]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/parisc/kernel/firmware.c
parisc: move pdc_result to real2.S
[net-next-2.6.git] / arch / parisc / kernel / firmware.c
CommitLineData
1da177e4
LT
1/*
2 * arch/parisc/kernel/firmware.c - safe PDC access routines
3 *
4 * PDC == Processor Dependent Code
5 *
6 * See http://www.parisc-linux.org/documentation/index.html
7 * for documentation describing the entry points and calling
8 * conventions defined below.
9 *
10 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
11 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
12 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
13 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
8ffaeaf4 14 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
1da177e4
LT
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 2 of the License, or
19 * (at your option) any later version.
20 *
21 */
22
23/* I think it would be in everyone's best interest to follow this
24 * guidelines when writing PDC wrappers:
25 *
26 * - the name of the pdc wrapper should match one of the macros
27 * used for the first two arguments
28 * - don't use caps for random parts of the name
29 * - use the static PDC result buffers and "copyout" to structs
30 * supplied by the caller to encapsulate alignment restrictions
31 * - hold pdc_lock while in PDC or using static result buffers
32 * - use __pa() to convert virtual (kernel) pointers to physical
33 * ones.
34 * - the name of the struct used for pdc return values should equal
35 * one of the macros used for the first two arguments to the
36 * corresponding PDC call
37 * - keep the order of arguments
38 * - don't be smart (setting trailing NUL bytes for strings, return
39 * something useful even if the call failed) unless you are sure
40 * it's not going to affect functionality or performance
41 *
42 * Example:
43 * int pdc_cache_info(struct pdc_cache_info *cache_info )
44 * {
45 * int retval;
46 *
47 * spin_lock_irq(&pdc_lock);
48 * retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
49 * convert_to_wide(pdc_result);
50 * memcpy(cache_info, pdc_result, sizeof(*cache_info));
51 * spin_unlock_irq(&pdc_lock);
52 *
53 * return retval;
54 * }
55 * prumpf 991016
56 */
57
58#include <stdarg.h>
59
60#include <linux/delay.h>
61#include <linux/init.h>
62#include <linux/kernel.h>
63#include <linux/module.h>
64#include <linux/string.h>
65#include <linux/spinlock.h>
66
67#include <asm/page.h>
68#include <asm/pdc.h>
69#include <asm/pdcpat.h>
70#include <asm/system.h>
71#include <asm/processor.h> /* for boot_cpu_data */
72
73static DEFINE_SPINLOCK(pdc_lock);
6c86cb82
KM
74extern unsigned long pdc_result[NUM_PDC_RESULT];
75extern unsigned long pdc_result2[NUM_PDC_RESULT];
1da177e4 76
a8f44e38 77#ifdef CONFIG_64BIT
1da177e4
LT
78#define WIDE_FIRMWARE 0x1
79#define NARROW_FIRMWARE 0x2
80
81/* Firmware needs to be initially set to narrow to determine the
82 * actual firmware width. */
8039de10 83int parisc_narrow_firmware __read_mostly = 1;
1da177e4
LT
84#endif
85
675ec7a5
GG
86/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
87 * and MEM_PDC calls are always the same width as the OS.
88 * Some PAT boxes may have 64-bit IODC I/O.
1da177e4 89 *
675ec7a5
GG
90 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
91 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
92 * This allowed wide kernels to run on Cxxx boxes.
93 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
94 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
1da177e4
LT
95 */
96
a8f44e38 97#ifdef CONFIG_64BIT
1da177e4
LT
98long real64_call(unsigned long function, ...);
99#endif
100long real32_call(unsigned long function, ...);
101
a8f44e38 102#ifdef CONFIG_64BIT
1da177e4
LT
103# define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
104# define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
105#else
106# define MEM_PDC (unsigned long)PAGE0->mem_pdc
107# define mem_pdc_call(args...) real32_call(MEM_PDC, args)
108#endif
109
110
111/**
112 * f_extend - Convert PDC addresses to kernel addresses.
113 * @address: Address returned from PDC.
114 *
115 * This function is used to convert PDC addresses into kernel addresses
116 * when the PDC address size and kernel address size are different.
117 */
118static unsigned long f_extend(unsigned long address)
119{
a8f44e38 120#ifdef CONFIG_64BIT
1da177e4
LT
121 if(unlikely(parisc_narrow_firmware)) {
122 if((address & 0xff000000) == 0xf0000000)
123 return 0xf0f0f0f000000000UL | (u32)address;
124
125 if((address & 0xf0000000) == 0xf0000000)
126 return 0xffffffff00000000UL | (u32)address;
127 }
128#endif
129 return address;
130}
131
132/**
133 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
134 * @address: The return buffer from PDC.
135 *
136 * This function is used to convert the return buffer addresses retrieved from PDC
137 * into kernel addresses when the PDC address size and kernel address size are
138 * different.
139 */
140static void convert_to_wide(unsigned long *addr)
141{
a8f44e38 142#ifdef CONFIG_64BIT
1da177e4
LT
143 int i;
144 unsigned int *p = (unsigned int *)addr;
145
146 if(unlikely(parisc_narrow_firmware)) {
147 for(i = 31; i >= 0; --i)
148 addr[i] = p[i];
149 }
150#endif
151}
152
153/**
154 * set_firmware_width - Determine if the firmware is wide or narrow.
155 *
156 * This function must be called before any pdc_* function that uses the convert_to_wide
157 * function.
