]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/powerpc/oprofile/cell/spu_task_sync.c
shrink struct dentry
[net-next-2.6.git] / arch / powerpc / oprofile / cell / spu_task_sync.c
CommitLineData
1474855d
BN
1/*
2 * Cell Broadband Engine OProfile Support
3 *
4 * (C) Copyright IBM Corporation 2006
5 *
6 * Author: Maynard Johnson <maynardj@us.ibm.com>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14/* The purpose of this file is to handle SPU event task switching
15 * and to record SPU context information into the OProfile
16 * event buffer.
17 *
18 * Additionally, the spu_sync_buffer function is provided as a helper
19 * for recoding actual SPU program counter samples to the event buffer.
20 */
21#include <linux/dcookies.h>
22#include <linux/kref.h>
23#include <linux/mm.h>
4e950f6f 24#include <linux/fs.h>
1474855d
BN
25#include <linux/module.h>
26#include <linux/notifier.h>
27#include <linux/numa.h>
28#include <linux/oprofile.h>
29#include <linux/spinlock.h>
30#include "pr_util.h"
31
32#define RELEASE_ALL 9999
33
34static DEFINE_SPINLOCK(buffer_lock);
35static DEFINE_SPINLOCK(cache_lock);
36static int num_spu_nodes;
37int spu_prof_num_nodes;
a5598ca0
CL
38
39struct spu_buffer spu_buff[MAX_NUMNODES * SPUS_PER_NODE];
40struct delayed_work spu_work;
41static unsigned max_spu_buff;
42
43static void spu_buff_add(unsigned long int value, int spu)
44{
45 /* spu buff is a circular buffer. Add entries to the
46 * head. Head is the index to store the next value.
47 * The buffer is full when there is one available entry
48 * in the queue, i.e. head and tail can't be equal.
49 * That way we can tell the difference between the
50 * buffer being full versus empty.
51 *
52 * ASSUPTION: the buffer_lock is held when this function
53 * is called to lock the buffer, head and tail.
54 */
55 int full = 1;
56
57 if (spu_buff[spu].head >= spu_buff[spu].tail) {
58 if ((spu_buff[spu].head - spu_buff[spu].tail)
59 < (max_spu_buff - 1))
60 full = 0;
61
62 } else if (spu_buff[spu].tail > spu_buff[spu].head) {
63 if ((spu_buff[spu].tail - spu_buff[spu].head)
64 > 1)
65 full = 0;
66 }
67
68 if (!full) {
69 spu_buff[spu].buff[spu_buff[spu].head] = value;
70 spu_buff[spu].head++;
71
72 if (spu_buff[spu].head >= max_spu_buff)
73 spu_buff[spu].head = 0;
74 } else {
75 /* From the user's perspective make the SPU buffer
76 * size management/overflow look like we are using
77 * per cpu buffers. The user uses the same
78 * per cpu parameter to adjust the SPU buffer size.
79 * Increment the sample_lost_overflow to inform
80 * the user the buffer size needs to be increased.
81 */
82 oprofile_cpu_buffer_inc_smpl_lost();
83 }
84}
85
86/* This function copies the per SPU buffers to the
87 * OProfile kernel buffer.
88 */
89void sync_spu_buff(void)
90{
91 int spu;
92 unsigned long flags;
93 int curr_head;
94
95 for (spu = 0; spu < num_spu_nodes; spu++) {
96 /* In case there was an issue and the buffer didn't
97 * get created skip it.
98 */
99 if (spu_buff[spu].buff == NULL)
100 continue;
101
102 /* Hold the lock to make sure the head/tail
103 * doesn't change while spu_buff_add() is
104 * deciding if the buffer is full or not.
105 * Being a little paranoid.
106 */
107 spin_lock_irqsave(&buffer_lock, flags);
108 curr_head = spu_buff[spu].head;
109 spin_unlock_irqrestore(&buffer_lock, flags);
110
111 /* Transfer the current contents to the kernel buffer.
