]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/parisc/kernel/time.c
parisc: add rtc platform driver
[net-next-2.6.git] / arch / parisc / kernel / time.c
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/parisc/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
5 * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
6 * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
7 *
8 * 1994-07-02 Alan Modra
9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10 * 1998-12-20 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 */
1da177e4
LT
13#include <linux/errno.h>
14#include <linux/module.h>
15#include <linux/sched.h>
16#include <linux/kernel.h>
17#include <linux/param.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/interrupt.h>
21#include <linux/time.h>
22#include <linux/init.h>
23#include <linux/smp.h>
24#include <linux/profile.h>
12df29b6 25#include <linux/clocksource.h>
9eb16864 26#include <linux/platform_device.h>
1da177e4
LT
27
28#include <asm/uaccess.h>
29#include <asm/io.h>
30#include <asm/irq.h>
31#include <asm/param.h>
32#include <asm/pdc.h>
33#include <asm/led.h>
34
35#include <linux/timex.h>
36
bed583f7 37static unsigned long clocktick __read_mostly; /* timer cycles per tick */
1da177e4 38
1604f318
MW
39/*
40 * We keep time on PA-RISC Linux by using the Interval Timer which is
41 * a pair of registers; one is read-only and one is write-only; both
42 * accessed through CR16. The read-only register is 32 or 64 bits wide,
43 * and increments by 1 every CPU clock tick. The architecture only
44 * guarantees us a rate between 0.5 and 2, but all implementations use a
45 * rate of 1. The write-only register is 32-bits wide. When the lowest
46 * 32 bits of the read-only register compare equal to the write-only
47 * register, it raises a maskable external interrupt. Each processor has
48 * an Interval Timer of its own and they are not synchronised.
49 *
50 * We want to generate an interrupt every 1/HZ seconds. So we program
51 * CR16 to interrupt every @clocktick cycles. The it_value in cpu_data
52 * is programmed with the intended time of the next tick. We can be
53 * held off for an arbitrarily long period of time by interrupts being
54 * disabled, so we may miss one or more ticks.
55 */
c7753f18 56irqreturn_t timer_interrupt(int irq, void *dev_id)
1da177e4 57{
bed583f7
GG
58 unsigned long now;
59 unsigned long next_tick;
1604f318 60 unsigned long cycles_elapsed, ticks_elapsed;
6e5dc42b
GG
61 unsigned long cycles_remainder;
62 unsigned int cpu = smp_processor_id();
c7753f18 63 struct cpuinfo_parisc *cpuinfo = &cpu_data[cpu];
1da177e4 64
6b799d92 65 /* gcc can optimize for "read-only" case with a local clocktick */
6e5dc42b 66 unsigned long cpt = clocktick;
6b799d92 67
be577a52 68 profile_tick(CPU_PROFILING);
1da177e4 69
bed583f7 70 /* Initialize next_tick to the expected tick time. */
c7753f18 71 next_tick = cpuinfo->it_value;
1da177e4 72
bed583f7
GG
73 /* Get current interval timer.
74 * CR16 reads as 64 bits in CPU wide mode.
75 * CR16 reads as 32 bits in CPU narrow mode.
1da177e4 76 */
bed583f7 77 now = mfctl(16);
1da177e4 78
bed583f7
GG
79 cycles_elapsed = now - next_tick;
80
6e5dc42b
GG
81 if ((cycles_elapsed >> 5) < cpt) {
82 /* use "cheap" math (add/subtract) instead
83 * of the more expensive div/mul method
bed583f7 84 */
6b799d92 85 cycles_remainder = cycles_elapsed;
1604f318 86 ticks_elapsed = 1;
6e5dc42b
GG
87 while (cycles_remainder > cpt) {
88 cycles_remainder -= cpt;
1604f318 89 ticks_elapsed++;
6e5dc42b 90 }
6b799d92 91 } else {
6e5dc42b 92 cycles_remainder = cycles_elapsed % cpt;
1604f318 93 ticks_elapsed = 1 + cycles_elapsed / cpt;
6b799d92 94 }
bed583f7
GG
95
96 /* Can we differentiate between "early CR16" (aka Scenario 1) and
97 * "long delay" (aka Scenario 3)? I don't think so.
98 *
99 * We expected timer_interrupt to be delivered at least a few hundred
100 * cycles after the IT fires. But it's arbitrary how much time passes
101 * before we call it "late". I've picked one second.
102 */
324c7e65 103 if (unlikely(ticks_elapsed > HZ)) {
bed583f7 104 /* Scenario 3: very long delay? bad in any case */
6b799d92 105 printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
6e5dc42b 106 " cycles %lX rem %lX "
bed583f7
GG
107 " next/now %lX/%lX\n",
108 cpu,
6e5dc42b 109 cycles_elapsed, cycles_remainder,
bed583f7 110 next_tick, now );
bed583f7
GG
111 }
112
6e5dc42b
GG
113 /* convert from "division remainder" to "remainder of clock tick" */
114 cycles_remainder = cpt - cycles_remainder;
bed583f7
GG
115
116 /* Determine when (in CR16 cycles) next IT interrupt will fire.
117 * We want IT to fire modulo clocktick even if we miss/skip some.
118 * But those interrupts don't in fact get delivered that regularly.
119 */
6e5dc42b
GG
120 next_tick = now + cycles_remainder;
121
c7753f18 122 cpuinfo->it_value = next_tick;
6b799d92
GG
123
124 /* Skip one clocktick on purpose if we are likely to miss next_tick.