158 */
159void __init set_firmware_width(void)
160{
a8f44e38 161#ifdef CONFIG_64BIT
1da177e4 162 int retval;
09690b18 163 unsigned long flags;
1da177e4 164
09690b18 165 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
166 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
167 convert_to_wide(pdc_result);
168 if(pdc_result[0] != NARROW_FIRMWARE)
169 parisc_narrow_firmware = 0;
09690b18 170 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
171#endif
172}
173
174/**
175 * pdc_emergency_unlock - Unlock the linux pdc lock
176 *
177 * This call unlocks the linux pdc lock in case we need some PDC functions
178 * (like pdc_add_valid) during kernel stack dump.
179 */
180void pdc_emergency_unlock(void)
181{
182 /* Spinlock DEBUG code freaks out if we unconditionally unlock */
183 if (spin_is_locked(&pdc_lock))
184 spin_unlock(&pdc_lock);
185}
186
187
188/**
189 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
190 * @address: Address to be verified.
191 *
192 * This PDC call attempts to read from the specified address and verifies
193 * if the address is valid.
194 *
195 * The return value is PDC_OK (0) in case accessing this address is valid.
196 */
197int pdc_add_valid(unsigned long address)
198{
199 int retval;
09690b18 200 unsigned long flags;
1da177e4 201
09690b18 202 spin_lock_irqsave(&pdc_lock, flags);
1da177e4 203 retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
09690b18 204 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
205
206 return retval;
207}
208EXPORT_SYMBOL(pdc_add_valid);
209
210/**
211 * pdc_chassis_info - Return chassis information.
212 * @result: The return buffer.
213 * @chassis_info: The memory buffer address.
214 * @len: The size of the memory buffer address.
215 *
216 * An HVERSION dependent call for returning the chassis information.
217 */
218int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
219{
220 int retval;
09690b18 221 unsigned long flags;
1da177e4 222
09690b18 223 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
224 memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
225 memcpy(&pdc_result2, led_info, len);
226 retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
227 __pa(pdc_result), __pa(pdc_result2), len);
228 memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
229 memcpy(led_info, pdc_result2, len);
09690b18 230 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
231
232 return retval;
233}
234
235/**
236 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
237 * @retval: -1 on error, 0 on success. Other value are PDC errors
238 *
239 * Must be correctly formatted or expect system crash
240 */
a8f44e38 241#ifdef CONFIG_64BIT
1da177e4
LT
242int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
243{
244 int retval = 0;
09690b18 245 unsigned long flags;
1da177e4
LT
246
247 if (!is_pdc_pat())
248 return -1;
249
09690b18 250 spin_lock_irqsave(&pdc_lock, flags);
1da177e4 251 retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
09690b18 252 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
253
254 return retval;
255}
256#endif
257
258/**
8ffaeaf4 259 * pdc_chassis_disp - Updates chassis code
1da177e4 260 * @retval: -1 on error, 0 on success
1da177e4
LT
261 */
262int pdc_chassis_disp(unsigned long disp)
263{
264 int retval = 0;
09690b18 265 unsigned long flags;
1da177e4 266
09690b18 267 spin_lock_irqsave(&pdc_lock, flags);
1da177e4 268 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
09690b18 269 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
270
271 return retval;
272}
273
8ffaeaf4
TV
274/**
275 * pdc_chassis_warn - Fetches chassis warnings
276 * @retval: -1 on error, 0 on success
277 */
278int pdc_chassis_warn(unsigned long *warn)
279{
280 int retval = 0;
09690b18 281 unsigned long flags;
8ffaeaf4 282
09690b18 283 spin_lock_irqsave(&pdc_lock, flags);
8ffaeaf4
TV
284 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
285 *warn = pdc_result[0];
09690b18 286 spin_unlock_irqrestore(&pdc_lock, flags);
8ffaeaf4
TV
287
288 return retval;
289}
290
1da177e4
LT
291/**
292 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
293 * @pdc_coproc_info: Return buffer address.
294 *
295 * This PDC call returns the presence and status of all the coprocessors
296 * attached to the processor.
297 */
298int __init pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
299{
300 int retval;
09690b18 301 unsigned long flags;
1da177e4 302
09690b18 303 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
304 retval = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
305 convert_to_wide(pdc_result);
306 pdc_coproc_info->ccr_functional = pdc_result[0];
307 pdc_coproc_info->ccr_present = pdc_result[1];
308 pdc_coproc_info->revision = pdc_result[17];
309 pdc_coproc_info->model = pdc_result[18];
09690b18 310 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
311
312 return retval;
313}
314
315/**
316 * pdc_iodc_read - Read data from the modules IODC.
317 * @actcnt: The actual number of bytes.
318 * @hpa: The HPA of the module for the iodc read.
319 * @index: The iodc entry point.
320 * @iodc_data: A buffer memory for the iodc options.
321 * @iodc_data_size: Size of the memory buffer.
322 *
323 * This PDC call reads from the IODC of the module specified by the hpa
324 * argument.
325 */
326int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
327 void *iodc_data, unsigned int iodc_data_size)
328{
329 int retval;
09690b18 330 unsigned long flags;
1da177e4 331
09690b18 332 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
333 retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
334 index, __pa(pdc_result2), iodc_data_size);
335 convert_to_wide(pdc_result);
336 *actcnt = pdc_result[0];
337 memcpy(iodc_data, pdc_result2, iodc_data_size);
09690b18 338 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
339
340 return retval;
341}
342EXPORT_SYMBOL(pdc_iodc_read);
343
344/**
345 * pdc_system_map_find_mods - Locate unarchitected modules.
346 * @pdc_mod_info: Return buffer address.
347 * @mod_path: pointer to dev path structure.
348 * @mod_index: fixed address module index.
349 *
350 * To locate and identify modules which reside at fixed I/O addresses, which
351 * do not self-identify via architected bus walks.