112 * data can still be added to the head of the buffer.
113 */
114 oprofile_put_buff(spu_buff[spu].buff,
115 spu_buff[spu].tail,
116 curr_head, max_spu_buff);
117
118 spin_lock_irqsave(&buffer_lock, flags);
119 spu_buff[spu].tail = curr_head;
120 spin_unlock_irqrestore(&buffer_lock, flags);
121 }
122
123}
124
125static void wq_sync_spu_buff(struct work_struct *work)
126{
127 /* move data from spu buffers to kernel buffer */
128 sync_spu_buff();
129
130 /* only reschedule if profiling is not done */
131 if (spu_prof_running)
132 schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE);
133}
1474855d
BN
134
135/* Container for caching information about an active SPU task. */
136struct cached_info {
137 struct vma_to_fileoffset_map *map;
138 struct spu *the_spu; /* needed to access pointer to local_store */
139 struct kref cache_ref;
140};
141
142static struct cached_info *spu_info[MAX_NUMNODES * 8];
143
144static void destroy_cached_info(struct kref *kref)
145{
146 struct cached_info *info;
147
148 info = container_of(kref, struct cached_info, cache_ref);
149 vma_map_free(info->map);
150 kfree(info);
151 module_put(THIS_MODULE);
152}
153
154/* Return the cached_info for the passed SPU number.
155 * ATTENTION: Callers are responsible for obtaining the
156 * cache_lock if needed prior to invoking this function.
157 */
158static struct cached_info *get_cached_info(struct spu *the_spu, int spu_num)
159{
160 struct kref *ref;
161 struct cached_info *ret_info;
162
163 if (spu_num >= num_spu_nodes) {
164 printk(KERN_ERR "SPU_PROF: "
165 "%s, line %d: Invalid index %d into spu info cache\n",
e48b1b45 166 __func__, __LINE__, spu_num);
1474855d
BN
167 ret_info = NULL;
168 goto out;
169 }
170 if (!spu_info[spu_num] && the_spu) {
171 ref = spu_get_profile_private_kref(the_spu->ctx);
172 if (ref) {
173 spu_info[spu_num] = container_of(ref, struct cached_info, cache_ref);
174 kref_get(&spu_info[spu_num]->cache_ref);
175 }
176 }
177
178 ret_info = spu_info[spu_num];
179 out:
180 return ret_info;
181}
182
183
184/* Looks for cached info for the passed spu. If not found, the
185 * cached info is created for the passed spu.
186 * Returns 0 for success; otherwise, -1 for error.
187 */
188static int
189prepare_cached_spu_info(struct spu *spu, unsigned long objectId)
190{
191 unsigned long flags;
192 struct vma_to_fileoffset_map *new_map;
193 int retval = 0;
194 struct cached_info *info;
195
196 /* We won't bother getting cache_lock here since
197 * don't do anything with the cached_info that's returned.
198 */
199 info = get_cached_info(spu, spu->number);
200
201 if (info) {
202 pr_debug("Found cached SPU info.\n");
203 goto out;
204 }
205
206 /* Create cached_info and set spu_info[spu->number] to point to it.
207 * spu->number is a system-wide value, not a per-node value.
208 */
209 info = kzalloc(sizeof(struct cached_info), GFP_KERNEL);
210 if (!info) {
211 printk(KERN_ERR "SPU_PROF: "
212 "%s, line %d: create vma_map failed\n",
e48b1b45 213 __func__, __LINE__);
1474855d
BN
214 retval = -ENOMEM;
215 goto err_alloc;
216 }
217 new_map = create_vma_map(spu, objectId);
218 if (!new_map) {
219 printk(KERN_ERR "SPU_PROF: "
220 "%s, line %d: create vma_map failed\n",
e48b1b45 221 __func__, __LINE__);
1474855d
BN
222 retval = -ENOMEM;
223 goto err_alloc;
224 }
225
226 pr_debug("Created vma_map\n");
227 info->map = new_map;
228 info->the_spu = spu;
229 kref_init(&info->cache_ref);
230 spin_lock_irqsave(&cache_lock, flags);
231 spu_info[spu->number] = info;
232 /* Increment count before passing off ref to SPUFS. */
233 kref_get(&info->cache_ref);
234
235 /* We increment the module refcount here since SPUFS is
236 * responsible for the final destruction of the cached_info,
237 * and it must be able to access the destroy_cached_info()
238 * function defined in the OProfile module. We decrement
239 * the module refcount in destroy_cached_info.
