]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/ia64/kernel/perfmon.c
[PATCH] mm: anon is already wrprotected
[net-next-2.6.git] / arch / ia64 / kernel / perfmon.c
CommitLineData
1da177e4
LT
1/*
2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
4 *
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
7 *
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
10 *
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
13 *
a1ecf7f6 14 * Copyright (C) 1999-2005 Hewlett Packard Co
1da177e4
LT
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
17 *
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
20 */
21
22#include <linux/config.h>
23#include <linux/module.h>
24#include <linux/kernel.h>
25#include <linux/sched.h>
26#include <linux/interrupt.h>
27#include <linux/smp_lock.h>
28#include <linux/proc_fs.h>
29#include <linux/seq_file.h>
30#include <linux/init.h>
31#include <linux/vmalloc.h>
32#include <linux/mm.h>
33#include <linux/sysctl.h>
34#include <linux/list.h>
35#include <linux/file.h>
36#include <linux/poll.h>
37#include <linux/vfs.h>
38#include <linux/pagemap.h>
39#include <linux/mount.h>
1da177e4 40#include <linux/bitops.h>
badf1662 41#include <linux/rcupdate.h>
1da177e4
LT
42
43#include <asm/errno.h>
44#include <asm/intrinsics.h>
45#include <asm/page.h>
46#include <asm/perfmon.h>
47#include <asm/processor.h>
48#include <asm/signal.h>
49#include <asm/system.h>
50#include <asm/uaccess.h>
51#include <asm/delay.h>
52
53#ifdef CONFIG_PERFMON
54/*
55 * perfmon context state
56 */
57#define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
58#define PFM_CTX_LOADED 2 /* context is loaded onto a task */
59#define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
60#define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
61
62#define PFM_INVALID_ACTIVATION (~0UL)
63
64/*
65 * depth of message queue
66 */
67#define PFM_MAX_MSGS 32
68#define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
69
70/*
71 * type of a PMU register (bitmask).
72 * bitmask structure:
73 * bit0 : register implemented
74 * bit1 : end marker
75 * bit2-3 : reserved
76 * bit4 : pmc has pmc.pm
77 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
78 * bit6-7 : register type
79 * bit8-31: reserved
80 */
81#define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
82#define PFM_REG_IMPL 0x1 /* register implemented */
83#define PFM_REG_END 0x2 /* end marker */
84#define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
85#define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
86#define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
87#define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
88#define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
89
90#define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
91#define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
92
93#define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
94
95/* i assumed unsigned */
96#define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
97#define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
98
99/* XXX: these assume that register i is implemented */
100#define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
101#define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
102#define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
103#define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
104
105#define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
106#define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
107#define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
108#define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
109
110#define PFM_NUM_IBRS IA64_NUM_DBG_REGS
111#define PFM_NUM_DBRS IA64_NUM_DBG_REGS
112
113#define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
114#define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
115#define PFM_CTX_TASK(h) (h)->ctx_task
116
117#define PMU_PMC_OI 5 /* position of pmc.oi bit */
118
119/* XXX: does not support more than 64 PMDs */
120#define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
121#define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
122
123#define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
124
125#define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
126#define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
127#define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
128#define PFM_CODE_RR 0 /* requesting code range restriction */
129#define PFM_DATA_RR 1 /* requestion data range restriction */
130
131#define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
132#define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
133#define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
134
135#define RDEP(x) (1UL<<(x))
136
137/*
138 * context protection macros
139 * in SMP:
140 * - we need to protect against CPU concurrency (spin_lock)
141 * - we need to protect against PMU overflow interrupts (local_irq_disable)
142 * in UP:
143 * - we need to protect against PMU overflow interrupts (local_irq_disable)
144 *
145 * spin_lock_irqsave()/spin_lock_irqrestore():
146 * in SMP: local_irq_disable + spin_lock
147 * in UP : local_irq_disable
148 *
149 * spin_lock()/spin_lock():
150 * in UP : removed automatically
151 * in SMP: protect against context accesses from other CPU. interrupts
152 * are not masked. This is useful for the PMU interrupt handler
153 * because we know we will not get PMU concurrency in that code.
154 */
155#define PROTECT_CTX(c, f) \
156 do { \
157 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, current->pid)); \
158 spin_lock_irqsave(&(c)->ctx_lock, f); \
159 DPRINT(("spinlocked ctx %p by [%d]\n", c, current->pid)); \
160 } while(0)
161
162#define UNPROTECT_CTX(c, f) \
163 do { \
164 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, current->pid)); \
165 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
166 } while(0)
167
168#define PROTECT_CTX_NOPRINT(c, f) \
169 do { \
170 spin_lock_irqsave(&(c)->ctx_lock, f); \
171 } while(0)
172
173
174#define UNPROTECT_CTX_NOPRINT(c, f) \
175 do { \
176 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
177 } while(0)
178
179
180#define PROTECT_CTX_NOIRQ(c) \
181 do { \
182 spin_lock(&(c)->ctx_lock); \
183 } while(0)
184
185#define UNPROTECT_CTX_NOIRQ(c) \
186 do { \
187 spin_unlock(&(c)->ctx_lock); \
188 } while(0)
189
190
191#ifdef CONFIG_SMP
192
193#define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
194#define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
195#define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
196
197#else /* !CONFIG_SMP */
198#define SET_ACTIVATION(t) do {} while(0)
199#define GET_ACTIVATION(t) do {} while(0)
200#define INC_ACTIVATION(t) do {} while(0)
201#endif /* CONFIG_SMP */
202
203#define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
204#define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
205#define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
206
207#define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
208#define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
209
210#define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
211
212/*
213 * cmp0 must be the value of pmc0
214 */
215#define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
216
217#define PFMFS_MAGIC 0xa0b4d889
218
219/*
220 * debugging
221 */
222#define PFM_DEBUGGING 1
223#ifdef PFM_DEBUGGING
224#define DPRINT(a) \
225 do { \
226 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
227 } while (0)
228
229#define DPRINT_ovfl(a) \
230 do { \
231 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
232 } while (0)
233#endif
234
235/*
236 * 64-bit software counter structure
237 *
238 * the next_reset_type is applied to the next call to pfm_reset_regs()
239 */
240typedef struct {
241 unsigned long val; /* virtual 64bit counter value */
242 unsigned long lval; /* last reset value */
243 unsigned long long_reset; /* reset value on sampling overflow */
244 unsigned long short_reset; /* reset value on overflow */
245 unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
246 unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
247 unsigned long seed; /* seed for random-number generator */
248 unsigned long mask; /* mask for random-number generator */
249 unsigned int flags; /* notify/do not notify */
250 unsigned long eventid; /* overflow event identifier */
251} pfm_counter_t;
252
253/*
254 * context flags
255 */
256typedef struct {
257 unsigned int block:1; /* when 1, task will blocked on user notifications */
258 unsigned int system:1; /* do system wide monitoring */
259 unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
260 unsigned int is_sampling:1; /* true if using a custom format */
261 unsigned int excl_idle:1; /* exclude idle task in system wide session */
262 unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
263 unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
264 unsigned int no_msg:1; /* no message sent on overflow */
265 unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
266 unsigned int reserved:22;
267} pfm_context_flags_t;
268
269#define PFM_TRAP_REASON_NONE 0x0 /* default value */
270#define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
271#define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
272
273
274/*
275 * perfmon context: encapsulates all the state of a monitoring session
276 */
277
278typedef struct pfm_context {
279 spinlock_t ctx_lock; /* context protection */
280
281 pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
282 unsigned int ctx_state; /* state: active/inactive (no bitfield) */
283
284 struct task_struct *ctx_task; /* task to which context is attached */
285
286 unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
287
288 struct semaphore ctx_restart_sem; /* use for blocking notification mode */
289
290 unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
291 unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
292 unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
293
294 unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
295 unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
296 unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
297
298 unsigned long ctx_pmcs[IA64_NUM_PMC_REGS]; /* saved copies of PMC values */
299
300 unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
301 unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
302 unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
303 unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
304
305 pfm_counter_t ctx_pmds[IA64_NUM_PMD_REGS]; /* software state for PMDS */
306
307 u64 ctx_saved_psr_up; /* only contains psr.up value */
308
309 unsigned long ctx_last_activation; /* context last activation number for last_cpu */
310 unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
311 unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
312
313 int ctx_fd; /* file descriptor used my this context */
314 pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
315
316 pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
317 void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
318 unsigned long ctx_smpl_size; /* size of sampling buffer */
319 void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
320
321 wait_queue_head_t ctx_msgq_wait;
322 pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
323 int ctx_msgq_head;
324 int ctx_msgq_tail;
325 struct fasync_struct *ctx_async_queue;
326
327 wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
328} pfm_context_t;
329
330/*
331 * magic number used to verify that structure is really
332 * a perfmon context
333 */
334#define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
335
336#define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
337
338#ifdef CONFIG_SMP
339#define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
340#define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
341#else
342#define SET_LAST_CPU(ctx, v) do {} while(0)
343#define GET_LAST_CPU(ctx) do {} while(0)
344#endif
345
346
347#define ctx_fl_block ctx_flags.block
348#define ctx_fl_system ctx_flags.system
349#define ctx_fl_using_dbreg ctx_flags.using_dbreg
350#define ctx_fl_is_sampling ctx_flags.is_sampling
351#define ctx_fl_excl_idle ctx_flags.excl_idle
352#define ctx_fl_going_zombie ctx_flags.going_zombie
353#define ctx_fl_trap_reason ctx_flags.trap_reason
354#define ctx_fl_no_msg ctx_flags.no_msg
355#define ctx_fl_can_restart ctx_flags.can_restart
356
357#define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
358#define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
359
360/*
361 * global information about all sessions
362 * mostly used to synchronize between system wide and per-process
363 */
364typedef struct {
365 spinlock_t pfs_lock; /* lock the structure */
366
367 unsigned int pfs_task_sessions; /* number of per task sessions */
368 unsigned int pfs_sys_sessions; /* number of per system wide sessions */
369 unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
370 unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
371 struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
372} pfm_session_t;
373
374/*
375 * information about a PMC or PMD.