352 */
353int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
354 struct pdc_module_path *mod_path, long mod_index)
355{
356 int retval;
09690b18 357 unsigned long flags;
1da177e4 358
09690b18 359 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
360 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
361 __pa(pdc_result2), mod_index);
362 convert_to_wide(pdc_result);
363 memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
364 memcpy(mod_path, pdc_result2, sizeof(*mod_path));
09690b18 365 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
366
367 pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
368 return retval;
369}
370
371/**
372 * pdc_system_map_find_addrs - Retrieve additional address ranges.
373 * @pdc_addr_info: Return buffer address.
374 * @mod_index: Fixed address module index.
375 * @addr_index: Address range index.
376 *
377 * Retrieve additional information about subsequent address ranges for modules
378 * with multiple address ranges.
379 */
380int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
381 long mod_index, long addr_index)
382{
383 int retval;
09690b18 384 unsigned long flags;
1da177e4 385
09690b18 386 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
387 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
388 mod_index, addr_index);
389 convert_to_wide(pdc_result);
390 memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
09690b18 391 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
392
393 pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
394 return retval;
395}
396
397/**
398 * pdc_model_info - Return model information about the processor.
399 * @model: The return buffer.
400 *
401 * Returns the version numbers, identifiers, and capabilities from the processor module.
402 */
403int pdc_model_info(struct pdc_model *model)
404{
405 int retval;
09690b18 406 unsigned long flags;
1da177e4 407
09690b18 408 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
409 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
410 convert_to_wide(pdc_result);
411 memcpy(model, pdc_result, sizeof(*model));
09690b18 412 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
413
414 return retval;
415}
416
417/**
418 * pdc_model_sysmodel - Get the system model name.
419 * @name: A char array of at least 81 characters.
420 *
ec1fdc24
KM
421 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
422 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
423 * on HP/UX.
1da177e4
LT
424 */
425int pdc_model_sysmodel(char *name)
426{
427 int retval;
09690b18 428 unsigned long flags;
1da177e4 429
09690b18 430 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
431 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
432 OS_ID_HPUX, __pa(name));
433 convert_to_wide(pdc_result);
434
435 if (retval == PDC_OK) {
436 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
437 } else {
438 name[0] = 0;
439 }
09690b18 440 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
441
442 return retval;
443}
444
445/**
446 * pdc_model_versions - Identify the version number of each processor.
447 * @cpu_id: The return buffer.
448 * @id: The id of the processor to check.
449 *
450 * Returns the version number for each processor component.
451 *
452 * This comment was here before, but I do not know what it means :( -RB
453 * id: 0 = cpu revision, 1 = boot-rom-version
454 */
455int pdc_model_versions(unsigned long *versions, int id)
456{
457 int retval;
09690b18 458 unsigned long flags;
1da177e4 459
09690b18 460 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
461 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
462 convert_to_wide(pdc_result);
463 *versions = pdc_result[0];
09690b18 464 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
465
466 return retval;
467}
468
469/**
470 * pdc_model_cpuid - Returns the CPU_ID.
471 * @cpu_id: The return buffer.
472 *
473 * Returns the CPU_ID value which uniquely identifies the cpu portion of
474 * the processor module.
475 */
476int pdc_model_cpuid(unsigned long *cpu_id)
477{
478 int retval;
09690b18 479 unsigned long flags;
1da177e4 480
09690b18 481 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
482 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
483 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
484 convert_to_wide(pdc_result);
485 *cpu_id = pdc_result[0];
09690b18 486 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
487
488 return retval;
489}
490
491/**
492 * pdc_model_capabilities - Returns the platform capabilities.
493 * @capabilities: The return buffer.
494 *
495 * Returns information about platform support for 32- and/or 64-bit
496 * OSes, IO-PDIR coherency, and virtual aliasing.
497 */
498int pdc_model_capabilities(unsigned long *capabilities)
499{
500 int retval;
09690b18 501 unsigned long flags;
1da177e4 502
09690b18 503 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
504 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
505 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
506 convert_to_wide(pdc_result);
507 *capabilities = pdc_result[0];
09690b18 508 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
509
510 return retval;
511}
512
513/**
514 * pdc_cache_info - Return cache and TLB information.
515 * @cache_info: The return buffer.
516 *
517 * Returns information about the processor's cache and TLB.
518 */
519int pdc_cache_info(struct pdc_cache_info *cache_info)
520{
521 int retval;
09690b18 522 unsigned long flags;
1da177e4 523
09690b18 524 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
525 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
526 convert_to_wide(pdc_result);
527 memcpy(cache_info, pdc_result, sizeof(*cache_info));
09690b18 528 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
529
530 return retval;
531}
532
a9d2d386
KM
533/**
534 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
535 * @space_bits: Should be 0, if not, bad mojo!
536 *
537 * Returns information about Space ID hashing.
538 */
539int pdc_spaceid_bits(unsigned long *space_bits)
540{
541 int retval;
09690b18 542 unsigned long flags;
a9d2d386 543
09690b18 544 spin_lock_irqsave(&pdc_lock, flags);
a9d2d386
KM
545 pdc_result[0] = 0;
546 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
547 convert_to_wide(pdc_result);
548 *space_bits = pdc_result[0];
09690b18 549 spin_unlock_irqrestore(&pdc_lock, flags);
a9d2d386
KM
550
551 return retval;
552}
553
1da177e4
LT
554#ifndef CONFIG_PA20
555/**
556 * pdc_btlb_info - Return block TLB information.
557 * @btlb: The return buffer.
558 *
559 * Returns information about the hardware Block TLB.