240 */
241 try_module_get(THIS_MODULE);
242 spu_set_profile_private_kref(spu->ctx, &info->cache_ref,
243 destroy_cached_info);
244 spin_unlock_irqrestore(&cache_lock, flags);
245 goto out;
246
247err_alloc:
248 kfree(info);
249out:
250 return retval;
251}
252
253/*
254 * NOTE: The caller is responsible for locking the
255 * cache_lock prior to calling this function.
256 */
257static int release_cached_info(int spu_index)
258{
259 int index, end;
260
261 if (spu_index == RELEASE_ALL) {
262 end = num_spu_nodes;
263 index = 0;
264 } else {
265 if (spu_index >= num_spu_nodes) {
266 printk(KERN_ERR "SPU_PROF: "
267 "%s, line %d: "
268 "Invalid index %d into spu info cache\n",
e48b1b45 269 __func__, __LINE__, spu_index);
1474855d
BN
270 goto out;
271 }
272 end = spu_index + 1;
273 index = spu_index;
274 }
275 for (; index < end; index++) {
276 if (spu_info[index]) {
277 kref_put(&spu_info[index]->cache_ref,
278 destroy_cached_info);
279 spu_info[index] = NULL;
280 }
281 }
282
283out:
284 return 0;
285}
286
287/* The source code for fast_get_dcookie was "borrowed"
288 * from drivers/oprofile/buffer_sync.c.
289 */
290
291/* Optimisation. We can manage without taking the dcookie sem
292 * because we cannot reach this code without at least one
293 * dcookie user still being registered (namely, the reader
294 * of the event buffer).
295 */
448678a0 296static inline unsigned long fast_get_dcookie(struct path *path)
1474855d
BN
297{
298 unsigned long cookie;
299
c2452f32 300 if (path->dentry->d_flags & DCACHE_COOKIE)
448678a0
JB
301 return (unsigned long)path->dentry;
302 get_dcookie(path, &cookie);
1474855d
BN
303 return cookie;
304}
305
306/* Look up the dcookie for the task's first VM_EXECUTABLE mapping,
307 * which corresponds loosely to "application name". Also, determine
308 * the offset for the SPU ELF object. If computed offset is
309 * non-zero, it implies an embedded SPU object; otherwise, it's a
310 * separate SPU binary, in which case we retrieve it's dcookie.
311 * For the embedded case, we must determine if SPU ELF is embedded
312 * in the executable application or another file (i.e., shared lib).
313 * If embedded in a shared lib, we must get the dcookie and return
314 * that to the caller.