376 * dep_pmd[]: a bitmask of dependent PMD registers
377 * dep_pmc[]: a bitmask of dependent PMC registers
378 */
379typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
380typedef struct {
381 unsigned int type;
382 int pm_pos;
383 unsigned long default_value; /* power-on default value */
384 unsigned long reserved_mask; /* bitmask of reserved bits */
385 pfm_reg_check_t read_check;
386 pfm_reg_check_t write_check;
387 unsigned long dep_pmd[4];
388 unsigned long dep_pmc[4];
389} pfm_reg_desc_t;
390
391/* assume cnum is a valid monitor */
392#define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
393
394/*
395 * This structure is initialized at boot time and contains
396 * a description of the PMU main characteristics.
397 *
398 * If the probe function is defined, detection is based
399 * on its return value:
400 * - 0 means recognized PMU
401 * - anything else means not supported
402 * When the probe function is not defined, then the pmu_family field
403 * is used and it must match the host CPU family such that:
404 * - cpu->family & config->pmu_family != 0
405 */
406typedef struct {
407 unsigned long ovfl_val; /* overflow value for counters */
408
409 pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
410 pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
411
412 unsigned int num_pmcs; /* number of PMCS: computed at init time */
413 unsigned int num_pmds; /* number of PMDS: computed at init time */
414 unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
415 unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
416
417 char *pmu_name; /* PMU family name */
418 unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
419 unsigned int flags; /* pmu specific flags */
420 unsigned int num_ibrs; /* number of IBRS: computed at init time */
421 unsigned int num_dbrs; /* number of DBRS: computed at init time */
422 unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
423 int (*probe)(void); /* customized probe routine */
424 unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
425} pmu_config_t;
426/*
427 * PMU specific flags
428 */
429#define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
430
431/*
432 * debug register related type definitions
433 */
434typedef struct {
435 unsigned long ibr_mask:56;
436 unsigned long ibr_plm:4;
437 unsigned long ibr_ig:3;
438 unsigned long ibr_x:1;
439} ibr_mask_reg_t;
440
441typedef struct {
442 unsigned long dbr_mask:56;
443 unsigned long dbr_plm:4;
444 unsigned long dbr_ig:2;
445 unsigned long dbr_w:1;
446 unsigned long dbr_r:1;
447} dbr_mask_reg_t;
448
449typedef union {
450 unsigned long val;
451 ibr_mask_reg_t ibr;
452 dbr_mask_reg_t dbr;
453} dbreg_t;
454
455
456/*
457 * perfmon command descriptions
458 */
459typedef struct {
460 int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
461 char *cmd_name;
462 int cmd_flags;
463 unsigned int cmd_narg;
464 size_t cmd_argsize;
465 int (*cmd_getsize)(void *arg, size_t *sz);
466} pfm_cmd_desc_t;
467
468#define PFM_CMD_FD 0x01 /* command requires a file descriptor */
469#define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
470#define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
471#define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
472
473
474#define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
475#define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
476#define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
477#define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
478#define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
479
480#define PFM_CMD_ARG_MANY -1 /* cannot be zero */
481
1da177e4
LT
482typedef struct {
483 unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
484 unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
485 unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
486 unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
487 unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
488 unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
489 unsigned long pfm_smpl_handler_calls;
490 unsigned long pfm_smpl_handler_cycles;
491 char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
492} pfm_stats_t;
493
494/*
495 * perfmon internal variables
496 */
497static pfm_stats_t pfm_stats[NR_CPUS];
498static pfm_session_t pfm_sessions; /* global sessions information */
499
a9f6a0dd 500static DEFINE_SPINLOCK(pfm_alt_install_check);
a1ecf7f6
TL
501static pfm_intr_handler_desc_t *pfm_alt_intr_handler;
502
1da177e4
LT
503static struct proc_dir_entry *perfmon_dir;
504static pfm_uuid_t pfm_null_uuid = {0,};
505
506static spinlock_t pfm_buffer_fmt_lock;
507static LIST_HEAD(pfm_buffer_fmt_list);
508
509static pmu_config_t *pmu_conf;
510
511/* sysctl() controls */
4944930a
SE
512pfm_sysctl_t pfm_sysctl;
513EXPORT_SYMBOL(pfm_sysctl);
1da177e4
LT
514
515static ctl_table pfm_ctl_table[]={
516 {1, "debug", &pfm_sysctl.debug, sizeof(int), 0666, NULL, &proc_dointvec, NULL,},
517 {2, "debug_ovfl", &pfm_sysctl.debug_ovfl, sizeof(int), 0666, NULL, &proc_dointvec, NULL,},
518 {3, "fastctxsw", &pfm_sysctl.fastctxsw, sizeof(int), 0600, NULL, &proc_dointvec, NULL,},
519 {4, "expert_mode", &pfm_sysctl.expert_mode, sizeof(int), 0600, NULL, &proc_dointvec, NULL,},
520 { 0, },
521};
522static ctl_table pfm_sysctl_dir[] = {
523 {1, "perfmon", NULL, 0, 0755, pfm_ctl_table, },
524 {0,},
525};
526static ctl_table pfm_sysctl_root[] = {
527 {1, "kernel", NULL, 0, 0755, pfm_sysctl_dir, },
528 {0,},
529};
530static struct ctl_table_header *pfm_sysctl_header;
531
532static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
533static int pfm_flush(struct file *filp);
534
535#define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
536#define pfm_get_cpu_data(a,b) per_cpu(a, b)
537
538static inline void
539pfm_put_task(struct task_struct *task)
540{
541 if (task != current) put_task_struct(task);
542}
543
544static inline void
545pfm_set_task_notify(struct task_struct *task)
546{
547 struct thread_info *info;
548
549 info = (struct thread_info *) ((char *) task + IA64_TASK_SIZE);
550 set_bit(TIF_NOTIFY_RESUME, &info->flags);
551}
552
553static inline void
554pfm_clear_task_notify(void)
555{
556 clear_thread_flag(TIF_NOTIFY_RESUME);
557}
558
559static inline void
560pfm_reserve_page(unsigned long a)
561{
562 SetPageReserved(vmalloc_to_page((void *)a));
563}
564static inline void
565pfm_unreserve_page(unsigned long a)
566{
567 ClearPageReserved(vmalloc_to_page((void*)a));
568}
569
570static inline unsigned long
571pfm_protect_ctx_ctxsw(pfm_context_t *x)
572{
573 spin_lock(&(x)->ctx_lock);
574 return 0UL;
575}
576
24b8e0cc 577static inline void
1da177e4
LT
578pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
579{
580 spin_unlock(&(x)->ctx_lock);
581}
582
583static inline unsigned int
584pfm_do_munmap(struct mm_struct *mm, unsigned long addr, size_t len, int acct)
585{
586 return do_munmap(mm, addr, len);
587}
588
589static inline unsigned long
590pfm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, unsigned long exec)
591{
592 return get_unmapped_area(file, addr, len, pgoff, flags);
593}
594
595
596static struct super_block *
597pfmfs_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
598{
599 return get_sb_pseudo(fs_type, "pfm:", NULL, PFMFS_MAGIC);
600}
601
602static struct file_system_type pfm_fs_type = {
603 .name = "pfmfs",
604 .get_sb = pfmfs_get_sb,
605 .kill_sb = kill_anon_super,
606};
607
608DEFINE_PER_CPU(unsigned long, pfm_syst_info);
609DEFINE_PER_CPU(struct task_struct *, pmu_owner);
610DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
611DEFINE_PER_CPU(unsigned long, pmu_activation_number);
fffcc150 612EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
1da177e4
LT
613
614
615/* forward declaration */
616static struct file_operations pfm_file_ops;
617
618/*
619 * forward declarations
620 */
621#ifndef CONFIG_SMP
622static void pfm_lazy_save_regs (struct task_struct *ta);