6e5dc42b
GG
125 * We want to avoid the new next_tick being less than CR16.
126 * If that happened, itimer wouldn't fire until CR16 wrapped.
127 * We'll catch the tick we missed on the tick after that.
128 */
129 if (!(cycles_remainder >> 13))
130 next_tick += cpt;
bed583f7
GG
131
132 /* Program the IT when to deliver the next interrupt. */
c7753f18 133 /* Only bottom 32-bits of next_tick are written to cr16. */
6b799d92 134 mtctl(next_tick, 16);
1da177e4 135
6e5dc42b
GG
136
137 /* Done mucking with unreliable delivery of interrupts.
138 * Go do system house keeping.
bed583f7 139 */
c7753f18
MW
140
141 if (!--cpuinfo->prof_counter) {
142 cpuinfo->prof_counter = cpuinfo->prof_multiplier;
143 update_process_times(user_mode(get_irq_regs()));
144 }
145
6e5dc42b
GG
146 if (cpu == 0) {
147 write_seqlock(&xtime_lock);
1604f318 148 do_timer(ticks_elapsed);
6e5dc42b 149 write_sequnlock(&xtime_lock);
1da177e4 150 }
6e5dc42b 151
1da177e4
LT
152 return IRQ_HANDLED;
153}
154
5cd55b0e
RC
155
156unsigned long profile_pc(struct pt_regs *regs)
157{
158 unsigned long pc = instruction_pointer(regs);
159
160 if (regs->gr[0] & PSW_N)
161 pc -= 4;
162
163#ifdef CONFIG_SMP
164 if (in_lock_functions(pc))
165 pc = regs->gr[2];
166#endif
167
168 return pc;
169}
170EXPORT_SYMBOL(profile_pc);
171
172
12df29b6 173/* clock source code */
1da177e4 174
12df29b6 175static cycle_t read_cr16(void)
1da177e4 176{
12df29b6 177 return get_cycles();
1da177e4 178}
bed583f7 179
12df29b6
HD
180static struct clocksource clocksource_cr16 = {
181 .name = "cr16",
182 .rating = 300,
183 .read = read_cr16,
184 .mask = CLOCKSOURCE_MASK(BITS_PER_LONG),
185 .mult = 0, /* to be set */
186 .shift = 22,
87c81747 187 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
12df29b6 188};
bed583f7 189
b2a8289a
KM
190#ifdef CONFIG_SMP
191int update_cr16_clocksource(void)
1da177e4 192{
7022672e 193 /* since the cr16 cycle counters are not synchronized across CPUs,
324c7e65
HD
194 we'll check if we should switch to a safe clocksource: */
195 if (clocksource_cr16.rating != 0 && num_online_cpus() > 1) {
00d1f3c3 196 clocksource_change_rating(&clocksource_cr16, 0);
730e844d 197 return 1;
1da177e4
LT
198 }
199
730e844d 200 return 0;
1da177e4 201}
01363220
KM
202#else
203int update_cr16_clocksource(void)
204{
205 return 0; /* no change */
206}
b2a8289a 207#endif /*CONFIG_SMP*/
1da177e4 208
56f335c8
GG
209void __init start_cpu_itimer(void)
210{
211 unsigned int cpu = smp_processor_id();
212 unsigned long next_tick = mfctl(16) + clocktick;
213
214 mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */
215
216 cpu_data[cpu].it_value = next_tick;
217}
218
9eb16864
KM
219struct platform_device rtc_parisc_dev = {
220 .name = "rtc-parisc",
221 .id = -1,
222};
223
224static int __init rtc_init(void)
225{
226 int ret;
227
228 ret = platform_device_register(&rtc_parisc_dev);
229 if (ret < 0)
230 printk(KERN_ERR "unable to register rtc device...\n");
231
232 /* not necessarily an error */
233 return 0;
234}
235module_init(rtc_init);
236
1da177e4
LT
237void __init time_init(void)
238{
1da177e4 239 static struct pdc_tod tod_data;
12df29b6 240 unsigned long current_cr16_khz;
1da177e4
LT
241
242 clocktick = (100 * PAGE0->mem_10msec) / HZ;
1da177e4 243
56f335c8 244 start_cpu_itimer(); /* get CPU 0 started */
1da177e4 245
12df29b6
HD
246 /* register at clocksource framework */
247 current_cr16_khz = PAGE0->mem_10msec/10; /* kHz */
248 clocksource_cr16.mult = clocksource_khz2mult(current_cr16_khz,
249 clocksource_cr16.shift);
12df29b6
HD
250 clocksource_register(&clocksource_cr16);
251
09690b18
KM
252 if (pdc_tod_read(&tod_data) == 0) {
253 unsigned long flags;
254
255 write_seqlock_irqsave(&xtime_lock, flags);
1da177e4
LT
256 xtime.tv_sec = tod_data.tod_sec;
257 xtime.tv_nsec = tod_data.tod_usec * 1000;
258 set_normalized_timespec(&wall_to_monotonic,
259 -xtime.tv_sec, -xtime.tv_nsec);
09690b18 260 write_sequnlock_irqrestore(&xtime_lock, flags);
1da177e4
LT
261 } else {
262 printk(KERN_ERR "Error reading tod clock\n");
263 xtime.tv_sec = 0;
264 xtime.tv_nsec = 0;
265 }
266}