]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/parisc/kernel/time.c
[PARISC] Remove __read_mostly annotation from command_line
[net-next-2.6.git] / arch / parisc / kernel / time.c
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/parisc/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
5 * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
6 * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
7 *
8 * 1994-07-02 Alan Modra
9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10 * 1998-12-20 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 */
1da177e4
LT
13#include <linux/errno.h>
14#include <linux/module.h>
15#include <linux/sched.h>
16#include <linux/kernel.h>
17#include <linux/param.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/interrupt.h>
21#include <linux/time.h>
22#include <linux/init.h>
23#include <linux/smp.h>
24#include <linux/profile.h>
12df29b6 25#include <linux/clocksource.h>
1da177e4
LT
26
27#include <asm/uaccess.h>
28#include <asm/io.h>
29#include <asm/irq.h>
30#include <asm/param.h>
31#include <asm/pdc.h>
32#include <asm/led.h>
33
34#include <linux/timex.h>
35
bed583f7 36static unsigned long clocktick __read_mostly; /* timer cycles per tick */
1da177e4 37
1604f318
MW
38/*
39 * We keep time on PA-RISC Linux by using the Interval Timer which is
40 * a pair of registers; one is read-only and one is write-only; both
41 * accessed through CR16. The read-only register is 32 or 64 bits wide,
42 * and increments by 1 every CPU clock tick. The architecture only
43 * guarantees us a rate between 0.5 and 2, but all implementations use a
44 * rate of 1. The write-only register is 32-bits wide. When the lowest
45 * 32 bits of the read-only register compare equal to the write-only
46 * register, it raises a maskable external interrupt. Each processor has
47 * an Interval Timer of its own and they are not synchronised.
48 *
49 * We want to generate an interrupt every 1/HZ seconds. So we program
50 * CR16 to interrupt every @clocktick cycles. The it_value in cpu_data
51 * is programmed with the intended time of the next tick. We can be
52 * held off for an arbitrarily long period of time by interrupts being
53 * disabled, so we may miss one or more ticks.
54 */
c7753f18 55irqreturn_t timer_interrupt(int irq, void *dev_id)
1da177e4 56{
bed583f7
GG
57 unsigned long now;
58 unsigned long next_tick;
1604f318 59 unsigned long cycles_elapsed, ticks_elapsed;
6e5dc42b
GG
60 unsigned long cycles_remainder;
61 unsigned int cpu = smp_processor_id();
c7753f18 62 struct cpuinfo_parisc *cpuinfo = &cpu_data[cpu];
1da177e4 63
6b799d92 64 /* gcc can optimize for "read-only" case with a local clocktick */
6e5dc42b 65 unsigned long cpt = clocktick;
6b799d92 66
be577a52 67 profile_tick(CPU_PROFILING);
1da177e4 68
bed583f7 69 /* Initialize next_tick to the expected tick time. */
c7753f18 70 next_tick = cpuinfo->it_value;
1da177e4 71
bed583f7
GG
72 /* Get current interval timer.
73 * CR16 reads as 64 bits in CPU wide mode.
74 * CR16 reads as 32 bits in CPU narrow mode.
1da177e4 75 */
bed583f7 76 now = mfctl(16);
1da177e4 77
bed583f7
GG
78 cycles_elapsed = now - next_tick;
79
6e5dc42b
GG
80 if ((cycles_elapsed >> 5) < cpt) {
81 /* use "cheap" math (add/subtract) instead
82 * of the more expensive div/mul method
bed583f7 83 */
6b799d92 84 cycles_remainder = cycles_elapsed;
1604f318 85 ticks_elapsed = 1;
6e5dc42b
GG
86 while (cycles_remainder > cpt) {
87 cycles_remainder -= cpt;
1604f318 88 ticks_elapsed++;
6e5dc42b 89 }
6b799d92 90 } else {
6e5dc42b 91 cycles_remainder = cycles_elapsed % cpt;
1604f318 92 ticks_elapsed = 1 + cycles_elapsed / cpt;
6b799d92 93 }
bed583f7
GG
94
95 /* Can we differentiate between "early CR16" (aka Scenario 1) and
96 * "long delay" (aka Scenario 3)? I don't think so.
97 *
98 * We expected timer_interrupt to be delivered at least a few hundred
99 * cycles after the IT fires. But it's arbitrary how much time passes
100 * before we call it "late". I've picked one second.
101 */
324c7e65 102 if (unlikely(ticks_elapsed > HZ)) {
bed583f7 103 /* Scenario 3: very long delay? bad in any case */
6b799d92 104 printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
6e5dc42b 105 " cycles %lX rem %lX "
bed583f7
GG
106 " next/now %lX/%lX\n",
107 cpu,
6e5dc42b 108 cycles_elapsed, cycles_remainder,
bed583f7 109 next_tick, now );
bed583f7
GG
110 }
111
6e5dc42b
GG
112 /* convert from "division remainder" to "remainder of clock tick" */
113 cycles_remainder = cpt - cycles_remainder;
bed583f7
GG
114
115 /* Determine when (in CR16 cycles) next IT interrupt will fire.
116 * We want IT to fire modulo clocktick even if we miss/skip some.