623#endif
624
625void dump_pmu_state(const char *);
626static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
627
628#include "perfmon_itanium.h"
629#include "perfmon_mckinley.h"
630#include "perfmon_generic.h"
631
632static pmu_config_t *pmu_confs[]={
633 &pmu_conf_mck,
634 &pmu_conf_ita,
635 &pmu_conf_gen, /* must be last */
636 NULL
637};
638
639
640static int pfm_end_notify_user(pfm_context_t *ctx);
641
642static inline void
643pfm_clear_psr_pp(void)
644{
645 ia64_rsm(IA64_PSR_PP);
646 ia64_srlz_i();
647}
648
649static inline void
650pfm_set_psr_pp(void)
651{
652 ia64_ssm(IA64_PSR_PP);
653 ia64_srlz_i();
654}
655
656static inline void
657pfm_clear_psr_up(void)
658{
659 ia64_rsm(IA64_PSR_UP);
660 ia64_srlz_i();
661}
662
663static inline void
664pfm_set_psr_up(void)
665{
666 ia64_ssm(IA64_PSR_UP);
667 ia64_srlz_i();
668}
669
670static inline unsigned long
671pfm_get_psr(void)
672{
673 unsigned long tmp;
674 tmp = ia64_getreg(_IA64_REG_PSR);
675 ia64_srlz_i();
676 return tmp;
677}
678
679static inline void
680pfm_set_psr_l(unsigned long val)
681{
682 ia64_setreg(_IA64_REG_PSR_L, val);
683 ia64_srlz_i();
684}
685
686static inline void
687pfm_freeze_pmu(void)
688{
689 ia64_set_pmc(0,1UL);
690 ia64_srlz_d();
691}
692
693static inline void
694pfm_unfreeze_pmu(void)
695{
696 ia64_set_pmc(0,0UL);
697 ia64_srlz_d();
698}
699
700static inline void
701pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
702{
703 int i;
704
705 for (i=0; i < nibrs; i++) {
706 ia64_set_ibr(i, ibrs[i]);
707 ia64_dv_serialize_instruction();
708 }
709 ia64_srlz_i();
710}
711
712static inline void
713pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
714{
715 int i;
716
717 for (i=0; i < ndbrs; i++) {
718 ia64_set_dbr(i, dbrs[i]);
719 ia64_dv_serialize_data();
720 }
721 ia64_srlz_d();
722}
723
724/*
725 * PMD[i] must be a counter. no check is made
726 */
727static inline unsigned long
728pfm_read_soft_counter(pfm_context_t *ctx, int i)
729{
730 return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
731}
732
733/*
734 * PMD[i] must be a counter. no check is made
735 */
736static inline void
737pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
738{
739 unsigned long ovfl_val = pmu_conf->ovfl_val;
740
741 ctx->ctx_pmds[i].val = val & ~ovfl_val;
742 /*
743 * writing to unimplemented part is ignore, so we do not need to
744 * mask off top part
745 */
746 ia64_set_pmd(i, val & ovfl_val);
747}
748
749static pfm_msg_t *
750pfm_get_new_msg(pfm_context_t *ctx)
751{
752 int idx, next;
753
754 next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
755
756 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
757 if (next == ctx->ctx_msgq_head) return NULL;
758
759 idx = ctx->ctx_msgq_tail;
760 ctx->ctx_msgq_tail = next;
761
762 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
763
764 return ctx->ctx_msgq+idx;
765}
766
767static pfm_msg_t *
768pfm_get_next_msg(pfm_context_t *ctx)
769{
770 pfm_msg_t *msg;
771
772 DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
773
774 if (PFM_CTXQ_EMPTY(ctx)) return NULL;
775
776 /*
777 * get oldest message
778 */
779 msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
780
781 /*
782 * and move forward
783 */
784 ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
785
786 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
787
788 return msg;
789}
790
791static void
792pfm_reset_msgq(pfm_context_t *ctx)
793{
794 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
795 DPRINT(("ctx=%p msgq reset\n", ctx));
796}
797
798static void *
799pfm_rvmalloc(unsigned long size)
800{
801 void *mem;
802 unsigned long addr;
803
804 size = PAGE_ALIGN(size);
805 mem = vmalloc(size);
806 if (mem) {
807 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
808 memset(mem, 0, size);
809 addr = (unsigned long)mem;
810 while (size > 0) {
811 pfm_reserve_page(addr);
812 addr+=PAGE_SIZE;
813 size-=PAGE_SIZE;
814 }
815 }
816 return mem;
817}
818
819static void
820pfm_rvfree(void *mem, unsigned long size)
821{
822 unsigned long addr;
823
824 if (mem) {
825 DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
826 addr = (unsigned long) mem;
827 while ((long) size > 0) {
828 pfm_unreserve_page(addr);
829 addr+=PAGE_SIZE;
830 size-=PAGE_SIZE;
831 }
832 vfree(mem);
833 }
834 return;
835}
836
837static pfm_context_t *
838pfm_context_alloc(void)
839{
840 pfm_context_t *ctx;
841
842 /*
843 * allocate context descriptor
844 * must be able to free with interrupts disabled
845 */
846 ctx = kmalloc(sizeof(pfm_context_t), GFP_KERNEL);
847 if (ctx) {
848 memset(ctx, 0, sizeof(pfm_context_t));
849 DPRINT(("alloc ctx @%p\n", ctx));
850 }
851 return ctx;
852}
853
854static void
855pfm_context_free(pfm_context_t *ctx)
856{
857 if (ctx) {
858 DPRINT(("free ctx @%p\n", ctx));
859 kfree(ctx);
860 }
861}
862
863static void
864pfm_mask_monitoring(struct task_struct *task)
865{
866 pfm_context_t *ctx = PFM_GET_CTX(task);
867 struct thread_struct *th = &task->thread;
868 unsigned long mask, val, ovfl_mask;
869 int i;
870
871 DPRINT_ovfl(("masking monitoring for [%d]\n", task->pid));
872
873 ovfl_mask = pmu_conf->ovfl_val;
874 /*
875 * monitoring can only be masked as a result of a valid
876 * counter overflow. In UP, it means that the PMU still
877 * has an owner. Note that the owner can be different
878 * from the current task. However the PMU state belongs
879 * to the owner.
880 * In SMP, a valid overflow only happens when task is
881 * current. Therefore if we come here, we know that
882 * the PMU state belongs to the current task, therefore
883 * we can access the live registers.
884 *
885 * So in both cases, the live register contains the owner's
886 * state. We can ONLY touch the PMU registers and NOT the PSR.
887 *
888 * As a consequence to this call, the thread->pmds[] array
889 * contains stale information which must be ignored
890 * when context is reloaded AND monitoring is active (see
891 * pfm_restart).
892 */
893 mask = ctx->ctx_used_pmds[0];
894 for (i = 0; mask; i++, mask>>=1) {
895 /* skip non used pmds */
896 if ((mask & 0x1) == 0) continue;
897 val = ia64_get_pmd(i);
898
899 if (PMD_IS_COUNTING(i)) {
900 /*
901 * we rebuild the full 64 bit value of the counter
902 */
903 ctx->ctx_pmds[i].val += (val & ovfl_mask);
904 } else {
905 ctx->ctx_pmds[i].val = val;
906 }
907 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
908 i,
909 ctx->ctx_pmds[i].val,
910 val & ovfl_mask));
911 }
912 /*
913 * mask monitoring by setting the privilege level to 0
914 * we cannot use psr.pp/psr.up for this, it is controlled by
915 * the user
916 *
917 * if task is current, modify actual registers, otherwise modify
918 * thread save state, i.e., what will be restored in pfm_load_regs()
919 */
920 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
921 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
922 if ((mask & 0x1) == 0UL) continue;
923 ia64_set_pmc(i, th->pmcs[i] & ~0xfUL);
924 th->pmcs[i] &= ~0xfUL;
925 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, th->pmcs[i]));
926 }
927 /*
928 * make all of this visible
929 */
930 ia64_srlz_d();
931}
932
933/*
934 * must always be done with task == current
935 *
936 * context must be in MASKED state when calling
937 */
938static void
939pfm_restore_monitoring(struct task_struct *task)
940{
941 pfm_context_t *ctx = PFM_GET_CTX(task);
942 struct thread_struct *th = &task->thread;
943 unsigned long mask, ovfl_mask;
944 unsigned long psr, val;
945 int i, is_system;
946
947 is_system = ctx->ctx_fl_system;
948 ovfl_mask = pmu_conf->ovfl_val;
949
950 if (task != current) {
951 printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task->pid, current->pid);
952 return;
953 }
954 if (ctx->ctx_state != PFM_CTX_MASKED) {
955 printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
956 task->pid, current->pid, ctx->ctx_state);
957 return;
958 }
959 psr = pfm_get_psr();
960 /*
961 * monitoring is masked via the PMC.