560 */
561int pdc_btlb_info(struct pdc_btlb_info *btlb)
562{
563 int retval;
09690b18 564 unsigned long flags;
1da177e4 565
09690b18 566 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
567 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
568 memcpy(btlb, pdc_result, sizeof(*btlb));
09690b18 569 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
570
571 if(retval < 0) {
572 btlb->max_size = 0;
573 }
574 return retval;
575}
576
577/**
578 * pdc_mem_map_hpa - Find fixed module information.
579 * @address: The return buffer
580 * @mod_path: pointer to dev path structure.
581 *
582 * This call was developed for S700 workstations to allow the kernel to find
583 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
584 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
585 * call.
586 *
587 * This call is supported by all existing S700 workstations (up to Gecko).
588 */
589int pdc_mem_map_hpa(struct pdc_memory_map *address,
590 struct pdc_module_path *mod_path)
591{
592 int retval;
09690b18 593 unsigned long flags;
1da177e4 594
09690b18 595 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
596 memcpy(pdc_result2, mod_path, sizeof(*mod_path));
597 retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
598 __pa(pdc_result2));
599 memcpy(address, pdc_result, sizeof(*address));
09690b18 600 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
601
602 return retval;
603}
604#endif /* !CONFIG_PA20 */
605
606/**
607 * pdc_lan_station_id - Get the LAN address.
608 * @lan_addr: The return buffer.
609 * @hpa: The network device HPA.
610 *
611 * Get the LAN station address when it is not directly available from the LAN hardware.
612 */
613int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
614{
615 int retval;
09690b18 616 unsigned long flags;
1da177e4 617
09690b18 618 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
619 retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
620 __pa(pdc_result), hpa);
621 if (retval < 0) {
622 /* FIXME: else read MAC from NVRAM */
623 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
624 } else {
625 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
626 }
09690b18 627 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
628
629 return retval;
630}
631EXPORT_SYMBOL(pdc_lan_station_id);
632
633/**
634 * pdc_stable_read - Read data from Stable Storage.
635 * @staddr: Stable Storage address to access.
636 * @memaddr: The memory address where Stable Storage data shall be copied.
7022672e 637 * @count: number of bytes to transfer. count is multiple of 4.
1da177e4
LT
638 *
639 * This PDC call reads from the Stable Storage address supplied in staddr
640 * and copies count bytes to the memory address memaddr.
641 * The call will fail if staddr+count > PDC_STABLE size.
642 */
643int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
644{
645 int retval;
09690b18 646 unsigned long flags;
1da177e4 647
09690b18 648 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
649 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
650 __pa(pdc_result), count);
651 convert_to_wide(pdc_result);
652 memcpy(memaddr, pdc_result, count);
09690b18 653 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
654
655 return retval;
656}
657EXPORT_SYMBOL(pdc_stable_read);
658
659/**
660 * pdc_stable_write - Write data to Stable Storage.
661 * @staddr: Stable Storage address to access.
662 * @memaddr: The memory address where Stable Storage data shall be read from.
7022672e 663 * @count: number of bytes to transfer. count is multiple of 4.
1da177e4
LT
664 *
665 * This PDC call reads count bytes from the supplied memaddr address,
666 * and copies count bytes to the Stable Storage address staddr.
667 * The call will fail if staddr+count > PDC_STABLE size.
668 */
669int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
670{
671 int retval;
09690b18 672 unsigned long flags;
1da177e4 673
09690b18 674 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
675 memcpy(pdc_result, memaddr, count);
676 convert_to_wide(pdc_result);
677 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
678 __pa(pdc_result), count);
09690b18 679 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
680
681 return retval;
682}
683EXPORT_SYMBOL(pdc_stable_write);
684
685/**
686 * pdc_stable_get_size - Get Stable Storage size in bytes.
687 * @size: pointer where the size will be stored.
688 *
689 * This PDC call returns the number of bytes in the processor's Stable
690 * Storage, which is the number of contiguous bytes implemented in Stable
691 * Storage starting from staddr=0. size in an unsigned 64-bit integer
692 * which is a multiple of four.
693 */
694int pdc_stable_get_size(unsigned long *size)
695{
696 int retval;
09690b18 697 unsigned long flags;
1da177e4 698
09690b18 699 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
700 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
701 *size = pdc_result[0];
09690b18 702 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
703
704 return retval;
705}
706EXPORT_SYMBOL(pdc_stable_get_size);
707
708/**
709 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
710 *
711 * This PDC call is meant to be used to check the integrity of the current
712 * contents of Stable Storage.
713 */
714int pdc_stable_verify_contents(void)
715{
716 int retval;
09690b18 717 unsigned long flags;
1da177e4 718
09690b18 719 spin_lock_irqsave(&pdc_lock, flags);
1da177e4 720 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
09690b18 721 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
722
723 return retval;
724}
725EXPORT_SYMBOL(pdc_stable_verify_contents);
726
727/**
728 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
729 * the validity indicator.
730 *
731 * This PDC call will erase all contents of Stable Storage. Use with care!
732 */
733int pdc_stable_initialize(void)
734{
735 int retval;
09690b18 736 unsigned long flags;
1da177e4 737
09690b18 738 spin_lock_irqsave(&pdc_lock, flags);
1da177e4 739 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
09690b18 740 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
741
742 return retval;
743}
744EXPORT_SYMBOL(pdc_stable_initialize);
745
746/**
747 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
748 * @hwpath: fully bc.mod style path to the device.
749 * @initiator: the array to return the result into
750 *
751 * Get the SCSI operational parameters from PDC.
752 * Needed since HPUX never used BIOS or symbios card NVRAM.
753 * Most ncr/sym cards won't have an entry and just use whatever
754 * capabilities of the card are (eg Ultra, LVD). But there are
755 * several cases where it's useful:
756 * o set SCSI id for Multi-initiator clusters,
757 * o cable too long (ie SE scsi 10Mhz won't support 6m length),
758 * o bus width exported is less than what the interface chip supports.
