm_regs.pm07_cntrl);
542 } else {
543 cbe_write_pm07_control(cpu, i, 0);
544 }
545 }
546
547 /* Enable interrupts on the CPU thread that is starting */
548 cbe_enable_pm_interrupts(cpu, next_hdw_thread,
549 virt_cntr_inter_mask);
550 cbe_enable_pm(cpu);
551 }
552
9b93418e 553 spin_unlock_irqrestore(&cntr_lock, flags);
18f2190d
MJ
554
555 mod_timer(&timer_virt_cntr, jiffies + HZ / 10);
556}
557
558static void start_virt_cntrs(void)
559{
560 init_timer(&timer_virt_cntr);
561 timer_virt_cntr.function = cell_virtual_cntr;
562 timer_virt_cntr.data = 0UL;
563 timer_virt_cntr.expires = jiffies + HZ / 10;
564 add_timer(&timer_virt_cntr);
565}
566
9b93418e 567static int cell_reg_setup_spu_cycles(struct op_counter_config *ctr,
1474855d 568 struct op_system_config *sys, int num_ctrs)
18f2190d 569{
9b93418e 570 spu_cycle_reset = ctr[0].count;
1474855d
BN
571
572 /*
9b93418e
CL
573 * Each node will need to make the rtas call to start
574 * and stop SPU profiling. Get the token once and store it.
1474855d 575 */
9b93418e
CL
576 spu_rtas_token = rtas_token("ibm,cbe-spu-perftools");
577
578 if (unlikely(spu_rtas_token == RTAS_UNKNOWN_SERVICE)) {
1474855d 579 printk(KERN_ERR
9b93418e 580 "%s: rtas token ibm,cbe-spu-perftools unknown\n",
e48b1b45 581 __func__);
1474855d 582 return -EIO;
18f2190d 583 }
9b93418e
CL
584 return 0;
585}
586
88382329
CL
587/* Unfortunately, the hardware will only support event profiling
588 * on one SPU per node at a time. Therefore, we must time slice
589 * the profiling across all SPUs in the node. Note, we do this
590 * in parallel for each node. The following routine is called
591 * periodically based on kernel timer to switch which SPU is
592 * being monitored in a round robbin fashion.
593 */
594static void spu_evnt_swap(unsigned long data)
595{
596 int node;
597 int cur_phys_spu, nxt_phys_spu, cur_spu_evnt_phys_spu_indx;
598 unsigned long flags;
599 int cpu;
600 int ret;
601 u32 interrupt_mask;
602
603
604 /* enable interrupts on cntr 0 */
605 interrupt_mask = CBE_PM_CTR_OVERFLOW_INTR(0);
606
607 hdw_thread = 0;
608
609 /* Make sure spu event interrupt handler and spu event swap
610 * don't access the counters simultaneously.
611 */
612 spin_lock_irqsave(&cntr_lock, flags);
613
614 cur_spu_evnt_phys_spu_indx = spu_evnt_phys_spu_indx;
615
616 if (++(spu_evnt_phys_spu_indx) == NUM_SPUS_PER_NODE)
617 spu_evnt_phys_spu_indx = 0;
618
619 pm_signal[0].sub_unit = spu_evnt_phys_spu_indx;
620 pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
621 pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
622
623 /* switch the SPU being profiled on each node */
624 for_each_online_cpu(cpu) {
625 if (cbe_get_hw_thread_id(cpu))
626 continue;
627
628 node = cbe_cpu_to_node(cpu);
629 cur_phys_spu = (node * NUM_SPUS_PER_NODE)
630 + cur_spu_evnt_phys_spu_indx;
631 nxt_phys_spu = (node * NUM_SPUS_PER_NODE)
632 + spu_evnt_phys_spu_indx;
633
634 /*
635 * stop counters, save counter values, restore counts
636 * for previous physical SPU
637 */
638 cbe_disable_pm(cpu);
639 cbe_disable_pm_interrupts(cpu);
640
641 spu_pm_cnt[cur_phys_spu]
25006644 642 = cbe_read_ctr(cpu, 0);
88382329
CL
643
644 /* restore previous count for the next spu to sample */
645 /* NOTE, hardware issue, counter will not start if the
646 * counter value is at max (0xFFFFFFFF).
647 */
648 if (spu_pm_cnt[nxt_phys_spu] >= 0xFFFFFFFF)
649 cbe_write_ctr(cpu, 0, 0xFFFFFFF0);
650 else
651 cbe_write_ctr(cpu, 0, spu_pm_cnt[nxt_phys_spu]);
652
653 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
654
655 /* setup the debug bus measure the one event and
656 * the two events to route the next SPU's PC on
657 * the debug bus
658 */
659 ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu), 3);
660 if (ret)
25006644
RR
661 printk(KERN_ERR "%s: pm_rtas_activate_signals failed, "
662 "SPU event swap\n", __func__);
88382329
CL
663
664 /* clear the trace buffer, don't want to take PC for
665 * previous SPU*/
666 cbe_write_pm(cpu, trace_address, 0);
667
668 enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
669
670 /* Enable interrupts on the CPU thread that is starting */
671 cbe_enable_pm_interrupts(cpu, hdw_thread,
672 interrupt_mask);
673 cbe_enable_pm(cpu);
674 }
675
676 spin_unlock_irqrestore(&cntr_lock, flags);
677
678 /* swap approximately every 0.1 seconds */
679 mod_timer(&timer_spu_event_swap, jiffies + HZ / 25);
680}
681
682static void start_spu_event_swap(void)
683{
684 init_timer(&timer_spu_event_swap);
685 timer_spu_event_swap.function = spu_evnt_swap;
686 timer_spu_event_swap.data = 0UL;
687 timer_spu_event_swap.expires = jiffies + HZ / 25;
688 add_timer(&timer_spu_event_swap);
689}
690
691static int cell_reg_setup_spu_events(struct op_counter_config *ctr,
692 struct op_system_config *sys, int num_ctrs)
693{
694 int i;
695
696 /* routine is called once for all nodes */
697
698 spu_evnt_phys_spu_indx = 0;
699 /*
700 * For all events except PPU CYCLEs, each node will need to make
701 * the rtas cbe-perftools call to setup and reset the debug bus.