962 * As we restore their value, we do not want each counter to
963 * restart right away. We stop monitoring using the PSR,
964 * restore the PMC (and PMD) and then re-establish the psr
965 * as it was. Note that there can be no pending overflow at
966 * this point, because monitoring was MASKED.
967 *
968 * system-wide session are pinned and self-monitoring
969 */
970 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
971 /* disable dcr pp */
972 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
973 pfm_clear_psr_pp();
974 } else {
975 pfm_clear_psr_up();
976 }
977 /*
978 * first, we restore the PMD
979 */
980 mask = ctx->ctx_used_pmds[0];
981 for (i = 0; mask; i++, mask>>=1) {
982 /* skip non used pmds */
983 if ((mask & 0x1) == 0) continue;
984
985 if (PMD_IS_COUNTING(i)) {
986 /*
987 * we split the 64bit value according to
988 * counter width
989 */
990 val = ctx->ctx_pmds[i].val & ovfl_mask;
991 ctx->ctx_pmds[i].val &= ~ovfl_mask;
992 } else {
993 val = ctx->ctx_pmds[i].val;
994 }
995 ia64_set_pmd(i, val);
996
997 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
998 i,
999 ctx->ctx_pmds[i].val,
1000 val));
1001 }
1002 /*
1003 * restore the PMCs
1004 */
1005 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1006 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1007 if ((mask & 0x1) == 0UL) continue;
1008 th->pmcs[i] = ctx->ctx_pmcs[i];
1009 ia64_set_pmc(i, th->pmcs[i]);
1010 DPRINT(("[%d] pmc[%d]=0x%lx\n", task->pid, i, th->pmcs[i]));
1011 }
1012 ia64_srlz_d();
1013
1014 /*
1015 * must restore DBR/IBR because could be modified while masked
1016 * XXX: need to optimize
1017 */
1018 if (ctx->ctx_fl_using_dbreg) {
1019 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1020 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1021 }
1022
1023 /*
1024 * now restore PSR
1025 */
1026 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1027 /* enable dcr pp */
1028 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1029 ia64_srlz_i();
1030 }
1031 pfm_set_psr_l(psr);
1032}
1033
1034static inline void
1035pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1036{
1037 int i;
1038
1039 ia64_srlz_d();
1040
1041 for (i=0; mask; i++, mask>>=1) {
1042 if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1043 }
1044}
1045
1046/*
1047 * reload from thread state (used for ctxw only)
1048 */
1049static inline void
1050pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1051{
1052 int i;
1053 unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1054
1055 for (i=0; mask; i++, mask>>=1) {
1056 if ((mask & 0x1) == 0) continue;
1057 val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1058 ia64_set_pmd(i, val);
1059 }
1060 ia64_srlz_d();
1061}
1062
1063/*
1064 * propagate PMD from context to thread-state
1065 */
1066static inline void
1067pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1068{
1069 struct thread_struct *thread = &task->thread;
1070 unsigned long ovfl_val = pmu_conf->ovfl_val;
1071 unsigned long mask = ctx->ctx_all_pmds[0];
1072 unsigned long val;
1073 int i;
1074
1075 DPRINT(("mask=0x%lx\n", mask));
1076
1077 for (i=0; mask; i++, mask>>=1) {
1078
1079 val = ctx->ctx_pmds[i].val;
1080
1081 /*
1082 * We break up the 64 bit value into 2 pieces
1083 * the lower bits go to the machine state in the
1084 * thread (will be reloaded on ctxsw in).
1085 * The upper part stays in the soft-counter.
1086 */
1087 if (PMD_IS_COUNTING(i)) {
1088 ctx->ctx_pmds[i].val = val & ~ovfl_val;
1089 val &= ovfl_val;
1090 }
1091 thread->pmds[i] = val;
1092
1093 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1094 i,
1095 thread->pmds[i],
1096 ctx->ctx_pmds[i].val));
1097 }
1098}
1099
1100/*
1101 * propagate PMC from context to thread-state
1102 */
1103static inline void
1104pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1105{
1106 struct thread_struct *thread = &task->thread;
1107 unsigned long mask = ctx->ctx_all_pmcs[0];
1108 int i;
1109
1110 DPRINT(("mask=0x%lx\n", mask));
1111
1112 for (i=0; mask; i++, mask>>=1) {
1113 /* masking 0 with ovfl_val yields 0 */
1114 thread->pmcs[i] = ctx->ctx_pmcs[i];
1115 DPRINT(("pmc[%d]=0x%lx\n", i, thread->pmcs[i]));
1116 }
1117}
1118
1119
1120
1121static inline void
1122pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1123{
1124 int i;
1125
1126 for (i=0; mask; i++, mask>>=1) {
1127 if ((mask & 0x1) == 0) continue;
1128 ia64_set_pmc(i, pmcs[i]);
1129 }
1130 ia64_srlz_d();
1131}
1132
1133static inline int
1134pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1135{
1136 return memcmp(a, b, sizeof(pfm_uuid_t));
1137}
1138
1139static inline int
1140pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1141{
1142 int ret = 0;
1143 if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1144 return ret;
1145}
1146
1147static inline int
1148pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1149{
1150 int ret = 0;
1151 if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1152 return ret;
1153}
1154
1155
1156static inline int
1157pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1158 int cpu, void *arg)
1159{
1160 int ret = 0;
1161 if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1162 return ret;
1163}
1164
1165static inline int
1166pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1167 int cpu, void *arg)
1168{
1169 int ret = 0;
1170 if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1171 return ret;
1172}
1173
1174static inline int
1175pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1176{
1177 int ret = 0;
1178 if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1179 return ret;
1180}
1181
1182static inline int
1183pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1184{
1185 int ret = 0;
1186 if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1187 return ret;
1188}
1189
1190static pfm_buffer_fmt_t *
1191__pfm_find_buffer_fmt(pfm_uuid_t uuid)
1192{
1193 struct list_head * pos;
1194 pfm_buffer_fmt_t * entry;
1195
1196 list_for_each(pos, &pfm_buffer_fmt_list) {
1197 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1198 if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1199 return entry;
1200 }
1201 return NULL;
1202}
1203
1204/*
1205 * find a buffer format based on its uuid
1206 */
1207static pfm_buffer_fmt_t *
1208pfm_find_buffer_fmt(pfm_uuid_t uuid)
1209{
1210 pfm_buffer_fmt_t * fmt;
1211 spin_lock(&pfm_buffer_fmt_lock);
1212 fmt = __pfm_find_buffer_fmt(uuid);
1213 spin_unlock(&pfm_buffer_fmt_lock);
1214 return fmt;
1215}
1216
1217int
1218pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1219{
1220 int ret = 0;
1221
1222 /* some sanity checks */
1223 if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1224
1225 /* we need at least a handler */
1226 if (fmt->fmt_handler == NULL) return -EINVAL;
1227
1228 /*
1229 * XXX: need check validity of fmt_arg_size
1230 */
1231
1232 spin_lock(&pfm_buffer_fmt_lock);
1233
1234 if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1235 printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1236 ret = -EBUSY;
1237 goto out;
1238 }
1239 list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1240 printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1241
1242out:
1243 spin_unlock(&pfm_buffer_fmt_lock);
1244 return ret;
1245}
1246EXPORT_SYMBOL(pfm_register_buffer_fmt);
1247
1248int
1249pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1250{
1251 pfm_buffer_fmt_t *fmt;
1252 int ret = 0;
1253
1254 spin_lock(&pfm_buffer_fmt_lock);
1255
1256 fmt = __pfm_find_buffer_fmt(uuid);
1257 if (!fmt) {
1258 printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1259 ret = -EINVAL;
1260 goto out;
1261 }
1262 list_del_init(&fmt->fmt_list);
1263 printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1264
1265out:
1266 spin_unlock(&pfm_buffer_fmt_lock);
1267 return ret;
1268
1269}
1270EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1271
8df5a500
SE
1272extern void update_pal_halt_status(int);
1273
1da177e4
LT
1274static int
1275pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1276{
1277 unsigned long flags;
1278 /*
1279 * validy checks on cpu_mask have been done upstream
1280 */
1281 LOCK_PFS(flags);
1282
1283 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1284 pfm_sessions.pfs_sys_sessions,
1285 pfm_sessions.pfs_task_sessions,
1286 pfm_sessions.pfs_sys_use_dbregs,
1287 is_syswide,
1288 cpu));
1289
1290 if (is_syswide) {
1291 /*
1292 * cannot mix system wide and per-task sessions
1293 */
1294 if (pfm_sessions.pfs_task_sessions > 0UL) {
1295 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1296 pfm_sessions.pfs_task_sessions));
1297 goto abort;
1298 }
1299
1300 if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1301
1302 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1303
1304 pfm_sessions.pfs_sys_session[cpu] = task;
1305
1306 pfm_sessions.pfs_sys_sessions++ ;
1307
1308 } else {
1309 if (pfm_sessions.pfs_sys_sessions) goto abort;
1310 pfm_sessions.pfs_task_sessions++;
1311 }
1312
1313 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1314 pfm_sessions.pfs_sys_sessions,