759 */
760int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
761{
762 int retval;
09690b18 763 unsigned long flags;
1da177e4 764
09690b18 765 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
766
767/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
768#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
769 strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
770
771 retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
772 __pa(pdc_result), __pa(hwpath));
773 if (retval < PDC_OK)
774 goto out;
775
776 if (pdc_result[0] < 16) {
777 initiator->host_id = pdc_result[0];
778 } else {
779 initiator->host_id = -1;
780 }
781
782 /*
783 * Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns
784 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
785 */
786 switch (pdc_result[1]) {
787 case 1: initiator->factor = 50; break;
788 case 2: initiator->factor = 25; break;
789 case 5: initiator->factor = 12; break;
790 case 25: initiator->factor = 10; break;
791 case 20: initiator->factor = 12; break;
792 case 40: initiator->factor = 10; break;
793 default: initiator->factor = -1; break;
794 }
795
796 if (IS_SPROCKETS()) {
797 initiator->width = pdc_result[4];
798 initiator->mode = pdc_result[5];
799 } else {
800 initiator->width = -1;
801 initiator->mode = -1;
802 }
803
804 out:
09690b18
KM
805 spin_unlock_irqrestore(&pdc_lock, flags);
806
1da177e4
LT
807 return (retval >= PDC_OK);
808}
809EXPORT_SYMBOL(pdc_get_initiator);
810
811
812/**
813 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
814 * @num_entries: The return value.
815 * @hpa: The HPA for the device.
816 *
817 * This PDC function returns the number of entries in the specified cell's
818 * interrupt table.
819 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
820 */
821int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
822{
823 int retval;
09690b18 824 unsigned long flags;
1da177e4 825
09690b18 826 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
827 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
828 __pa(pdc_result), hpa);
829 convert_to_wide(pdc_result);
830 *num_entries = pdc_result[0];
09690b18 831 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
832
833 return retval;
834}
835
836/**
837 * pdc_pci_irt - Get the PCI interrupt routing table.
838 * @num_entries: The number of entries in the table.
839 * @hpa: The Hard Physical Address of the device.
840 * @tbl:
841 *
842 * Get the PCI interrupt routing table for the device at the given HPA.
843 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
844 */
845int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
846{
847 int retval;
09690b18 848 unsigned long flags;
1da177e4
LT
849
850 BUG_ON((unsigned long)tbl & 0x7);
851
09690b18 852 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
853 pdc_result[0] = num_entries;
854 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
855 __pa(pdc_result), hpa, __pa(tbl));
09690b18 856 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
857
858 return retval;
859}
860
861
862#if 0 /* UNTEST CODE - left here in case someone needs it */
863
864/**
865 * pdc_pci_config_read - read PCI config space.
866 * @hpa token from PDC to indicate which PCI device
867 * @pci_addr configuration space address to read from
868 *
869 * Read PCI Configuration space *before* linux PCI subsystem is running.
870 */
871unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
872{
873 int retval;
09690b18
KM
874 unsigned long flags;
875
876 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
877 pdc_result[0] = 0;
878 pdc_result[1] = 0;
879 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
880 __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
09690b18
KM
881 spin_unlock_irqrestore(&pdc_lock, flags);
882
1da177e4
LT
883 return retval ? ~0 : (unsigned int) pdc_result[0];
884}
885
886
887/**
888 * pdc_pci_config_write - read PCI config space.
889 * @hpa token from PDC to indicate which PCI device
890 * @pci_addr configuration space address to write
891 * @val value we want in the 32-bit register
892 *
893 * Write PCI Configuration space *before* linux PCI subsystem is running.
894 */
895void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
896{
897 int retval;
09690b18
KM
898 unsigned long flags;
899
900 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
901 pdc_result[0] = 0;
902 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
903 __pa(pdc_result), hpa,
904 cfg_addr&~3UL, 4UL, (unsigned long) val);
09690b18
KM
905 spin_unlock_irqrestore(&pdc_lock, flags);
906
1da177e4
LT
907 return retval;
908}
909#endif /* UNTESTED CODE */
910
911/**
912 * pdc_tod_read - Read the Time-Of-Day clock.
913 * @tod: The return buffer:
914 *
915 * Read the Time-Of-Day clock
916 */
917int pdc_tod_read(struct pdc_tod *tod)
918{
919 int retval;
09690b18 920 unsigned long flags;
1da177e4 921
09690b18 922 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
923 retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
924 convert_to_wide(pdc_result);
925 memcpy(tod, pdc_result, sizeof(*tod));
09690b18 926 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
927
928 return retval;
929}
930EXPORT_SYMBOL(pdc_tod_read);
931
932/**
933 * pdc_tod_set - Set the Time-Of-Day clock.
934 * @sec: The number of seconds since epoch.
935 * @usec: The number of micro seconds.
936 *
937 * Set the Time-Of-Day clock.