702 * Make the token lookup call once and store it in the global
703 * variable pm_rtas_token.
704 */
705 pm_rtas_token = rtas_token("ibm,cbe-perftools");
706
707 if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
708 printk(KERN_ERR
709 "%s: rtas token ibm,cbe-perftools unknown\n",
710 __func__);
711 return -EIO;
712 }
713
714 /* setup the pm_control register settings,
715 * settings will be written per node by the
716 * cell_cpu_setup() function.
717 */
718 pm_regs.pm_cntrl.trace_buf_ovflw = 1;
719
720 /* Use the occurrence trace mode to have SPU PC saved
721 * to the trace buffer. Occurrence data in trace buffer
722 * is not used. Bit 2 must be set to store SPU addresses.
723 */
724 pm_regs.pm_cntrl.trace_mode = 2;
725
726 pm_regs.pm_cntrl.spu_addr_trace = 0x1; /* using debug bus
727 event 2 & 3 */
728
729 /* setup the debug bus event array with the SPU PC routing events.
730 * Note, pm_signal[0] will be filled in by set_pm_event() call below.
731 */
732 pm_signal[1].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
733 pm_signal[1].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_A);
734 pm_signal[1].bit = SPU_PROFILE_EVENT_ADDR % 100;
735 pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
736
737 pm_signal[2].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
738 pm_signal[2].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_B);
739 pm_signal[2].bit = SPU_PROFILE_EVENT_ADDR % 100;
740 pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
741
742 /* Set the user selected spu event to profile on,
743 * note, only one SPU profiling event is supported
744 */
745 num_counters = 1; /* Only support one SPU event at a time */
746 set_pm_event(0, ctr[0].event, ctr[0].unit_mask);
747
748 reset_value[0] = 0xFFFFFFFF - ctr[0].count;
749
750 /* global, used by cell_cpu_setup */
751 ctr_enabled |= 1;
752
753 /* Initialize the count for each SPU to the reset value */
754 for (i=0; i < MAX_NUMNODES * NUM_SPUS_PER_NODE; i++)
755 spu_pm_cnt[i] = reset_value[0];
756
757 return 0;
758}
759
9b93418e
CL
760static int cell_reg_setup_ppu(struct op_counter_config *ctr,
761 struct op_system_config *sys, int num_ctrs)
762{
88382329 763 /* routine is called once for all nodes */
9b93418e 764 int i, j, cpu;
18f2190d
MJ
765
766 num_counters = num_ctrs;
767
210434d7
CL
768 if (unlikely(num_ctrs > NR_PHYS_CTRS)) {
769 printk(KERN_ERR
770 "%s: Oprofile, number of specified events " \
771 "exceeds number of physical counters\n",
772 __func__);
773 return -EIO;
774 }
18f2190d 775
bcb63e25 776 set_count_mode(sys->enable_kernel, sys->enable_user);
18f2190d
MJ
777
778 /* Setup the thread 0 events */
779 for (i = 0; i < num_ctrs; ++i) {
780
781 pmc_cntrl[0][i].evnts = ctr[i].event;
782 pmc_cntrl[0][i].masks = ctr[i].unit_mask;
783 pmc_cntrl[0][i].enabled = ctr[i].enabled;
784 pmc_cntrl[0][i].vcntr = i;
785
786 for_each_possible_cpu(j)
787 per_cpu(pmc_values, j)[i] = 0;
788 }
789
1474855d
BN
790 /*
791 * Setup the thread 1 events, map the thread 0 event to the
18f2190d
MJ
792 * equivalent thread 1 event.
793 */
794 for (i = 0; i < num_ctrs; ++i) {
795 if ((ctr[i].event >= 2100) && (ctr[i].event <= 2111))
796 pmc_cntrl[1][i].evnts = ctr[i].event + 19;
797 else if (ctr[i].event == 2203)
798 pmc_cntrl[1][i].evnts = ctr[i].event;
799 else if ((ctr[i].event >= 2200) && (ctr[i].event <= 2215))
800 pmc_cntrl[1][i].evnts = ctr[i].event + 16;
801 else
802 pmc_cntrl[1][i].evnts = ctr[i].event;
803
804 pmc_cntrl[1][i].masks = ctr[i].unit_mask;
805 pmc_cntrl[1][i].enabled = ctr[i].enabled;
806 pmc_cntrl[1][i].vcntr = i;
807 }
808
bcb63e25 809 for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
18f2190d
MJ
810 input_bus[i] = 0xff;
811
1474855d
BN
812 /*
813 * Our counters count up, and "count" refers to
18f2190d 814 * how much before the next interrupt, and we interrupt
1474855d 815 * on overflow. So we calculate the starting value
18f2190d
MJ
816 * which will give us "count" until overflow.
817 * Then we set the events on the enabled counters.
818 */
819 for (i = 0; i < num_counters; ++i) {
820 /* start with virtual counter set 0 */
821 if (pmc_cntrl[0][i].enabled) {
822 /* Using 32bit counters, reset max - count */
823 reset_value[i] = 0xFFFFFFFF - ctr[i].count;
824 set_pm_event(i,
825 pmc_cntrl[0][i].evnts,
826 pmc_cntrl[0][i].masks);
827
828 /* global, used by cell_cpu_setup */
829 ctr_enabled |= (1 << i);
830 }
831 }
832
833 /* initialize the previous counts for the virtual cntrs */
834 for_each_online_cpu(cpu)
835 for (i = 0; i < num_counters; ++i) {
836 per_cpu(pmc_values, cpu)[i] = reset_value[i];
837 }
1474855d
BN
838
839 return 0;
18f2190d
MJ
840}
841
1474855d 842
9b93418e
CL
843/* This function is called once for all cpus combined */
844static int cell_reg_setup(struct op_counter_config *ctr,
845 struct op_system_config *sys, int num_ctrs)
846{
88382329 847 int ret=0;
9b93418e
CL
848 spu_cycle_reset = 0;
849
88382329
CL
850 /* initialize the spu_arr_trace value, will be reset if
851 * doing spu event profiling.