1315 pfm_sessions.pfs_task_sessions,
1316 pfm_sessions.pfs_sys_use_dbregs,
1317 is_syswide,
1318 cpu));
1319
8df5a500
SE
1320 /*
1321 * disable default_idle() to go to PAL_HALT
1322 */
1323 update_pal_halt_status(0);
1324
1da177e4
LT
1325 UNLOCK_PFS(flags);
1326
1327 return 0;
1328
1329error_conflict:
1330 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1331 pfm_sessions.pfs_sys_session[cpu]->pid,
a1ecf7f6 1332 cpu));
1da177e4
LT
1333abort:
1334 UNLOCK_PFS(flags);
1335
1336 return -EBUSY;
1337
1338}
1339
1340static int
1341pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1342{
1343 unsigned long flags;
1344 /*
1345 * validy checks on cpu_mask have been done upstream
1346 */
1347 LOCK_PFS(flags);
1348
1349 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1350 pfm_sessions.pfs_sys_sessions,
1351 pfm_sessions.pfs_task_sessions,
1352 pfm_sessions.pfs_sys_use_dbregs,
1353 is_syswide,
1354 cpu));
1355
1356
1357 if (is_syswide) {
1358 pfm_sessions.pfs_sys_session[cpu] = NULL;
1359 /*
1360 * would not work with perfmon+more than one bit in cpu_mask
1361 */
1362 if (ctx && ctx->ctx_fl_using_dbreg) {
1363 if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1364 printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1365 } else {
1366 pfm_sessions.pfs_sys_use_dbregs--;
1367 }
1368 }
1369 pfm_sessions.pfs_sys_sessions--;
1370 } else {
1371 pfm_sessions.pfs_task_sessions--;
1372 }
1373 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1374 pfm_sessions.pfs_sys_sessions,
1375 pfm_sessions.pfs_task_sessions,
1376 pfm_sessions.pfs_sys_use_dbregs,
1377 is_syswide,
1378 cpu));
1379
8df5a500
SE
1380 /*
1381 * if possible, enable default_idle() to go into PAL_HALT
1382 */
1383 if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0)
1384 update_pal_halt_status(1);
1385
1da177e4
LT
1386 UNLOCK_PFS(flags);
1387
1388 return 0;
1389}
1390
1391/*
1392 * removes virtual mapping of the sampling buffer.
1393 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1394 * a PROTECT_CTX() section.
1395 */
1396static int
1397pfm_remove_smpl_mapping(struct task_struct *task, void *vaddr, unsigned long size)
1398{
1399 int r;
1400
1401 /* sanity checks */
1402 if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1403 printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task->pid, task->mm);
1404 return -EINVAL;
1405 }
1406
1407 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1408
1409 /*
1410 * does the actual unmapping
1411 */
1412 down_write(&task->mm->mmap_sem);
1413
1414 DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr, size));
1415
1416 r = pfm_do_munmap(task->mm, (unsigned long)vaddr, size, 0);
1417
1418 up_write(&task->mm->mmap_sem);
1419 if (r !=0) {
1420 printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task->pid, vaddr, size);
1421 }
1422
1423 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1424
1425 return 0;
1426}
1427
1428/*
1429 * free actual physical storage used by sampling buffer
1430 */
1431#if 0
1432static int
1433pfm_free_smpl_buffer(pfm_context_t *ctx)
1434{
1435 pfm_buffer_fmt_t *fmt;
1436
1437 if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1438
1439 /*
1440 * we won't use the buffer format anymore
1441 */
1442 fmt = ctx->ctx_buf_fmt;
1443
1444 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1445 ctx->ctx_smpl_hdr,
1446 ctx->ctx_smpl_size,
1447 ctx->ctx_smpl_vaddr));
1448
1449 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1450
1451 /*
1452 * free the buffer
1453 */
1454 pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1455
1456 ctx->ctx_smpl_hdr = NULL;
1457 ctx->ctx_smpl_size = 0UL;
1458
1459 return 0;
1460
1461invalid_free:
1462 printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", current->pid);
1463 return -EINVAL;
1464}
1465#endif
1466
1467static inline void
1468pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1469{
1470 if (fmt == NULL) return;
1471
1472 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1473
1474}
1475
1476/*
1477 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1478 * no real gain from having the whole whorehouse mounted. So we don't need
1479 * any operations on the root directory. However, we need a non-trivial
1480 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1481 */
1482static struct vfsmount *pfmfs_mnt;
1483
1484static int __init
1485init_pfm_fs(void)
1486{
1487 int err = register_filesystem(&pfm_fs_type);
1488 if (!err) {
1489 pfmfs_mnt = kern_mount(&pfm_fs_type);
1490 err = PTR_ERR(pfmfs_mnt);
1491 if (IS_ERR(pfmfs_mnt))
1492 unregister_filesystem(&pfm_fs_type);
1493 else
1494 err = 0;
1495 }
1496 return err;
1497}
1498
1499static void __exit
1500exit_pfm_fs(void)
1501{
1502 unregister_filesystem(&pfm_fs_type);
1503 mntput(pfmfs_mnt);
1504}
1505
1506static ssize_t
1507pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1508{
1509 pfm_context_t *ctx;
1510 pfm_msg_t *msg;
1511 ssize_t ret;
1512 unsigned long flags;
1513 DECLARE_WAITQUEUE(wait, current);
1514 if (PFM_IS_FILE(filp) == 0) {
1515 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
1516 return -EINVAL;
1517 }
1518
1519 ctx = (pfm_context_t *)filp->private_data;
1520 if (ctx == NULL) {
1521 printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", current->pid);
1522 return -EINVAL;
1523 }
1524
1525 /*
1526 * check even when there is no message
1527 */
1528 if (size < sizeof(pfm_msg_t)) {
1529 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1530 return -EINVAL;
1531 }
1532
1533 PROTECT_CTX(ctx, flags);
1534
1535 /*
1536 * put ourselves on the wait queue
1537 */
1538 add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1539
1540
1541 for(;;) {
1542 /*
1543 * check wait queue
1544 */
1545
1546 set_current_state(TASK_INTERRUPTIBLE);
1547
1548 DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1549
1550 ret = 0;
1551 if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1552
1553 UNPROTECT_CTX(ctx, flags);
1554
1555 /*
1556 * check non-blocking read
1557 */
1558 ret = -EAGAIN;
1559 if(filp->f_flags & O_NONBLOCK) break;
1560
1561 /*
1562 * check pending signals
1563 */
1564 if(signal_pending(current)) {
1565 ret = -EINTR;
1566 break;
1567 }
1568 /*
1569 * no message, so wait
1570 */
1571 schedule();
1572
1573 PROTECT_CTX(ctx, flags);
1574 }
1575 DPRINT(("[%d] back to running ret=%ld\n", current->pid, ret));
1576 set_current_state(TASK_RUNNING);
1577 remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1578
1579 if (ret < 0) goto abort;
1580
1581 ret = -EINVAL;
1582 msg = pfm_get_next_msg(ctx);
1583 if (msg == NULL) {
1584 printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, current->pid);
1585 goto abort_locked;
1586 }
1587
4944930a 1588 DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1da177e4
LT
1589
1590 ret = -EFAULT;
1591 if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1592
1593abort_locked:
1594 UNPROTECT_CTX(ctx, flags);
1595abort:
1596 return ret;
1597}
1598
1599static ssize_t
1600pfm_write(struct file *file, const char __user *ubuf,
1601 size_t size, loff_t *ppos)
1602{
1603 DPRINT(("pfm_write called\n"));
1604 return -EINVAL;
1605}
1606
1607static unsigned int
1608pfm_poll(struct file *filp, poll_table * wait)
1609{
1610 pfm_context_t *ctx;
1611 unsigned long flags;
1612 unsigned int mask = 0;
1613
1614 if (PFM_IS_FILE(filp) == 0) {
1615 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
1616 return 0;
1617 }
1618
1619 ctx = (pfm_context_t *)filp->private_data;
1620 if (ctx == NULL) {
1621 printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", current->pid);
1622 return 0;
1623 }
1624
1625
1626 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1627
1628 poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1629
1630 PROTECT_CTX(ctx, flags);
1631
1632 if (PFM_CTXQ_EMPTY(ctx) == 0)
1633 mask = POLLIN | POLLRDNORM;
1634
1635 UNPROTECT_CTX(ctx, flags);
1636
1637 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1638
1639 return mask;
1640}
1641
1642static int
1643pfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
1644{
1645 DPRINT(("pfm_ioctl called\n"));
1646 return -EINVAL;
1647}
1648
1649/*
1650 * interrupt cannot be masked when coming here
1651 */
1652static inline int
1653pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1654{
1655 int ret;
1656
1657 ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1658
1659 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1660 current->pid,
1661 fd,
1662 on,
1663 ctx->ctx_async_queue, ret));
1664
1665 return ret;
1666}
1667
1668static int
1669pfm_fasync(int fd, struct file *filp, int on)
1670{
1671 pfm_context_t *ctx;
1672 int ret;
1673
1674 if (PFM_IS_FILE(filp) == 0) {
1675 printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", current->pid);
1676 return -EBADF;
1677 }
1678
1679 ctx = (pfm_context_t *)filp->private_data;
1680 if (ctx == NULL) {
1681 printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", current->pid);
1682 return -EBADF;
1683 }
1684 /*
1685 * we cannot mask interrupts during this call because this may
1686 * may go to sleep if memory is not readily avalaible.