938 */
939int pdc_tod_set(unsigned long sec, unsigned long usec)
940{
941 int retval;
09690b18 942 unsigned long flags;
1da177e4 943
09690b18 944 spin_lock_irqsave(&pdc_lock, flags);
1da177e4 945 retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
09690b18 946 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
947
948 return retval;
949}
950EXPORT_SYMBOL(pdc_tod_set);
951
a8f44e38 952#ifdef CONFIG_64BIT
1da177e4
LT
953int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
954 struct pdc_memory_table *tbl, unsigned long entries)
955{
956 int retval;
09690b18 957 unsigned long flags;
1da177e4 958
09690b18 959 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
960 retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
961 convert_to_wide(pdc_result);
962 memcpy(r_addr, pdc_result, sizeof(*r_addr));
963 memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
09690b18 964 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
965
966 return retval;
967}
a8f44e38 968#endif /* CONFIG_64BIT */
1da177e4
LT
969
970/* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap
971 * so I guessed at unsigned long. Someone who knows what this does, can fix
972 * it later. :)
973 */
974int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
975{
976 int retval;
09690b18 977 unsigned long flags;
1da177e4 978
09690b18 979 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
980 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
981 PDC_FIRM_TEST_MAGIC, ftc_bitmap);
09690b18 982 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
983
984 return retval;
985}
986
987/*
988 * pdc_do_reset - Reset the system.
989 *
990 * Reset the system.
991 */
992int pdc_do_reset(void)
993{
994 int retval;
09690b18 995 unsigned long flags;
1da177e4 996
09690b18 997 spin_lock_irqsave(&pdc_lock, flags);
1da177e4 998 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
09690b18 999 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
1000
1001 return retval;
1002}
1003
1004/*
1005 * pdc_soft_power_info - Enable soft power switch.
1006 * @power_reg: address of soft power register
1007 *
1008 * Return the absolute address of the soft power switch register
1009 */
1010int __init pdc_soft_power_info(unsigned long *power_reg)
1011{
1012 int retval;
09690b18 1013 unsigned long flags;
1da177e4
LT
1014
1015 *power_reg = (unsigned long) (-1);
1016
09690b18 1017 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
1018 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1019 if (retval == PDC_OK) {
1020 convert_to_wide(pdc_result);
1021 *power_reg = f_extend(pdc_result[0]);
1022 }
09690b18 1023 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
1024
1025 return retval;
1026}
1027
1028/*
1029 * pdc_soft_power_button - Control the soft power button behaviour
1030 * @sw_control: 0 for hardware control, 1 for software control
1031 *
1032 *
1033 * This PDC function places the soft power button under software or
1034 * hardware control.
1035 * Under software control the OS may control to when to allow to shut
1036 * down the system. Under hardware control pressing the power button
1037 * powers off the system immediately.
1038 */
1039int pdc_soft_power_button(int sw_control)
1040{
1041 int retval;
09690b18
KM
1042 unsigned long flags;
1043
1044 spin_lock_irqsave(&pdc_lock, flags);
1da177e4 1045 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
09690b18
KM
1046 spin_unlock_irqrestore(&pdc_lock, flags);
1047
1da177e4
LT
1048 return retval;
1049}
1050
1051/*
1052 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1053 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1054 * who knows what other platform firmware might do with this OS "hook".
1055 */
1056void pdc_io_reset(void)
1057{
09690b18
KM
1058 unsigned long flags;
1059
1060 spin_lock_irqsave(&pdc_lock, flags);
1da177e4 1061 mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
09690b18 1062 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
1063}
1064
1065/*
1066 * pdc_io_reset_devices - Hack to Stop USB controller
1067 *
1068 * If PDC used the usb controller, the usb controller
1069 * is still running and will crash the machines during iommu
1070 * setup, because of still running DMA. This PDC call
1071 * stops the USB controller.
1072 * Normally called after calling pdc_io_reset().
1073 */
1074void pdc_io_reset_devices(void)
1075{
09690b18
KM
1076 unsigned long flags;
1077
1078 spin_lock_irqsave(&pdc_lock, flags);
1da177e4 1079 mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
09690b18 1080 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
1081}
1082
ef1afd4d
KM
1083/* locked by pdc_console_lock */
1084static int __attribute__((aligned(8))) iodc_retbuf[32];
1085static char __attribute__((aligned(64))) iodc_dbuf[4096];
1da177e4
LT
1086
1087/**
721fdf34
KM
1088 * pdc_iodc_print - Console print using IODC.
1089 * @str: the string to output.
1090 * @count: length of str
1da177e4
LT
1091 *
1092 * Note that only these special chars are architected for console IODC io:
1093 * BEL, BS, CR, and LF. Others are passed through.
1094 * Since the HP console requires CR+LF to perform a 'newline', we translate
1095 * "\n" to "\r\n".
1096 */
ef1afd4d 1097int pdc_iodc_print(const unsigned char *str, unsigned count)
1da177e4 1098{
721fdf34 1099 static int posx; /* for simple TAB-Simulation... */
721fdf34 1100 unsigned int i;
c53421b1 1101 unsigned long flags;
1da177e4 1102
ef1afd4d 1103 for (i = 0; i < count && i < 79;) {
721fdf34
KM
1104 switch(str[i]) {
1105 case '\n':
1106 iodc_dbuf[i+0] = '\r';
1107 iodc_dbuf[i+1] = '\n';
1108 i += 2;
1109 posx = 0;
ef1afd4d 1110 goto print;
721fdf34
KM
1111 case '\t':
1112 while (posx & 7) {
1113 iodc_dbuf[i] = ' ';
1114 i++, posx++;
1115 }
1116 break;
1117 case '\b': /* BS */
1118 posx -= 2;
1119 default:
1120 iodc_dbuf[i] = str[i];
1121 i++, posx++;
1122 break;
1123 }
1124 }
1da177e4 1125
ef1afd4d
KM
1126 /* if we're at the end of line, and not already inserting a newline,
1127 * insert one anyway. iodc console doesn't claim to support >79 char
1128 * lines. don't account for this in the return value.