852 */
853 pm_regs.group_control = 0;
854 pm_regs.debug_bus_control = 0;
855 pm_regs.pm_cntrl.stop_at_max = 1;
856 pm_regs.pm_cntrl.trace_mode = 0;
857 pm_regs.pm_cntrl.freeze = 1;
858 pm_regs.pm_cntrl.trace_buf_ovflw = 0;
859 pm_regs.pm_cntrl.spu_addr_trace = 0;
860
9b93418e
CL
861 /*
862 * For all events except PPU CYCLEs, each node will need to make
863 * the rtas cbe-perftools call to setup and reset the debug bus.
864 * Make the token lookup call once and store it in the global
865 * variable pm_rtas_token.
866 */
867 pm_rtas_token = rtas_token("ibm,cbe-perftools");
868
869 if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
870 printk(KERN_ERR
871 "%s: rtas token ibm,cbe-perftools unknown\n",
872 __func__);
873 return -EIO;
874 }
875
876 if (ctr[0].event == SPU_CYCLES_EVENT_NUM) {
877 profiling_mode = SPU_PROFILING_CYCLES;
878 ret = cell_reg_setup_spu_cycles(ctr, sys, num_ctrs);
88382329
CL
879 } else if ((ctr[0].event >= SPU_EVENT_NUM_START) &&
880 (ctr[0].event <= SPU_EVENT_NUM_STOP)) {
881 profiling_mode = SPU_PROFILING_EVENTS;
882 spu_cycle_reset = ctr[0].count;
883
884 /* for SPU event profiling, need to setup the
885 * pm_signal array with the events to route the
886 * SPU PC before making the FW call. Note, only
887 * one SPU event for profiling can be specified
888 * at a time.
889 */
890 cell_reg_setup_spu_events(ctr, sys, num_ctrs);
9b93418e
CL
891 } else {
892 profiling_mode = PPU_PROFILING;
893 ret = cell_reg_setup_ppu(ctr, sys, num_ctrs);
894 }
895
896 return ret;
897}
898
899
1474855d 900
18f2190d 901/* This function is called once for each cpu */
1474855d 902static int cell_cpu_setup(struct op_counter_config *cntr)
18f2190d
MJ
903{
904 u32 cpu = smp_processor_id();
905 u32 num_enabled = 0;
906 int i;
88382329 907 int ret;
18f2190d 908
9b93418e
CL
909 /* Cycle based SPU profiling does not use the performance
910 * counters. The trace array is configured to collect
911 * the data.
912 */
913 if (profiling_mode == SPU_PROFILING_CYCLES)
1474855d
BN
914 return 0;
915
18f2190d
MJ
916 /* There is one performance monitor per processor chip (i.e. node),
917 * so we only need to perform this function once per node.
918 */
919 if (cbe_get_hw_thread_id(cpu))
1474855d 920 return 0;
18f2190d
MJ
921
922 /* Stop all counters */
923 cbe_disable_pm(cpu);
924 cbe_disable_pm_interrupts(cpu);
925
18f2190d
MJ
926 cbe_write_pm(cpu, pm_start_stop, 0);
927 cbe_write_pm(cpu, group_control, pm_regs.group_control);
928 cbe_write_pm(cpu, debug_bus_control, pm_regs.debug_bus_control);
bcb63e25 929 write_pm_cntrl(cpu);
18f2190d
MJ
930
931 for (i = 0; i < num_counters; ++i) {
932 if (ctr_enabled & (1 << i)) {
933 pm_signal[num_enabled].cpu = cbe_cpu_to_node(cpu);
934 num_enabled++;
935 }
936 }
937
1474855d
BN
938 /*
939 * The pm_rtas_activate_signals will return -EIO if the FW
940 * call failed.
941 */
88382329
CL
942 if (profiling_mode == SPU_PROFILING_EVENTS) {
943 /* For SPU event profiling also need to setup the
944 * pm interval timer
945 */
946 ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
947 num_enabled+2);
948 /* store PC from debug bus to Trace buffer as often
949 * as possible (every 10 cycles)
950 */
951 cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
952 return ret;
953 } else
954 return pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
955 num_enabled);
1474855d
BN
956}
957
958#define ENTRIES 303
959#define MAXLFSR 0xFFFFFF
960
961/* precomputed table of 24 bit LFSR values */
962static int initial_lfsr[] = {
963 8221349, 12579195, 5379618, 10097839, 7512963, 7519310, 3955098, 10753424,
964 15507573, 7458917, 285419, 2641121, 9780088, 3915503, 6668768, 1548716,
965 4885000, 8774424, 9650099, 2044357, 2304411, 9326253, 10332526, 4421547,
966 3440748, 10179459, 13332843, 10375561, 1313462, 8375100, 5198480, 6071392,
967 9341783, 1526887, 3985002, 1439429, 13923762, 7010104, 11969769, 4547026,
968 2040072, 4025602, 3437678, 7939992, 11444177, 4496094, 9803157, 10745556,
969 3671780, 4257846, 5662259, 13196905, 3237343, 12077182, 16222879, 7587769,
970 14706824, 2184640, 12591135, 10420257, 7406075, 3648978, 11042541, 15906893,
971 11914928, 4732944, 10695697, 12928164, 11980531, 4430912, 11939291, 2917017,
972 6119256, 4172004, 9373765, 8410071, 14788383, 5047459, 5474428, 1737756,
973 15967514, 13351758, 6691285, 8034329, 2856544, 14394753, 11310160, 12149558,
974 7487528, 7542781, 15668898, 12525138, 12790975, 3707933, 9106617, 1965401,