117 * But those interrupts don't in fact get delivered that regularly.
118 */
6e5dc42b
GG
119 next_tick = now + cycles_remainder;
120
c7753f18 121 cpuinfo->it_value = next_tick;
6b799d92
GG
122
123 /* Skip one clocktick on purpose if we are likely to miss next_tick.
6e5dc42b
GG
124 * We want to avoid the new next_tick being less than CR16.
125 * If that happened, itimer wouldn't fire until CR16 wrapped.
126 * We'll catch the tick we missed on the tick after that.
127 */
128 if (!(cycles_remainder >> 13))
129 next_tick += cpt;
bed583f7
GG
130
131 /* Program the IT when to deliver the next interrupt. */
c7753f18 132 /* Only bottom 32-bits of next_tick are written to cr16. */
6b799d92 133 mtctl(next_tick, 16);
1da177e4 134
6e5dc42b
GG
135
136 /* Done mucking with unreliable delivery of interrupts.
137 * Go do system house keeping.
bed583f7 138 */
c7753f18
MW
139
140 if (!--cpuinfo->prof_counter) {
141 cpuinfo->prof_counter = cpuinfo->prof_multiplier;
142 update_process_times(user_mode(get_irq_regs()));
143 }
144
6e5dc42b
GG
145 if (cpu == 0) {
146 write_seqlock(&xtime_lock);
1604f318 147 do_timer(ticks_elapsed);
6e5dc42b 148 write_sequnlock(&xtime_lock);
1da177e4 149 }
6e5dc42b 150
1da177e4
LT
151 return IRQ_HANDLED;
152}
153
5cd55b0e
RC
154
155unsigned long profile_pc(struct pt_regs *regs)
156{
157 unsigned long pc = instruction_pointer(regs);
158
159 if (regs->gr[0] & PSW_N)
160 pc -= 4;
161
162#ifdef CONFIG_SMP
163 if (in_lock_functions(pc))
164 pc = regs->gr[2];
165#endif
166
167 return pc;
168}
169EXPORT_SYMBOL(profile_pc);
170
171
12df29b6 172/* clock source code */
1da177e4 173
12df29b6 174static cycle_t read_cr16(void)
1da177e4 175{
12df29b6 176 return get_cycles();
1da177e4 177}
bed583f7 178
324c7e65 179static int cr16_update_callback(void);
bed583f7 180
12df29b6
HD
181static struct clocksource clocksource_cr16 = {
182 .name = "cr16",
183 .rating = 300,
184 .read = read_cr16,
185 .mask = CLOCKSOURCE_MASK(BITS_PER_LONG),
186 .mult = 0, /* to be set */
187 .shift = 22,
324c7e65 188 .update_callback = cr16_update_callback,
12df29b6
HD
189 .is_continuous = 1,
190};
bed583f7 191
324c7e65 192static int cr16_update_callback(void)
1da177e4 193{
324c7e65
HD
194 int change = 0;
195
196 /* since the cr16 cycle counters are not syncronized across CPUs,
197 we'll check if we should switch to a safe clocksource: */
198 if (clocksource_cr16.rating != 0 && num_online_cpus() > 1) {
199 clocksource_cr16.rating = 0;
200 clocksource_reselect();
201 change = 1;
1da177e4
LT
202 }
203
324c7e65 204 return change;
1da177e4
LT
205}
206
1da177e4 207
56f335c8
GG
208void __init start_cpu_itimer(void)
209{
210 unsigned int cpu = smp_processor_id();
211 unsigned long next_tick = mfctl(16) + clocktick;
212
213 mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */
214
215 cpu_data[cpu].it_value = next_tick;
216}
217
1da177e4
LT
218void __init time_init(void)
219{
1da177e4 220 static struct pdc_tod tod_data;
12df29b6 221 unsigned long current_cr16_khz;
1da177e4
LT
222
223 clocktick = (100 * PAGE0->mem_10msec) / HZ;
1da177e4 224
56f335c8 225 start_cpu_itimer(); /* get CPU 0 started */
1da177e4 226
12df29b6
HD
227 /* register at clocksource framework */
228 current_cr16_khz = PAGE0->mem_10msec/10; /* kHz */
229 clocksource_cr16.mult = clocksource_khz2mult(current_cr16_khz,
230 clocksource_cr16.shift);
12df29b6
HD
231 clocksource_register(&clocksource_cr16);
232
09690b18
KM
233 if (pdc_tod_read(&tod_data) == 0) {
234 unsigned long flags;
235
236 write_seqlock_irqsave(&xtime_lock, flags);
1da177e4
LT
237 xtime.tv_sec = tod_data.tod_sec;
238 xtime.tv_nsec = tod_data.tod_usec * 1000;
239 set_normalized_timespec(&wall_to_monotonic,
240 -xtime.tv_sec, -xtime.tv_nsec);
09690b18 241 write_sequnlock_irqrestore(&xtime_lock, flags);
1da177e4
LT
242 } else {
243 printk(KERN_ERR "Error reading tod clock\n");
244 xtime.tv_sec = 0;
245 xtime.tv_nsec = 0;
246 }
247}
248