1687 *
1688 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1689 * done in caller. Serialization of this function is ensured by caller.
1690 */
1691 ret = pfm_do_fasync(fd, filp, ctx, on);
1692
1693
1694 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1695 fd,
1696 on,
1697 ctx->ctx_async_queue, ret));
1698
1699 return ret;
1700}
1701
1702#ifdef CONFIG_SMP
1703/*
1704 * this function is exclusively called from pfm_close().
1705 * The context is not protected at that time, nor are interrupts
1706 * on the remote CPU. That's necessary to avoid deadlocks.
1707 */
1708static void
1709pfm_syswide_force_stop(void *info)
1710{
1711 pfm_context_t *ctx = (pfm_context_t *)info;
1712 struct pt_regs *regs = ia64_task_regs(current);
1713 struct task_struct *owner;
1714 unsigned long flags;
1715 int ret;
1716
1717 if (ctx->ctx_cpu != smp_processor_id()) {
1718 printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1719 ctx->ctx_cpu,
1720 smp_processor_id());
1721 return;
1722 }
1723 owner = GET_PMU_OWNER();
1724 if (owner != ctx->ctx_task) {
1725 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1726 smp_processor_id(),
1727 owner->pid, ctx->ctx_task->pid);
1728 return;
1729 }
1730 if (GET_PMU_CTX() != ctx) {
1731 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1732 smp_processor_id(),
1733 GET_PMU_CTX(), ctx);
1734 return;
1735 }
1736
1737 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), ctx->ctx_task->pid));
1738 /*
1739 * the context is already protected in pfm_close(), we simply
1740 * need to mask interrupts to avoid a PMU interrupt race on
1741 * this CPU
1742 */
1743 local_irq_save(flags);
1744
1745 ret = pfm_context_unload(ctx, NULL, 0, regs);
1746 if (ret) {
1747 DPRINT(("context_unload returned %d\n", ret));
1748 }
1749
1750 /*
1751 * unmask interrupts, PMU interrupts are now spurious here
1752 */
1753 local_irq_restore(flags);
1754}
1755
1756static void
1757pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1758{
1759 int ret;
1760
1761 DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1762 ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 0, 1);
1763 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1764}
1765#endif /* CONFIG_SMP */
1766
1767/*
1768 * called for each close(). Partially free resources.
1769 * When caller is self-monitoring, the context is unloaded.
1770 */
1771static int
1772pfm_flush(struct file *filp)
1773{
1774 pfm_context_t *ctx;
1775 struct task_struct *task;
1776 struct pt_regs *regs;
1777 unsigned long flags;
1778 unsigned long smpl_buf_size = 0UL;
1779 void *smpl_buf_vaddr = NULL;
1780 int state, is_system;
1781
1782 if (PFM_IS_FILE(filp) == 0) {
1783 DPRINT(("bad magic for\n"));
1784 return -EBADF;
1785 }
1786
1787 ctx = (pfm_context_t *)filp->private_data;
1788 if (ctx == NULL) {
1789 printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", current->pid);
1790 return -EBADF;
1791 }
1792
1793 /*
1794 * remove our file from the async queue, if we use this mode.
1795 * This can be done without the context being protected. We come
1796 * here when the context has become unreacheable by other tasks.
1797 *
1798 * We may still have active monitoring at this point and we may
1799 * end up in pfm_overflow_handler(). However, fasync_helper()
1800 * operates with interrupts disabled and it cleans up the
1801 * queue. If the PMU handler is called prior to entering
1802 * fasync_helper() then it will send a signal. If it is
1803 * invoked after, it will find an empty queue and no
1804 * signal will be sent. In both case, we are safe
1805 */
1806 if (filp->f_flags & FASYNC) {
1807 DPRINT(("cleaning up async_queue=%p\n", ctx->ctx_async_queue));
1808 pfm_do_fasync (-1, filp, ctx, 0);
1809 }
1810
1811 PROTECT_CTX(ctx, flags);
1812
1813 state = ctx->ctx_state;
1814 is_system = ctx->ctx_fl_system;
1815
1816 task = PFM_CTX_TASK(ctx);
1817 regs = ia64_task_regs(task);
1818
1819 DPRINT(("ctx_state=%d is_current=%d\n",
1820 state,
1821 task == current ? 1 : 0));
1822
1823 /*
1824 * if state == UNLOADED, then task is NULL
1825 */
1826
1827 /*
1828 * we must stop and unload because we are losing access to the context.
1829 */
1830 if (task == current) {
1831#ifdef CONFIG_SMP
1832 /*
1833 * the task IS the owner but it migrated to another CPU: that's bad
1834 * but we must handle this cleanly. Unfortunately, the kernel does
1835 * not provide a mechanism to block migration (while the context is loaded).
1836 *
1837 * We need to release the resource on the ORIGINAL cpu.
1838 */
1839 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1840
1841 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1842 /*
1843 * keep context protected but unmask interrupt for IPI
1844 */
1845 local_irq_restore(flags);
1846
1847 pfm_syswide_cleanup_other_cpu(ctx);
1848
1849 /*
1850 * restore interrupt masking
1851 */
1852 local_irq_save(flags);
1853
1854 /*
1855 * context is unloaded at this point
1856 */
1857 } else
1858#endif /* CONFIG_SMP */
1859 {
1860
1861 DPRINT(("forcing unload\n"));
1862 /*
1863 * stop and unload, returning with state UNLOADED
1864 * and session unreserved.
1865 */
1866 pfm_context_unload(ctx, NULL, 0, regs);
1867
1868 DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1869 }
1870 }
1871
1872 /*
1873 * remove virtual mapping, if any, for the calling task.
1874 * cannot reset ctx field until last user is calling close().
1875 *
1876 * ctx_smpl_vaddr must never be cleared because it is needed
1877 * by every task with access to the context
1878 *
1879 * When called from do_exit(), the mm context is gone already, therefore
1880 * mm is NULL, i.e., the VMA is already gone and we do not have to
1881 * do anything here
1882 */
1883 if (ctx->ctx_smpl_vaddr && current->mm) {
1884 smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1885 smpl_buf_size = ctx->ctx_smpl_size;
1886 }
1887
1888 UNPROTECT_CTX(ctx, flags);
1889
1890 /*
1891 * if there was a mapping, then we systematically remove it
1892 * at this point. Cannot be done inside critical section
1893 * because some VM function reenables interrupts.
1894 *
1895 */
1896 if (smpl_buf_vaddr) pfm_remove_smpl_mapping(current, smpl_buf_vaddr, smpl_buf_size);
1897
1898 return 0;
1899}
1900/*
1901 * called either on explicit close() or from exit_files().
1902 * Only the LAST user of the file gets to this point, i.e., it is
1903 * called only ONCE.
1904 *
1905 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1906 * (fput()),i.e, last task to access the file. Nobody else can access the
1907 * file at this point.
1908 *
1909 * When called from exit_files(), the VMA has been freed because exit_mm()
1910 * is executed before exit_files().
1911 *
1912 * When called from exit_files(), the current task is not yet ZOMBIE but we
1913 * flush the PMU state to the context.