975 16219109, 12801644, 2443203, 4909502, 8762329, 3120803, 6360315, 9309720,
976 15164599, 10844842, 4456529, 6667610, 14924259, 884312, 6234963, 3326042,
977 15973422, 13919464, 5272099, 6414643, 3909029, 2764324, 5237926, 4774955,
978 10445906, 4955302, 5203726, 10798229, 11443419, 2303395, 333836, 9646934,
979 3464726, 4159182, 568492, 995747, 10318756, 13299332, 4836017, 8237783,
980 3878992, 2581665, 11394667, 5672745, 14412947, 3159169, 9094251, 16467278,
981 8671392, 15230076, 4843545, 7009238, 15504095, 1494895, 9627886, 14485051,
982 8304291, 252817, 12421642, 16085736, 4774072, 2456177, 4160695, 15409741,
983 4902868, 5793091, 13162925, 16039714, 782255, 11347835, 14884586, 366972,
984 16308990, 11913488, 13390465, 2958444, 10340278, 1177858, 1319431, 10426302,
985 2868597, 126119, 5784857, 5245324, 10903900, 16436004, 3389013, 1742384,
986 14674502, 10279218, 8536112, 10364279, 6877778, 14051163, 1025130, 6072469,
987 1988305, 8354440, 8216060, 16342977, 13112639, 3976679, 5913576, 8816697,
988 6879995, 14043764, 3339515, 9364420, 15808858, 12261651, 2141560, 5636398,
989 10345425, 10414756, 781725, 6155650, 4746914, 5078683, 7469001, 6799140,
990 10156444, 9667150, 10116470, 4133858, 2121972, 1124204, 1003577, 1611214,
991 14304602, 16221850, 13878465, 13577744, 3629235, 8772583, 10881308, 2410386,
992 7300044, 5378855, 9301235, 12755149, 4977682, 8083074, 10327581, 6395087,
993 9155434, 15501696, 7514362, 14520507, 15808945, 3244584, 4741962, 9658130,
994 14336147, 8654727, 7969093, 15759799, 14029445, 5038459, 9894848, 8659300,
995 13699287, 8834306, 10712885, 14753895, 10410465, 3373251, 309501, 9561475,
996 5526688, 14647426, 14209836, 5339224, 207299, 14069911, 8722990, 2290950,
997 3258216, 12505185, 6007317, 9218111, 14661019, 10537428, 11731949, 9027003,
998 6641507, 9490160, 200241, 9720425, 16277895, 10816638, 1554761, 10431375,
999 7467528, 6790302, 3429078, 14633753, 14428997, 11463204, 3576212, 2003426,
1000 6123687, 820520, 9992513, 15784513, 5778891, 6428165, 8388607
1001};
1002
1003/*
1004 * The hardware uses an LFSR counting sequence to determine when to capture
1005 * the SPU PCs. An LFSR sequence is like a puesdo random number sequence
1006 * where each number occurs once in the sequence but the sequence is not in
1007 * numerical order. The SPU PC capture is done when the LFSR sequence reaches
1008 * the last value in the sequence. Hence the user specified value N
1009 * corresponds to the LFSR number that is N from the end of the sequence.
1010 *
1011 * To avoid the time to compute the LFSR, a lookup table is used. The 24 bit
1012 * LFSR sequence is broken into four ranges. The spacing of the precomputed
1013 * values is adjusted in each range so the error between the user specifed
1014 * number (N) of events between samples and the actual number of events based
1015 * on the precomputed value will be les then about 6.2%. Note, if the user
1016 * specifies N < 2^16, the LFSR value that is 2^16 from the end will be used.
1017 * This is to prevent the loss of samples because the trace buffer is full.
1018 *
1019 * User specified N Step between Index in
1020 * precomputed values precomputed
1021 * table
1022 * 0 to 2^16-1 ---- 0
1023 * 2^16 to 2^16+2^19-1 2^12 1 to 128
1024 * 2^16+2^19 to 2^16+2^19+2^22-1 2^15 129 to 256
1025 * 2^16+2^19+2^22 to 2^24-1 2^18 257 to 302
1026 *
1027 *
1028 * For example, the LFSR values in the second range are computed for 2^16,
1029 * 2^16+2^12, ... , 2^19-2^16, 2^19 and stored in the table at indicies
1030 * 1, 2,..., 127, 128.
1031 *
1032 * The 24 bit LFSR value for the nth number in the sequence can be
1033 * calculated using the following code:
1034 *
1035 * #define size 24
1036 * int calculate_lfsr(int n)
1037 * {
1038 * int i;
1039 * unsigned int newlfsr0;
1040 * unsigned int lfsr = 0xFFFFFF;
1041 * unsigned int howmany = n;
1042 *
1043 * for (i = 2; i < howmany + 2; i++) {
1044 * newlfsr0 = (((lfsr >> (size - 1 - 0)) & 1) ^
1045 * ((lfsr >> (size - 1 - 1)) & 1) ^
1046 * (((lfsr >> (size - 1 - 6)) & 1) ^
1047 * ((lfsr >> (size - 1 - 23)) & 1)));
1048 *
1049 * lfsr >>= 1;
1050 * lfsr = lfsr | (newlfsr0 << (size - 1));
1051 * }
1052 * return lfsr;
1053 * }
1054 */
1055
1056#define V2_16 (0x1 << 16)
1057#define V2_19 (0x1 << 19)
1058#define V2_22 (0x1 << 22)
1059
1060static int calculate_lfsr(int n)
1061{
1062 /*
1063 * The ranges and steps are in powers of 2 so the calculations
1064 * can be done using shifts rather then divide.