315 */
316static unsigned long
317get_exec_dcookie_and_offset(struct spu *spu, unsigned int *offsetp,
318 unsigned long *spu_bin_dcookie,
319 unsigned long spu_ref)
320{
321 unsigned long app_cookie = 0;
322 unsigned int my_offset = 0;
323 struct file *app = NULL;
324 struct vm_area_struct *vma;
325 struct mm_struct *mm = spu->mm;
326
327 if (!mm)
328 goto out;
329
330 down_read(&mm->mmap_sem);
331
332 for (vma = mm->mmap; vma; vma = vma->vm_next) {
333 if (!vma->vm_file)
334 continue;
335 if (!(vma->vm_flags & VM_EXECUTABLE))
336 continue;
448678a0 337 app_cookie = fast_get_dcookie(&vma->vm_file->f_path);
1474855d
BN
338 pr_debug("got dcookie for %s\n",
339 vma->vm_file->f_dentry->d_name.name);
340 app = vma->vm_file;
341 break;
342 }
343
344 for (vma = mm->mmap; vma; vma = vma->vm_next) {
345 if (vma->vm_start > spu_ref || vma->vm_end <= spu_ref)
346 continue;
347 my_offset = spu_ref - vma->vm_start;
348 if (!vma->vm_file)
349 goto fail_no_image_cookie;
350
351 pr_debug("Found spu ELF at %X(object-id:%lx) for file %s\n",
352 my_offset, spu_ref,
353 vma->vm_file->f_dentry->d_name.name);
354 *offsetp = my_offset;
355 break;
356 }
357
448678a0 358 *spu_bin_dcookie = fast_get_dcookie(&vma->vm_file->f_path);
1474855d
BN
359 pr_debug("got dcookie for %s\n", vma->vm_file->f_dentry->d_name.name);
360
361 up_read(&mm->mmap_sem);
362
363out:
364 return app_cookie;
365
366fail_no_image_cookie:
367 up_read(&mm->mmap_sem);
368
369 printk(KERN_ERR "SPU_PROF: "
370 "%s, line %d: Cannot find dcookie for SPU binary\n",
e48b1b45 371 __func__, __LINE__);
1474855d
BN
372 goto out;
373}
374
375
376
377/* This function finds or creates cached context information for the
378 * passed SPU and records SPU context information into the OProfile
379 * event buffer.
380 */
381static int process_context_switch(struct spu *spu, unsigned long objectId)
382{
383 unsigned long flags;
384 int retval;
385 unsigned int offset = 0;
386 unsigned long spu_cookie = 0, app_dcookie;
387
388 retval = prepare_cached_spu_info(spu, objectId);
389 if (retval)
390 goto out;
391
392 /* Get dcookie first because a mutex_lock is taken in that
393 * code path, so interrupts must not be disabled.
394 */
395 app_dcookie = get_exec_dcookie_and_offset(spu, &offset, &spu_cookie, objectId);
396 if (!app_dcookie || !spu_cookie) {
397 retval = -ENOENT;
398 goto out;
399 }
400
401 /* Record context info in event buffer */
402 spin_lock_irqsave(&buffer_lock, flags);
a5598ca0
CL
403 spu_buff_add(ESCAPE_CODE, spu->number);
404 spu_buff_add(SPU_CTX_SWITCH_CODE, spu->number);
405 spu_buff_add(spu->number, spu->number);
406 spu_buff_add(spu->pid, spu->number);
407 spu_buff_add(spu->tgid, spu->number);
408 spu_buff_add(app_dcookie, spu->number);
409 spu_buff_add(spu_cookie, spu->number);
410 spu_buff_add(offset, spu->number);
411
412 /* Set flag to indicate SPU PC data can now be written out. If
413 * the SPU program counter data is seen before an SPU context
414 * record is seen, the postprocessing will fail.
415 */
416 spu_buff[spu->number].ctx_sw_seen = 1;
417
1474855d
BN
418 spin_unlock_irqrestore(&buffer_lock, flags);
419 smp_wmb(); /* insure spu event buffer updates are written */
420 /* don't want entries intermingled... */
421out:
422 return retval;
423}
424
425/*
426 * This function is invoked on either a bind_context or unbind_context.
427 * If called for an unbind_context, the val arg is 0; otherwise,
428 * it is the object-id value for the spu context.
429 * The data arg is of type 'struct spu *'.