1129 */
1130 if (i == 79 && iodc_dbuf[i-1] != '\n') {
1131 iodc_dbuf[i+0] = '\r';
1132 iodc_dbuf[i+1] = '\n';
1133 }
1134
1135print:
1da177e4
LT
1136 spin_lock_irqsave(&pdc_lock, flags);
1137 real32_call(PAGE0->mem_cons.iodc_io,
1138 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1139 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
721fdf34 1140 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1da177e4 1141 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4 1142
721fdf34 1143 return i;
1da177e4
LT
1144}
1145
1146/**
1147 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1148 *
1149 * Read a character (non-blocking) from the PDC console, returns -1 if
1150 * key is not present.
1151 */
1152int pdc_iodc_getc(void)
1153{
1da177e4
LT
1154 int ch;
1155 int status;
ef1afd4d 1156 unsigned long flags;
1da177e4
LT
1157
1158 /* Bail if no console input device. */
1159 if (!PAGE0->mem_kbd.iodc_io)
1160 return 0;
1161
1162 /* wait for a keyboard (rs232)-input */
1163 spin_lock_irqsave(&pdc_lock, flags);
1164 real32_call(PAGE0->mem_kbd.iodc_io,
1165 (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1166 PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1167 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1168
1169 ch = *iodc_dbuf;
1170 status = *iodc_retbuf;
1171 spin_unlock_irqrestore(&pdc_lock, flags);
1172
1173 if (status == 0)
1174 return -1;
1175
1176 return ch;
1177}
1178
1179int pdc_sti_call(unsigned long func, unsigned long flags,
1180 unsigned long inptr, unsigned long outputr,
1181 unsigned long glob_cfg)
1182{
1183 int retval;
09690b18 1184 unsigned long irqflags;
1da177e4 1185
09690b18 1186 spin_lock_irqsave(&pdc_lock, irqflags);
1da177e4 1187 retval = real32_call(func, flags, inptr, outputr, glob_cfg);
09690b18 1188 spin_unlock_irqrestore(&pdc_lock, irqflags);
1da177e4
LT
1189
1190 return retval;
1191}
1192EXPORT_SYMBOL(pdc_sti_call);
1193
a8f44e38 1194#ifdef CONFIG_64BIT
1da177e4
LT
1195/**
1196 * pdc_pat_cell_get_number - Returns the cell number.
1197 * @cell_info: The return buffer.
1198 *
1199 * This PDC call returns the cell number of the cell from which the call
1200 * is made.
1201 */
1202int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1203{
1204 int retval;
09690b18 1205 unsigned long flags;
1da177e4 1206
09690b18 1207 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
1208 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1209 memcpy(cell_info, pdc_result, sizeof(*cell_info));
09690b18 1210 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
1211
1212 return retval;
1213}
1214
1215/**
1216 * pdc_pat_cell_module - Retrieve the cell's module information.
1217 * @actcnt: The number of bytes written to mem_addr.
1218 * @ploc: The physical location.
1219 * @mod: The module index.
1220 * @view_type: The view of the address type.
1221 * @mem_addr: The return buffer.
1222 *
1223 * This PDC call returns information about each module attached to the cell
1224 * at the specified location.
1225 */
1226int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1227 unsigned long view_type, void *mem_addr)
1228{
1229 int retval;
09690b18 1230 unsigned long flags;
1da177e4
LT
1231 static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1232
09690b18 1233 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
1234 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1235 ploc, mod, view_type, __pa(&result));
1236 if(!retval) {
1237 *actcnt = pdc_result[0];
1238 memcpy(mem_addr, &result, *actcnt);
1239 }
09690b18 1240 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
1241
1242 return retval;
1243}
1244
1245/**
1246 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1247 * @cpu_info: The return buffer.
1248 * @hpa: The Hard Physical Address of the CPU.
1249 *
1250 * Retrieve the cpu number for the cpu at the specified HPA.
1251 */
1252int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa)
1253{
1254 int retval;
09690b18 1255 unsigned long flags;
1da177e4 1256
09690b18 1257 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
1258 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1259 __pa(&pdc_result), hpa);
1260 memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
09690b18 1261 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
1262
1263 return retval;
1264}
1265
1266/**
1267 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1268 * @num_entries: The return value.
1269 * @cell_num: The target cell.
1270 *
1271 * This PDC function returns the number of entries in the specified cell's
1272 * interrupt table.
1273 */
1274int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1275{
1276 int retval;
09690b18 1277 unsigned long flags;
1da177e4 1278
09690b18 1279 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
1280 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1281 __pa(pdc_result), cell_num);
1282 *num_entries = pdc_result[0];
09690b18 1283 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
1284
1285 return retval;
1286}
1287
1288/**
1289 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1290 * @r_addr: The return buffer.
1291 * @cell_num: The target cell.
1292 *
1293 * This PDC function returns the actual interrupt table for the specified cell.
1294 */
1295int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1296{
1297 int retval;
09690b18 1298 unsigned long flags;
1da177e4 1299
09690b18 1300 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
1301 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1302 __pa(r_addr), cell_num);
09690b18 1303 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
1304
1305 return retval;
1306}
1307
1308/**
1309 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1310 * @actlen: The return buffer.
1311 * @mem_addr: Pointer to the memory buffer.
1312 * @count: The number of bytes to read from the buffer.
1313 * @offset: The offset with respect to the beginning of the buffer.
1314 *
1315 */
1316int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1317 unsigned long count, unsigned long offset)
1318{
1319 int retval;
09690b18 1320 unsigned long flags;
1da177e4 1321
09690b18 1322 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
1323 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1324 __pa(pdc_result2), count, offset);
1325 *actual_len = pdc_result[0];
1326 memcpy(mem_addr, pdc_result2, *actual_len);
09690b18 1327 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
1328
1329 return retval;
1330}
1331
1332/**
1333 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1334 * @pci_addr: PCI configuration space address for which the read request is being made.