1065 */
1066 int index;
1067
1068 if ((n >> 16) == 0)
1069 index = 0;
1070 else if (((n - V2_16) >> 19) == 0)
1071 index = ((n - V2_16) >> 12) + 1;
1072 else if (((n - V2_16 - V2_19) >> 22) == 0)
1073 index = ((n - V2_16 - V2_19) >> 15 ) + 1 + 128;
1074 else if (((n - V2_16 - V2_19 - V2_22) >> 24) == 0)
1075 index = ((n - V2_16 - V2_19 - V2_22) >> 18 ) + 1 + 256;
1076 else
1077 index = ENTRIES-1;
1078
1079 /* make sure index is valid */
238c1a78 1080 if ((index >= ENTRIES) || (index < 0))
1474855d
BN
1081 index = ENTRIES-1;
1082
1083 return initial_lfsr[index];
1084}
1085
1086static int pm_rtas_activate_spu_profiling(u32 node)
1087{
1088 int ret, i;
210434d7 1089 struct pm_signal pm_signal_local[NUM_SPUS_PER_NODE];
1474855d
BN
1090
1091 /*
1092 * Set up the rtas call to configure the debug bus to
1093 * route the SPU PCs. Setup the pm_signal for each SPU
1094 */
210434d7 1095 for (i = 0; i < ARRAY_SIZE(pm_signal_local); i++) {
1474855d
BN
1096 pm_signal_local[i].cpu = node;
1097 pm_signal_local[i].signal_group = 41;
1098 /* spu i on word (i/2) */
1099 pm_signal_local[i].bus_word = 1 << i / 2;
1100 /* spu i */
1101 pm_signal_local[i].sub_unit = i;
1102 pm_signal_local[i].bit = 63;
1103 }
1104
1105 ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE,
1106 PASSTHRU_ENABLE, pm_signal_local,
210434d7 1107 (ARRAY_SIZE(pm_signal_local)
1474855d
BN
1108 * sizeof(struct pm_signal)));
1109
1110 if (unlikely(ret)) {
1111 printk(KERN_WARNING "%s: rtas returned: %d\n",
e48b1b45 1112 __func__, ret);
1474855d
BN
1113 return -EIO;
1114 }
1115
1116 return 0;
1117}
1118
1119#ifdef CONFIG_CPU_FREQ
1120static int
1121oprof_cpufreq_notify(struct notifier_block *nb, unsigned long val, void *data)
1122{
1123 int ret = 0;
1124 struct cpufreq_freqs *frq = data;
1125 if ((val == CPUFREQ_PRECHANGE && frq->old < frq->new) ||
1126 (val == CPUFREQ_POSTCHANGE && frq->old > frq->new) ||
1127 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE))
1128 set_spu_profiling_frequency(frq->new, spu_cycle_reset);
1129 return ret;
1130}
1131
1132static struct notifier_block cpu_freq_notifier_block = {
1133 .notifier_call = oprof_cpufreq_notify
1134};
1135#endif
1136
9b93418e
CL
1137/*
1138 * Note the generic OProfile stop calls do not support returning
1139 * an error on stop. Hence, will not return an error if the FW
1140 * calls fail on stop. Failure to reset the debug bus is not an issue.
1141 * Failure to disable the SPU profiling is not an issue. The FW calls
1142 * to enable the performance counters and debug bus will work even if
1143 * the hardware was not cleanly reset.
1144 */
1145static void cell_global_stop_spu_cycles(void)
1146{
1147 int subfunc, rtn_value;
1148 unsigned int lfsr_value;
1149 int cpu;
1150
1151 oprofile_running = 0;
88382329 1152 smp_wmb();
9b93418e
CL
1153
1154#ifdef CONFIG_CPU_FREQ
1155 cpufreq_unregister_notifier(&cpu_freq_notifier_block,
1156 CPUFREQ_TRANSITION_NOTIFIER);
1157#endif
1158
1159 for_each_online_cpu(cpu) {
1160 if (cbe_get_hw_thread_id(cpu))
1161 continue;
1162
1163 subfunc = 3; /*
1164 * 2 - activate SPU tracing,
1165 * 3 - deactivate
1166 */
1167 lfsr_value = 0x8f100000;
1168
1169 rtn_value = rtas_call(spu_rtas_token, 3, 1, NULL,
1170 subfunc, cbe_cpu_to_node(cpu),
1171 lfsr_value);
1172
1173 if (unlikely(rtn_value != 0)) {
1174 printk(KERN_ERR
1175 "%s: rtas call ibm,cbe-spu-perftools " \
1176 "failed, return = %d\n",
1177 __func__, rtn_value);
1178 }
1179
1180 /* Deactivate the signals */
1181 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1182 }
1183
88382329
CL
1184 stop_spu_profiling_cycles();
1185}
1186
1187static void cell_global_stop_spu_events(void)
1188{
1189 int cpu;
1190 oprofile_running = 0;
1191
1192 stop_spu_profiling_events();
1193 smp_wmb();
1194
1195 for_each_online_cpu(cpu) {
1196 if (cbe_get_hw_thread_id(cpu))
1197 continue;
1198
1199 cbe_sync_irq(cbe_cpu_to_node(cpu));
1200 /* Stop the counters */
1201 cbe_disable_pm(cpu);
1202 cbe_write_pm07_control(cpu, 0, 0);
1203
1204 /* Deactivate the signals */
1205 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1206
1207 /* Deactivate interrupts */
1208 cbe_disable_pm_interrupts(cpu);
1209 }
1210 del_timer_sync(&timer_spu_event_swap);
9b93418e
CL
1211}
1212
1213static void cell_global_stop_ppu(void)
1214{
1215 int cpu;
1216
1217 /*
1218 * This routine will be called once for the system.
1219 * There is one performance monitor per node, so we
1220 * only need to perform this function once per node.
1221 */
1222 del_timer_sync(&timer_virt_cntr);
1223 oprofile_running = 0;
1224 smp_wmb();
1225
1226 for_each_online_cpu(cpu) {
1227 if (cbe_get_hw_thread_id(cpu))
1228 continue;
1229
1230 cbe_sync_irq(cbe_cpu_to_node(cpu));
1231 /* Stop the counters */
1232 cbe_disable_pm(cpu);
1233
1234 /* Deactivate the signals */
1235 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1236
1237 /* Deactivate interrupts */
1238 cbe_disable_pm_interrupts(cpu);
1239 }
1240}
1241
1242static void cell_global_stop(void)
1243{
1244 if (profiling_mode == PPU_PROFILING)
1245 cell_global_stop_ppu();
88382329
CL
1246 else if (profiling_mode == SPU_PROFILING_EVENTS)
1247 cell_global_stop_spu_events();
9b93418e
CL
1248 else
1249 cell_global_stop_spu_cycles();
1250}
1251
1252static int cell_global_start_spu_cycles(struct op_counter_config *ctr)
1474855d
BN
1253{
1254 int subfunc;
1255 unsigned int lfsr_value;
1256 int cpu;
1257 int ret;
1258 int rtas_error;
1259 unsigned int cpu_khzfreq = 0;
1260
1261 /* The SPU profiling uses time-based profiling based on
1262 * cpu frequency, so if configured with the CPU_FREQ
1263 * option, we should detect frequency changes and react
1264 * accordingly.