430 */
431static int spu_active_notify(struct notifier_block *self, unsigned long val,
432 void *data)
433{
434 int retval;
435 unsigned long flags;
436 struct spu *the_spu = data;
437
438 pr_debug("SPU event notification arrived\n");
439 if (!val) {
440 spin_lock_irqsave(&cache_lock, flags);
441 retval = release_cached_info(the_spu->number);
442 spin_unlock_irqrestore(&cache_lock, flags);
443 } else {
444 retval = process_context_switch(the_spu, val);
445 }
446 return retval;
447}
448
449static struct notifier_block spu_active = {
450 .notifier_call = spu_active_notify,
451};
452
453static int number_of_online_nodes(void)
454{
455 u32 cpu; u32 tmp;
456 int nodes = 0;
457 for_each_online_cpu(cpu) {
458 tmp = cbe_cpu_to_node(cpu) + 1;
459 if (tmp > nodes)
460 nodes++;
461 }
462 return nodes;
463}
464
a5598ca0
CL
465static int oprofile_spu_buff_create(void)
466{
467 int spu;
468
469 max_spu_buff = oprofile_get_cpu_buffer_size();
470
471 for (spu = 0; spu < num_spu_nodes; spu++) {
472 /* create circular buffers to store the data in.
473 * use locks to manage accessing the buffers
474 */
475 spu_buff[spu].head = 0;
476 spu_buff[spu].tail = 0;
477
478 /*
479 * Create a buffer for each SPU. Can't reliably
480 * create a single buffer for all spus due to not
481 * enough contiguous kernel memory.
482 */
483
484 spu_buff[spu].buff = kzalloc((max_spu_buff
485 * sizeof(unsigned long)),
486 GFP_KERNEL);
487
488 if (!spu_buff[spu].buff) {
489 printk(KERN_ERR "SPU_PROF: "
490 "%s, line %d: oprofile_spu_buff_create "
491 "failed to allocate spu buffer %d.\n",
492 __func__, __LINE__, spu);
493
494 /* release the spu buffers that have been allocated */
495 while (spu >= 0) {
496 kfree(spu_buff[spu].buff);
497 spu_buff[spu].buff = 0;
498 spu--;
499 }
500 return -ENOMEM;
501 }
502 }
503 return 0;
504}
505
1474855d
BN
506/* The main purpose of this function is to synchronize
507 * OProfile with SPUFS by registering to be notified of
508 * SPU task switches.
509 *
510 * NOTE: When profiling SPUs, we must ensure that only
511 * spu_sync_start is invoked and not the generic sync_start
512 * in drivers/oprofile/oprof.c. A return value of
513 * SKIP_GENERIC_SYNC or SYNC_START_ERROR will
514 * accomplish this.
515 */
516int spu_sync_start(void)
517{
a5598ca0 518 int spu;
1474855d
BN
519 int ret = SKIP_GENERIC_SYNC;
520 int register_ret;
521 unsigned long flags = 0;
522
523 spu_prof_num_nodes = number_of_online_nodes();
524 num_spu_nodes = spu_prof_num_nodes * 8;
a5598ca0
CL
525 INIT_DELAYED_WORK(&spu_work, wq_sync_spu_buff);
526
527 /* create buffer for storing the SPU data to put in
528 * the kernel buffer.
529 */
530 ret = oprofile_spu_buff_create();
531 if (ret)
532 goto out;
1474855d
BN
533
534 spin_lock_irqsave(&buffer_lock, flags);
a5598ca0
CL
535 for (spu = 0; spu < num_spu_nodes; spu++) {
536 spu_buff_add(ESCAPE_CODE, spu);
537 spu_buff_add(SPU_PROFILING_CODE, spu);
538 spu_buff_add(num_spu_nodes, spu);
539 }
1474855d
BN
540 spin_unlock_irqrestore(&buffer_lock, flags);
541
a5598ca0
CL
542 for (spu = 0; spu < num_spu_nodes; spu++) {
543 spu_buff[spu].ctx_sw_seen = 0;
544 spu_buff[spu].last_guard_val = 0;
545 }
546
1474855d
BN
547 /* Register for SPU events */
548 register_ret = spu_switch_event_register(&spu_active);
549 if (register_ret) {
550 ret = SYNC_START_ERROR;
551 goto out;
552 }
553
1474855d
BN
554 pr_debug("spu_sync_start -- running.\n");
555out:
556 return ret;
557}
558
559/* Record SPU program counter samples to the oprofile event buffer. */
560void spu_sync_buffer(int spu_num, unsigned int *samples,
561 int num_samples)
562{
563 unsigned long long file_offset;
564 unsigned long flags;
565 int i;
566 struct vma_to_fileoffset_map *map;
567 struct spu *the_spu;
568 unsigned long long spu_num_ll = spu_num;
569 unsigned long long spu_num_shifted = spu_num_ll << 32;
570 struct cached_info *c_info;
571
572 /* We need to obtain the cache_lock here because it's
573 * possible that after getting the cached_info, the SPU job
574 * corresponding to this cached_info may end, thus resulting
575 * in the destruction of the cached_info.