1914 */
1915static int
1916pfm_close(struct inode *inode, struct file *filp)
1917{
1918 pfm_context_t *ctx;
1919 struct task_struct *task;
1920 struct pt_regs *regs;
1921 DECLARE_WAITQUEUE(wait, current);
1922 unsigned long flags;
1923 unsigned long smpl_buf_size = 0UL;
1924 void *smpl_buf_addr = NULL;
1925 int free_possible = 1;
1926 int state, is_system;
1927
1928 DPRINT(("pfm_close called private=%p\n", filp->private_data));
1929
1930 if (PFM_IS_FILE(filp) == 0) {
1931 DPRINT(("bad magic\n"));
1932 return -EBADF;
1933 }
1934
1935 ctx = (pfm_context_t *)filp->private_data;
1936 if (ctx == NULL) {
1937 printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", current->pid);
1938 return -EBADF;
1939 }
1940
1941 PROTECT_CTX(ctx, flags);
1942
1943 state = ctx->ctx_state;
1944 is_system = ctx->ctx_fl_system;
1945
1946 task = PFM_CTX_TASK(ctx);
1947 regs = ia64_task_regs(task);
1948
1949 DPRINT(("ctx_state=%d is_current=%d\n",
1950 state,
1951 task == current ? 1 : 0));
1952
1953 /*
1954 * if task == current, then pfm_flush() unloaded the context
1955 */
1956 if (state == PFM_CTX_UNLOADED) goto doit;
1957
1958 /*
1959 * context is loaded/masked and task != current, we need to
1960 * either force an unload or go zombie
1961 */
1962
1963 /*
1964 * The task is currently blocked or will block after an overflow.
1965 * we must force it to wakeup to get out of the
1966 * MASKED state and transition to the unloaded state by itself.
1967 *
1968 * This situation is only possible for per-task mode
1969 */
1970 if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
1971
1972 /*
1973 * set a "partial" zombie state to be checked
1974 * upon return from down() in pfm_handle_work().
1975 *
1976 * We cannot use the ZOMBIE state, because it is checked
1977 * by pfm_load_regs() which is called upon wakeup from down().
1978 * In such case, it would free the context and then we would
1979 * return to pfm_handle_work() which would access the
1980 * stale context. Instead, we set a flag invisible to pfm_load_regs()
1981 * but visible to pfm_handle_work().
1982 *
1983 * For some window of time, we have a zombie context with
1984 * ctx_state = MASKED and not ZOMBIE
1985 */
1986 ctx->ctx_fl_going_zombie = 1;
1987
1988 /*
1989 * force task to wake up from MASKED state
1990 */
1991 up(&ctx->ctx_restart_sem);
1992
1993 DPRINT(("waking up ctx_state=%d\n", state));
1994
1995 /*
1996 * put ourself to sleep waiting for the other
1997 * task to report completion
1998 *
1999 * the context is protected by mutex, therefore there
2000 * is no risk of being notified of completion before
2001 * begin actually on the waitq.
2002 */
2003 set_current_state(TASK_INTERRUPTIBLE);
2004 add_wait_queue(&ctx->ctx_zombieq, &wait);
2005
2006 UNPROTECT_CTX(ctx, flags);
2007
2008 /*
2009 * XXX: check for signals :
2010 * - ok for explicit close
2011 * - not ok when coming from exit_files()
2012 */
2013 schedule();
2014
2015
2016 PROTECT_CTX(ctx, flags);
2017
2018
2019 remove_wait_queue(&ctx->ctx_zombieq, &wait);
2020 set_current_state(TASK_RUNNING);
2021
2022 /*
2023 * context is unloaded at this point
2024 */
2025 DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2026 }
2027 else if (task != current) {
2028#ifdef CONFIG_SMP
2029 /*
2030 * switch context to zombie state
2031 */
2032 ctx->ctx_state = PFM_CTX_ZOMBIE;
2033
2034 DPRINT(("zombie ctx for [%d]\n", task->pid));
2035 /*
2036 * cannot free the context on the spot. deferred until
2037 * the task notices the ZOMBIE state
2038 */
2039 free_possible = 0;
2040#else
2041 pfm_context_unload(ctx, NULL, 0, regs);
2042#endif
2043 }
2044
2045doit:
2046 /* reload state, may have changed during opening of critical section */
2047 state = ctx->ctx_state;
2048
2049 /*
2050 * the context is still attached to a task (possibly current)
2051 * we cannot destroy it right now
2052 */
2053
2054 /*
2055 * we must free the sampling buffer right here because
2056 * we cannot rely on it being cleaned up later by the
2057 * monitored task. It is not possible to free vmalloc'ed
2058 * memory in pfm_load_regs(). Instead, we remove the buffer
2059 * now. should there be subsequent PMU overflow originally
2060 * meant for sampling, the will be converted to spurious
2061 * and that's fine because the monitoring tools is gone anyway.
2062 */
2063 if (ctx->ctx_smpl_hdr) {
2064 smpl_buf_addr = ctx->ctx_smpl_hdr;
2065 smpl_buf_size = ctx->ctx_smpl_size;
2066 /* no more sampling */
2067 ctx->ctx_smpl_hdr = NULL;
2068 ctx->ctx_fl_is_sampling = 0;
2069 }
2070
2071 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2072 state,
2073 free_possible,
2074 smpl_buf_addr,
2075 smpl_buf_size));
2076
2077 if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2078
2079 /*
2080 * UNLOADED that the session has already been unreserved.
2081 */
2082 if (state == PFM_CTX_ZOMBIE) {
2083 pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2084 }
2085
2086 /*
2087 * disconnect file descriptor from context must be done
2088 * before we unlock.
2089 */
2090 filp->private_data = NULL;
2091
2092 /*
2093 * if we free on the spot, the context is now completely unreacheable
2094 * from the callers side. The monitored task side is also cut, so we
2095 * can freely cut.
2096 *
2097 * If we have a deferred free, only the caller side is disconnected.
2098 */
2099 UNPROTECT_CTX(ctx, flags);
2100
2101 /*
2102 * All memory free operations (especially for vmalloc'ed memory)
2103 * MUST be done with interrupts ENABLED.
2104 */
2105 if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2106
2107 /*
2108 * return the memory used by the context
2109 */
2110 if (free_possible) pfm_context_free(ctx);
2111
2112 return 0;
2113}
2114
2115static int
2116pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2117{
2118 DPRINT(("pfm_no_open called\n"));
2119 return -ENXIO;
2120}
2121
2122
2123
2124static struct file_operations pfm_file_ops = {
2125 .llseek = no_llseek,
2126 .read = pfm_read,
2127 .write = pfm_write,
2128 .poll = pfm_poll,
2129 .ioctl = pfm_ioctl,
2130 .open = pfm_no_open, /* special open code to disallow open via /proc */
2131 .fasync = pfm_fasync,
2132 .release = pfm_close,
2133 .flush = pfm_flush
2134};
2135
2136static int
2137pfmfs_delete_dentry(struct dentry *dentry)
2138{
2139 return 1;
2140}
2141
2142static struct dentry_operations pfmfs_dentry_operations = {
2143 .d_delete = pfmfs_delete_dentry,
2144};
2145
2146
2147static int
2148pfm_alloc_fd(struct file **cfile)
2149{
2150 int fd, ret = 0;
2151 struct file *file = NULL;
2152 struct inode * inode;
2153 char name[32];
2154 struct qstr this;
2155
2156 fd = get_unused_fd();
2157 if (fd < 0) return -ENFILE;
2158
2159 ret = -ENFILE;
2160
2161 file = get_empty_filp();
2162 if (!file) goto out;
2163
2164 /*
2165 * allocate a new inode
2166 */
2167 inode = new_inode(pfmfs_mnt->mnt_sb);
2168 if (!inode) goto out;
2169
2170 DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2171
2172 inode->i_mode = S_IFCHR|S_IRUGO;
2173 inode->i_uid = current->fsuid;
2174 inode->i_gid = current->fsgid;
2175
2176 sprintf(name, "[%lu]", inode->i_ino);
2177 this.name = name;
2178 this.len = strlen(name);
2179 this.hash = inode->i_ino;
2180
2181 ret = -ENOMEM;
2182
2183 /*
2184 * allocate a new dcache entry
2185 */
2186 file->f_dentry = d_alloc(pfmfs_mnt->mnt_sb->s_root, &this);
2187 if (!file->f_dentry) goto out;
2188
2189 file->f_dentry->d_op = &pfmfs_dentry_operations;
2190
2191 d_add(file->f_dentry, inode);
2192 file->f_vfsmnt = mntget(pfmfs_mnt);
2193 file->f_mapping = inode->i_mapping;
2194
2195 file->f_op = &pfm_file_ops;
2196 file->f_mode = FMODE_READ;
2197 file->f_flags = O_RDONLY;
2198 file->f_pos = 0;
2199
2200 /*
2201 * may have to delay until context is attached?