1265 */
1266#ifdef CONFIG_CPU_FREQ
1267 ret = cpufreq_register_notifier(&cpu_freq_notifier_block,
1268 CPUFREQ_TRANSITION_NOTIFIER);
1269 if (ret < 0)
1270 /* this is not a fatal error */
1271 printk(KERN_ERR "CPU freq change registration failed: %d\n",
1272 ret);
1273
1274 else
1275 cpu_khzfreq = cpufreq_quick_get(smp_processor_id());
1276#endif
1277
1278 set_spu_profiling_frequency(cpu_khzfreq, spu_cycle_reset);
1279
1280 for_each_online_cpu(cpu) {
1281 if (cbe_get_hw_thread_id(cpu))
1282 continue;
1283
1284 /*
1285 * Setup SPU cycle-based profiling.
1286 * Set perf_mon_control bit 0 to a zero before
1287 * enabling spu collection hardware.
1288 */
1289 cbe_write_pm(cpu, pm_control, 0);
1290
1291 if (spu_cycle_reset > MAX_SPU_COUNT)
1292 /* use largest possible value */
1293 lfsr_value = calculate_lfsr(MAX_SPU_COUNT-1);
1294 else
1295 lfsr_value = calculate_lfsr(spu_cycle_reset);
1296
1297 /* must use a non zero value. Zero disables data collection. */
1298 if (lfsr_value == 0)
1299 lfsr_value = calculate_lfsr(1);
1300
1301 lfsr_value = lfsr_value << 8; /* shift lfsr to correct
1302 * register location
1303 */
1304
1305 /* debug bus setup */
1306 ret = pm_rtas_activate_spu_profiling(cbe_cpu_to_node(cpu));
1307
1308 if (unlikely(ret)) {
1309 rtas_error = ret;
1310 goto out;
1311 }
1312
1313
1314 subfunc = 2; /* 2 - activate SPU tracing, 3 - deactivate */
1315
1316 /* start profiling */
1317 ret = rtas_call(spu_rtas_token, 3, 1, NULL, subfunc,
25006644 1318 cbe_cpu_to_node(cpu), lfsr_value);
1474855d
BN
1319
1320 if (unlikely(ret != 0)) {
1321 printk(KERN_ERR
9b93418e
CL
1322 "%s: rtas call ibm,cbe-spu-perftools failed, " \
1323 "return = %d\n", __func__, ret);
1474855d
BN
1324 rtas_error = -EIO;
1325 goto out;
1326 }
1327 }
1328
9b93418e 1329 rtas_error = start_spu_profiling_cycles(spu_cycle_reset);
1474855d
BN
1330 if (rtas_error)
1331 goto out_stop;
1332
1333 oprofile_running = 1;
1334 return 0;
1335
1336out_stop:
9b93418e 1337 cell_global_stop_spu_cycles(); /* clean up the PMU/debug bus */
18f2190d 1338out:
1474855d 1339 return rtas_error;
18f2190d
MJ
1340}
1341
88382329
CL
1342static int cell_global_start_spu_events(struct op_counter_config *ctr)
1343{
1344 int cpu;
1345 u32 interrupt_mask = 0;
1346 int rtn = 0;
1347
1348 hdw_thread = 0;
1349
1350 /* spu event profiling, uses the performance counters to generate
1351 * an interrupt. The hardware is setup to store the SPU program
1352 * counter into the trace array. The occurrence mode is used to
1353 * enable storing data to the trace buffer. The bits are set
1354 * to send/store the SPU address in the trace buffer. The debug
1355 * bus must be setup to route the SPU program counter onto the
1356 * debug bus. The occurrence data in the trace buffer is not used.
1357 */
1358
1359 /* This routine gets called once for the system.
1360 * There is one performance monitor per node, so we
1361 * only need to perform this function once per node.
1362 */
1363
1364 for_each_online_cpu(cpu) {
1365 if (cbe_get_hw_thread_id(cpu))
1366 continue;
1367
1368 /*
1369 * Setup SPU event-based profiling.
1370 * Set perf_mon_control bit 0 to a zero before
1371 * enabling spu collection hardware.
1372 *
1373 * Only support one SPU event on one SPU per node.
1374 */
1375 if (ctr_enabled & 1) {
1376 cbe_write_ctr(cpu, 0, reset_value[0]);
1377 enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
1378 interrupt_mask |=
1379 CBE_PM_CTR_OVERFLOW_INTR(0);
1380 } else {
1381 /* Disable counter */
1382 cbe_write_pm07_control(cpu, 0, 0);
1383 }
1384
1385 cbe_get_and_clear_pm_interrupts(cpu);
1386 cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
1387 cbe_enable_pm(cpu);
1388
1389 /* clear the trace buffer */
1390 cbe_write_pm(cpu, trace_address, 0);
1391 }
1392
1393 /* Start the timer to time slice collecting the event profile
1394 * on each of the SPUs. Note, can collect profile on one SPU
1395 * per node at a time.
1396 */
1397 start_spu_event_swap();
1398 start_spu_profiling_events();
25006644 1399 oprofile_running = 1;
88382329
CL
1400 smp_wmb();
1401
1402 return rtn;
1403}
1404
1474855d 1405static int cell_global_start_ppu(struct op_counter_config *ctr)
18f2190d 1406{
1474855d 1407 u32 cpu, i;
18f2190d 1408 u32 interrupt_mask = 0;
18f2190d
MJ
1409
1410 /* This routine gets called once for the system.
1411 * There is one performance monitor per node, so we
1412 * only need to perform this function once per node.
1413 */
1414 for_each_online_cpu(cpu) {
1415 if (cbe_get_hw_thread_id(cpu))
1416 continue;
1417
1418 interrupt_mask = 0;
1419
1420 for (i = 0; i < num_counters; ++i) {
1421 if (ctr_enabled & (1 << i)) {
1422 cbe_write_ctr(cpu, i, reset_value[i]);
1423 enable_ctr(cpu, i, pm_regs.pm07_cntrl);
25006644 1424 interrupt_mask |= CBE_PM_CTR_OVERFLOW_INTR(i);
18f2190d
MJ
1425 } else {
1426 /* Disable counter */
1427 cbe_write_pm07_control(cpu, i, 0);
1428 }
1429 }
1430
bcb63e25 1431 cbe_get_and_clear_pm_interrupts(cpu);
18f2190d
MJ
1432 cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
1433 cbe_enable_pm(cpu);
1434 }
1435
1436 virt_cntr_inter_mask = interrupt_mask;
1437 oprofile_running = 1;
1438 smp_wmb();
1439
1474855d
BN
1440 /*
1441 * NOTE: start_virt_cntrs will result in cell_virtual_cntr() being
1442 * executed which manipulates the PMU. We start the "virtual counter"
18f2190d
MJ
1443 * here so that we do not need to synchronize access to the PMU in
1444 * the above for-loop.