1335 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1336 * @mem_addr: Pointer to return memory buffer.
1337 *
1338 */
1339int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1340{
1341 int retval;
09690b18
KM
1342 unsigned long flags;
1343
1344 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
1345 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1346 __pa(pdc_result), pci_addr, pci_size);
1347 switch(pci_size) {
1348 case 1: *(u8 *) mem_addr = (u8) pdc_result[0];
1349 case 2: *(u16 *)mem_addr = (u16) pdc_result[0];
1350 case 4: *(u32 *)mem_addr = (u32) pdc_result[0];
1351 }
09690b18 1352 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
1353
1354 return retval;
1355}
1356
1357/**
1358 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1359 * @pci_addr: PCI configuration space address for which the write request is being made.
1360 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1361 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1362 * written to PCI Config space.
1363 *
1364 */
1365int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1366{
1367 int retval;
09690b18 1368 unsigned long flags;
1da177e4 1369
09690b18 1370 spin_lock_irqsave(&pdc_lock, flags);
1da177e4
LT
1371 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1372 pci_addr, pci_size, val);
09690b18 1373 spin_unlock_irqrestore(&pdc_lock, flags);
1da177e4
LT
1374
1375 return retval;
1376}
a8f44e38 1377#endif /* CONFIG_64BIT */
1da177e4
LT
1378
1379
1380/***************** 32-bit real-mode calls ***********/
1381/* The struct below is used
1382 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1383 * real32_call_asm() then uses this stack in narrow real mode
1384 */
1385
1386struct narrow_stack {
1387 /* use int, not long which is 64 bits */
1388 unsigned int arg13;
1389 unsigned int arg12;
1390 unsigned int arg11;
1391 unsigned int arg10;
1392 unsigned int arg9;
1393 unsigned int arg8;
1394 unsigned int arg7;
1395 unsigned int arg6;
1396 unsigned int arg5;
1397 unsigned int arg4;
1398 unsigned int arg3;
1399 unsigned int arg2;
1400 unsigned int arg1;
1401 unsigned int arg0;
1402 unsigned int frame_marker[8];
1403 unsigned int sp;
1404 /* in reality, there's nearly 8k of stack after this */
1405};
1406
1407long real32_call(unsigned long fn, ...)
1408{
1409 va_list args;
1410 extern struct narrow_stack real_stack;
1411 extern unsigned long real32_call_asm(unsigned int *,
1412 unsigned int *,
1413 unsigned int);
1414
1415 va_start(args, fn);
1416 real_stack.arg0 = va_arg(args, unsigned int);
1417 real_stack.arg1 = va_arg(args, unsigned int);
1418 real_stack.arg2 = va_arg(args, unsigned int);
1419 real_stack.arg3 = va_arg(args, unsigned int);
1420 real_stack.arg4 = va_arg(args, unsigned int);
1421 real_stack.arg5 = va_arg(args, unsigned int);
1422 real_stack.arg6 = va_arg(args, unsigned int);
1423 real_stack.arg7 = va_arg(args, unsigned int);
1424 real_stack.arg8 = va_arg(args, unsigned int);
1425 real_stack.arg9 = va_arg(args, unsigned int);
1426 real_stack.arg10 = va_arg(args, unsigned int);
1427 real_stack.arg11 = va_arg(args, unsigned int);
1428 real_stack.arg12 = va_arg(args, unsigned int);
1429 real_stack.arg13 = va_arg(args, unsigned int);
1430 va_end(args);
1431
1432 return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1433}
1434
a8f44e38 1435#ifdef CONFIG_64BIT
1da177e4
LT
1436/***************** 64-bit real-mode calls ***********/
1437
1438struct wide_stack {
1439 unsigned long arg0;
1440 unsigned long arg1;
1441 unsigned long arg2;
1442 unsigned long arg3;
1443 unsigned long arg4;
1444 unsigned long arg5;
1445 unsigned long arg6;
1446 unsigned long arg7;
1447 unsigned long arg8;
1448 unsigned long arg9;
1449 unsigned long arg10;
1450 unsigned long arg11;
1451 unsigned long arg12;
1452 unsigned long arg13;
1453 unsigned long frame_marker[2]; /* rp, previous sp */
1454 unsigned long sp;
1455 /* in reality, there's nearly 8k of stack after this */
1456};
1457
1458long real64_call(unsigned long fn, ...)
1459{
1460 va_list args;
1461 extern struct wide_stack real64_stack;
1462 extern unsigned long real64_call_asm(unsigned long *,
1463 unsigned long *,
1464 unsigned long);
1465
1466 va_start(args, fn);
1467 real64_stack.arg0 = va_arg(args, unsigned long);
1468 real64_stack.arg1 = va_arg(args, unsigned long);
1469 real64_stack.arg2 = va_arg(args, unsigned long);
1470 real64_stack.arg3 = va_arg(args, unsigned long);
1471 real64_stack.arg4 = va_arg(args, unsigned long);
1472 real64_stack.arg5 = va_arg(args, unsigned long);
1473 real64_stack.arg6 = va_arg(args, unsigned long);
1474 real64_stack.arg7 = va_arg(args, unsigned long);
1475 real64_stack.arg8 = va_arg(args, unsigned long);
1476 real64_stack.arg9 = va_arg(args, unsigned long);
1477 real64_stack.arg10 = va_arg(args, unsigned long);
1478 real64_stack.arg11 = va_arg(args, unsigned long);
1479 real64_stack.arg12 = va_arg(args, unsigned long);
1480 real64_stack.arg13 = va_arg(args, unsigned long);
1481 va_end(args);
1482
1483 return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1484}
1485
a8f44e38 1486#endif /* CONFIG_64BIT */
1da177e4 1487