576 */
577 spin_lock_irqsave(&cache_lock, flags);
578 c_info = get_cached_info(NULL, spu_num);
579 if (!c_info) {
580 /* This legitimately happens when the SPU task ends before all
581 * samples are recorded.
582 * No big deal -- so we just drop a few samples.
583 */
584 pr_debug("SPU_PROF: No cached SPU contex "
585 "for SPU #%d. Dropping samples.\n", spu_num);
586 goto out;
587 }
588
589 map = c_info->map;
590 the_spu = c_info->the_spu;
591 spin_lock(&buffer_lock);
592 for (i = 0; i < num_samples; i++) {
593 unsigned int sample = *(samples+i);
594 int grd_val = 0;
595 file_offset = 0;
596 if (sample == 0)
597 continue;
598 file_offset = vma_map_lookup( map, sample, the_spu, &grd_val);
599
600 /* If overlays are used by this SPU application, the guard
601 * value is non-zero, indicating which overlay section is in
602 * use. We need to discard samples taken during the time
603 * period which an overlay occurs (i.e., guard value changes).
604 */
a5598ca0
CL
605 if (grd_val && grd_val != spu_buff[spu_num].last_guard_val) {
606 spu_buff[spu_num].last_guard_val = grd_val;
1474855d
BN
607 /* Drop the rest of the samples. */
608 break;
609 }
610
a5598ca0
CL
611 /* We must ensure that the SPU context switch has been written
612 * out before samples for the SPU. Otherwise, the SPU context
613 * information is not available and the postprocessing of the
614 * SPU PC will fail with no available anonymous map information.
615 */
616 if (spu_buff[spu_num].ctx_sw_seen)
617 spu_buff_add((file_offset | spu_num_shifted),
618 spu_num);
1474855d
BN
619 }
620 spin_unlock(&buffer_lock);
621out:
622 spin_unlock_irqrestore(&cache_lock, flags);
623}
624
625
626int spu_sync_stop(void)
627{
628 unsigned long flags = 0;
a5598ca0
CL
629 int ret;
630 int k;
631
632 ret = spu_switch_event_unregister(&spu_active);
633
634 if (ret)
1474855d 635 printk(KERN_ERR "SPU_PROF: "
a5598ca0
CL
636 "%s, line %d: spu_switch_event_unregister " \
637 "returned %d\n",
638 __func__, __LINE__, ret);
639
640 /* flush any remaining data in the per SPU buffers */
641 sync_spu_buff();
1474855d
BN
642
643 spin_lock_irqsave(&cache_lock, flags);
644 ret = release_cached_info(RELEASE_ALL);
645 spin_unlock_irqrestore(&cache_lock, flags);
a5598ca0
CL
646
647 /* remove scheduled work queue item rather then waiting
648 * for every queued entry to execute. Then flush pending
649 * system wide buffer to event buffer.
650 */
651 cancel_delayed_work(&spu_work);
652
653 for (k = 0; k < num_spu_nodes; k++) {
654 spu_buff[k].ctx_sw_seen = 0;
655
656 /*
657 * spu_sys_buff will be null if there was a problem
658 * allocating the buffer. Only delete if it exists.
659 */
660 kfree(spu_buff[k].buff);
661 spu_buff[k].buff = 0;
662 }
1474855d
BN
663 pr_debug("spu_sync_stop -- done.\n");
664 return ret;
665}
666