1445 */
1446 start_virt_cntrs();
1474855d
BN
1447
1448 return 0;
18f2190d
MJ
1449}
1450
1474855d
BN
1451static int cell_global_start(struct op_counter_config *ctr)
1452{
9b93418e
CL
1453 if (profiling_mode == SPU_PROFILING_CYCLES)
1454 return cell_global_start_spu_cycles(ctr);
88382329
CL
1455 else if (profiling_mode == SPU_PROFILING_EVENTS)
1456 return cell_global_start_spu_events(ctr);
1474855d
BN
1457 else
1458 return cell_global_start_ppu(ctr);
1459}
1460
1474855d 1461
88382329
CL
1462/* The SPU interrupt handler
1463 *
1464 * SPU event profiling works as follows:
1465 * The pm_signal[0] holds the one SPU event to be measured. It is routed on
1466 * the debug bus using word 0 or 1. The value of pm_signal[1] and
1467 * pm_signal[2] contain the necessary events to route the SPU program
1468 * counter for the selected SPU onto the debug bus using words 2 and 3.
1469 * The pm_interval register is setup to write the SPU PC value into the
1470 * trace buffer at the maximum rate possible. The trace buffer is configured
1471 * to store the PCs, wrapping when it is full. The performance counter is
1472 * intialized to the max hardware count minus the number of events, N, between
1473 * samples. Once the N events have occured, a HW counter overflow occurs
1474 * causing the generation of a HW counter interrupt which also stops the
1475 * writing of the SPU PC values to the trace buffer. Hence the last PC
1476 * written to the trace buffer is the SPU PC that we want. Unfortunately,
1477 * we have to read from the beginning of the trace buffer to get to the
1478 * last value written. We just hope the PPU has nothing better to do then
1479 * service this interrupt. The PC for the specific SPU being profiled is
1480 * extracted from the trace buffer processed and stored. The trace buffer
1481 * is cleared, interrupts are cleared, the counter is reset to max - N.
1482 * A kernel timer is used to periodically call the routine spu_evnt_swap()
1483 * to switch to the next physical SPU in the node to profile in round robbin
1484 * order. This way data is collected for all SPUs on the node. It does mean
1485 * that we need to use a relatively small value of N to ensure enough samples
1486 * on each SPU are collected each SPU is being profiled 1/8 of the time.
1487 * It may also be necessary to use a longer sample collection period.
1488 */
1489static void cell_handle_interrupt_spu(struct pt_regs *regs,
1490 struct op_counter_config *ctr)
1491{
1492 u32 cpu, cpu_tmp;
1493 u64 trace_entry;
1494 u32 interrupt_mask;
1495 u64 trace_buffer[2];
1496 u64 last_trace_buffer;
1497 u32 sample;
1498 u32 trace_addr;
1499 unsigned long sample_array_lock_flags;
1500 int spu_num;
1501 unsigned long flags;
1502
1503 /* Make sure spu event interrupt handler and spu event swap
1504 * don't access the counters simultaneously.
1505 */
1506 cpu = smp_processor_id();
1507 spin_lock_irqsave(&cntr_lock, flags);
1508
1509 cpu_tmp = cpu;
1510 cbe_disable_pm(cpu);
1511
1512 interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
1513
1514 sample = 0xABCDEF;
1515 trace_entry = 0xfedcba;
1516 last_trace_buffer = 0xdeadbeaf;
1517
25006644 1518 if ((oprofile_running == 1) && (interrupt_mask != 0)) {
88382329
CL
1519 /* disable writes to trace buff */
1520 cbe_write_pm(cpu, pm_interval, 0);
1521
1522 /* only have one perf cntr being used, cntr 0 */
1523 if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(0))
25006644 1524 && ctr[0].enabled)
88382329
CL
1525 /* The SPU PC values will be read
1526 * from the trace buffer, reset counter
1527 */
1528
1529 cbe_write_ctr(cpu, 0, reset_value[0]);
1530
1531 trace_addr = cbe_read_pm(cpu, trace_address);
1532
1533 while (!(trace_addr & CBE_PM_TRACE_BUF_EMPTY)) {
1534 /* There is data in the trace buffer to process
1535 * Read the buffer until you get to the last
1536 * entry. This is the value we want.
1537 */
1538
1539 cbe_read_trace_buffer(cpu, trace_buffer);
1540 trace_addr = cbe_read_pm(cpu, trace_address);
1541 }
1542
1543 /* SPU Address 16 bit count format for 128 bit
1544 * HW trace buffer is used for the SPU PC storage
1545 * HDR bits 0:15
1546 * SPU Addr 0 bits 16:31
1547 * SPU Addr 1 bits 32:47
1548 * unused bits 48:127
1549 *
1550 * HDR: bit4 = 1 SPU Address 0 valid
1551 * HDR: bit5 = 1 SPU Address 1 valid
1552 * - unfortunately, the valid bits don't seem to work
1553 *
1554 * Note trace_buffer[0] holds bits 0:63 of the HW
1555 * trace buffer, trace_buffer[1] holds bits 64:127
1556 */
1557
1558 trace_entry = trace_buffer[0]
1559 & 0x00000000FFFF0000;
1560
1561 /* only top 16 of the 18 bit SPU PC address
1562 * is stored in trace buffer, hence shift right
1563 * by 16 -2 bits */
1564 sample = trace_entry >> 14;
1565 last_trace_buffer = trace_buffer[0];
1566
1567 spu_num = spu_evnt_phys_spu_indx
1568 + (cbe_cpu_to_node(cpu) * NUM_SPUS_PER_NODE);
1569
1570 /* make sure only one process at a time is calling
1571 * spu_sync_buffer()
1572 */
1573 spin_lock_irqsave(&oprof_spu_smpl_arry_lck,
1574 sample_array_lock_flags);
1575 spu_sync_buffer(spu_num, &sample, 1);
1576 spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
1577 sample_array_lock_flags);
1578
1579 smp_wmb(); /* insure spu event buffer updates are written
1580 * don't want events intermingled... */
1581
1582 /* The counters were frozen by the interrupt.
1583 * Reenable the interrupt and restart the counters.
1584 */
1585 cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
1586 cbe_enable_pm_interrupts(cpu, hdw_thread,
1587 virt_cntr_inter_mask);
1588
1589 /* clear the trace buffer, re-enable writes to trace buff */
1590 cbe_write_pm(cpu, trace_address, 0);
1591 cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
1592
1593 /* The writes to the various performance counters only writes
1594 * to a latch. The new values (interrupt setting bits, reset
1595 * counter value etc.) are not copied to the actual registers
1596 * until the performance monitor is enabled. In order to get
af901ca1 1597 * this to work as desired, the performance monitor needs to
88382329
CL
1598 * be disabled while writing to the latches. This is a
1599 * HW design issue.
1600 */
1601 write_pm_cntrl(cpu);
1602 cbe_enable_pm(cpu);
1603 }
1604 spin_unlock_irqrestore(&cntr_lock, flags);
1605}
1606
9b93418e
CL
1607static void cell_handle_interrupt_ppu(struct pt_regs *regs,
1608 struct op_counter_config *ctr)
18f2190d
MJ
1609{
1610 u32 cpu;
1611 u64 pc;
1612 int is_kernel;
1613 unsigned long flags = 0;
1614 u32 interrupt_mask;
1615 int i;
1616
1617 cpu = smp_processor_id();
1618
1474855d
BN
1619 /*
1620 * Need to make sure the interrupt handler and the virt counter
18f2190d
MJ
1621 * routine are not running at the same time. See the
1622 * cell_virtual_cntr() routine for additional comments.
1623 */
9b93418e 1624 spin_lock_irqsave(&cntr_lock, flags);
18f2190d 1625
1474855d
BN
1626 /*
1627 * Need to disable and reenable the performance counters
18f2190d
MJ
1628 * to get the desired behavior from the hardware. This
1629 * is hardware specific.
1630 */
1631
1632 cbe_disable_pm(cpu);
1633
bcb63e25 1634 interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
18f2190d 1635
1474855d
BN
1636 /*
1637 * If the interrupt mask has been cleared, then the virt cntr
18f2190d
MJ
1638 * has cleared the interrupt. When the thread that generated
1639 * the interrupt is restored, the data count will be restored to
1640 * 0xffffff0 to cause the interrupt to be regenerated.
1641 */
1642
1643 if ((oprofile_running == 1) && (interrupt_mask != 0)) {
1644 pc = regs->nip;
1645 is_kernel = is_kernel_addr(pc);
1646
1647 for (i = 0; i < num_counters; ++i) {
1648 if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(i))
1649 && ctr[i].enabled) {
101fd46a 1650 oprofile_add_ext_sample(pc, regs, i, is_kernel);
18f2190d
MJ
1651 cbe_write_ctr(cpu, i, reset_value[i]);
1652 }
1653 }
1654
1474855d
BN
1655 /*
1656 * The counters were frozen by the interrupt.
18f2190d
MJ
1657 * Reenable the interrupt and restart the counters.
1658 * If there was a race between the interrupt handler and
1474855d 1659 * the virtual counter routine. The virutal counter
18f2190d
MJ
1660 * routine may have cleared the interrupts. Hence must
1661 * use the virt_cntr_inter_mask to re-enable the interrupts.
1662 */
1663 cbe_enable_pm_interrupts(cpu, hdw_thread,
1664 virt_cntr_inter_mask);
1665
1474855d
BN
1666 /*
1667 * The writes to the various performance counters only writes
1668 * to a latch. The new values (interrupt setting bits, reset
18f2190d
MJ
1669 * counter value etc.) are not copied to the actual registers
1670 * until the performance monitor is enabled. In order to get
af901ca1 1671 * this to work as desired, the performance monitor needs to
beb7dd86 1672 * be disabled while writing to the latches. This is a
18f2190d
MJ
1673 * HW design issue.
1674 */
1675 cbe_enable_pm(cpu);
1676 }
9b93418e
CL
1677 spin_unlock_irqrestore(&cntr_lock, flags);
1678}
1679
1680static void cell_handle_interrupt(struct pt_regs *regs,
1681 struct op_counter_config *ctr)
1682{
1683 if (profiling_mode == PPU_PROFILING)
1684 cell_handle_interrupt_ppu(regs, ctr);
88382329
CL
1685 else
1686 cell_handle_interrupt_spu(regs, ctr);
18f2190d
MJ
1687}
1688
1474855d
BN
1689/*
1690 * This function is called from the generic OProfile
1691 * driver. When profiling PPUs, we need to do the
1692 * generic sync start; otherwise, do spu_sync_start.
1693 */
1694static int cell_sync_start(void)
1695{
9b93418e
CL
1696 if ((profiling_mode == SPU_PROFILING_CYCLES) ||
1697 (profiling_mode == SPU_PROFILING_EVENTS))
1474855d
BN
1698 return spu_sync_start();
1699 else
1700 return DO_GENERIC_SYNC;
1701}
1702
1703static int cell_sync_stop(void)
1704{
9b93418e
CL
1705 if ((profiling_mode == SPU_PROFILING_CYCLES) ||
1706 (profiling_mode == SPU_PROFILING_EVENTS))
1474855d
BN
1707 return spu_sync_stop();
1708 else
1709 return 1;
1710}
1711
18f2190d
MJ
1712struct op_powerpc_model op_model_cell = {
1713 .reg_setup = cell_reg_setup,
1714 .cpu_setup = cell_cpu_setup,
1715 .global_start = cell_global_start,
1716 .global_stop = cell_global_stop,
1474855d
BN
1717 .sync_start = cell_sync_start,
1718 .sync_stop = cell_sync_stop,
18f2190d
MJ
1719 .handle_interrupt = cell_handle_interrupt,
1720};