2202 */
2203 fd_install(fd, file);
2204
2205 /*
2206 * the file structure we will use
2207 */
2208 *cfile = file;
2209
2210 return fd;
2211out:
2212 if (file) put_filp(file);
2213 put_unused_fd(fd);
2214 return ret;
2215}
2216
2217static void
2218pfm_free_fd(int fd, struct file *file)
2219{
2220 struct files_struct *files = current->files;
4fb3a538 2221 struct fdtable *fdt;
1da177e4
LT
2222
2223 /*
2224 * there ie no fd_uninstall(), so we do it here
2225 */
2226 spin_lock(&files->file_lock);
4fb3a538 2227 fdt = files_fdtable(files);
badf1662 2228 rcu_assign_pointer(fdt->fd[fd], NULL);
1da177e4
LT
2229 spin_unlock(&files->file_lock);
2230
badf1662
DS
2231 if (file)
2232 put_filp(file);
1da177e4
LT
2233 put_unused_fd(fd);
2234}
2235
2236static int
2237pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2238{
2239 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2240
2241 while (size > 0) {
2242 unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2243
2244
2245 if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2246 return -ENOMEM;
2247
2248 addr += PAGE_SIZE;
2249 buf += PAGE_SIZE;
2250 size -= PAGE_SIZE;
2251 }
2252 return 0;
2253}
2254
2255/*
2256 * allocate a sampling buffer and remaps it into the user address space of the task
2257 */
2258static int
2259pfm_smpl_buffer_alloc(struct task_struct *task, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2260{
2261 struct mm_struct *mm = task->mm;
2262 struct vm_area_struct *vma = NULL;
2263 unsigned long size;
2264 void *smpl_buf;
2265
2266
2267 /*
2268 * the fixed header + requested size and align to page boundary
2269 */
2270 size = PAGE_ALIGN(rsize);
2271
2272 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2273
2274 /*
2275 * check requested size to avoid Denial-of-service attacks
2276 * XXX: may have to refine this test
2277 * Check against address space limit.
2278 *
2279 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2280 * return -ENOMEM;
2281 */
2282 if (size > task->signal->rlim[RLIMIT_MEMLOCK].rlim_cur)
2283 return -ENOMEM;
2284
2285 /*
2286 * We do the easy to undo allocations first.
2287 *
2288 * pfm_rvmalloc(), clears the buffer, so there is no leak
2289 */
2290 smpl_buf = pfm_rvmalloc(size);
2291 if (smpl_buf == NULL) {
2292 DPRINT(("Can't allocate sampling buffer\n"));
2293 return -ENOMEM;
2294 }
2295
2296 DPRINT(("smpl_buf @%p\n", smpl_buf));
2297
2298 /* allocate vma */
2299 vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
2300 if (!vma) {
2301 DPRINT(("Cannot allocate vma\n"));
2302 goto error_kmem;
2303 }
2304 memset(vma, 0, sizeof(*vma));
2305
2306 /*
2307 * partially initialize the vma for the sampling buffer
2308 */
2309 vma->vm_mm = mm;
2310 vma->vm_flags = VM_READ| VM_MAYREAD |VM_RESERVED;
2311 vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
2312
2313 /*
2314 * Now we have everything we need and we can initialize
2315 * and connect all the data structures
2316 */
2317
2318 ctx->ctx_smpl_hdr = smpl_buf;
2319 ctx->ctx_smpl_size = size; /* aligned size */
2320
2321 /*
2322 * Let's do the difficult operations next.
2323 *
2324 * now we atomically find some area in the address space and
2325 * remap the buffer in it.
2326 */
2327 down_write(&task->mm->mmap_sem);
2328
2329 /* find some free area in address space, must have mmap sem held */
2330 vma->vm_start = pfm_get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS, 0);
2331 if (vma->vm_start == 0UL) {
2332 DPRINT(("Cannot find unmapped area for size %ld\n", size));
2333 up_write(&task->mm->mmap_sem);
2334 goto error;
2335 }
2336 vma->vm_end = vma->vm_start + size;
2337 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2338
2339 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2340
2341 /* can only be applied to current task, need to have the mm semaphore held when called */
2342 if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2343 DPRINT(("Can't remap buffer\n"));
2344 up_write(&task->mm->mmap_sem);
2345 goto error;
2346 }
2347
2348 /*
2349 * now insert the vma in the vm list for the process, must be
2350 * done with mmap lock held
2351 */
2352 insert_vm_struct(mm, vma);
2353
2354 mm->total_vm += size >> PAGE_SHIFT;
2355 vm_stat_account(vma);
2356 up_write(&task->mm->mmap_sem);
2357
2358 /*
2359 * keep track of user level virtual address
2360 */
2361 ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2362 *(unsigned long *)user_vaddr = vma->vm_start;
2363
2364 return 0;
2365
2366error:
2367 kmem_cache_free(vm_area_cachep, vma);
2368error_kmem:
2369 pfm_rvfree(smpl_buf, size);
2370
2371 return -ENOMEM;
2372}
2373
2374/*
2375 * XXX: do something better here
2376 */
2377static int
2378pfm_bad_permissions(struct task_struct *task)
2379{
2380 /* inspired by ptrace_attach() */
2381 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2382 current->uid,
2383 current->gid,
2384 task->euid,
2385 task->suid,
2386 task->uid,
2387 task->egid,
2388 task->sgid));
2389
2390 return ((current->uid != task->euid)
2391 || (current->uid != task->suid)
2392 || (current->uid != task->uid)
2393 || (current->gid != task->egid)
2394 || (current->gid != task->sgid)
2395 || (current->gid != task->gid)) && !capable(CAP_SYS_PTRACE);
2396}
2397
2398static int
2399pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2400{
2401 int ctx_flags;
2402
2403 /* valid signal */
2404
2405 ctx_flags = pfx->ctx_flags;
2406
2407 if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2408
2409 /*
2410 * cannot block in this mode
2411 */
2412 if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2413 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2414 return -EINVAL;
2415 }
2416 } else {
2417 }
2418 /* probably more to add here */
2419
2420 return 0;
2421}
2422
2423static int
2424pfm_setup_buffer_fmt(struct task_struct *task, pfm_context_t *ctx, unsigned int ctx_flags,
2425 unsigned int cpu, pfarg_context_t *arg)
2426{
2427 pfm_buffer_fmt_t *fmt = NULL;
2428 unsigned long size = 0UL;
2429 void *uaddr = NULL;
2430 void *fmt_arg = NULL;
2431 int ret = 0;
2432#define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2433
2434 /* invoke and lock buffer format, if found */
2435 fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2436 if (fmt == NULL) {
2437 DPRINT(("[%d] cannot find buffer format\n", task->pid));
2438 return -EINVAL;
2439 }
2440
2441 /*
2442 * buffer argument MUST be contiguous to pfarg_context_t
2443 */
2444 if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2445
2446 ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2447
2448 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task->pid, ctx_flags, cpu, fmt_arg, ret));
2449
2450 if (ret) goto error;
2451
2452 /* link buffer format and context */
2453 ctx->ctx_buf_fmt = fmt;
2454
2455 /*
2456 * check if buffer format wants to use perfmon buffer allocation/mapping service
2457 */
2458 ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2459 if (ret) goto error;
2460
2461 if (size) {
2462 /*
2463 * buffer is always remapped into the caller's address space
2464 */
2465 ret = pfm_smpl_buffer_alloc(current, ctx, size, &uaddr);
2466 if (ret) goto error;
2467
2468 /* keep track of user address of buffer */
2469 arg->ctx_smpl_vaddr = uaddr;
2470 }
2471 ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2472
2473error:
2474 return ret;
2475}
2476
2477static void
2478pfm_reset_pmu_state(pfm_context_t *ctx)
2479{
2480 int i;
2481
2482 /*
2483 * install reset values for PMC.
2484 */
2485 for (i=1; PMC_IS_LAST(i) == 0; i++) {
2486 if (PMC_IS_IMPL(i) == 0) continue;
2487 ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2488 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2489 }
2490 /*
2491 * PMD registers are set to 0UL when the context in memset()
2492 */
2493
2494 /*
2495 * On context switched restore, we must restore ALL pmc and ALL pmd even
2496 * when they are not actively used by the task. In UP, the incoming process
2497 * may otherwise pick up left over PMC, PMD state from the previous process.
2498 * As opposed to PMD, stale PMC can cause harm to the incoming
2499 * process because they may change what is being measured.
2500 * Therefore, we must systematically reinstall the entire
2501 * PMC state. In SMP, the same thing is possible on the
2502 * same CPU but also on between 2 CPUs.
2503 *
2504 * The problem with PMD is information leaking especially
2505 * to user level when psr.sp=0
2506 *
2507 * There is unfortunately no easy way to avoid this problem
2508 * on either UP or SMP. This definitively slows down the
2509 * pfm_load_regs() function.
2510 */
2511
2512 /*
2513 * bitmask of all PMCs accessible to this context
2514 *
2515 * PMC0 is treated differently.
2516 */
2517 ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2518
2519 /*
2520 * bitmask of all PMDs that are accesible to this context
2521 */
2522 ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2523
2524 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2525
2526 /*
2527 * useful in case of re-enable after disable
2528 */
2529 ctx->ctx_used_ibrs[0] = 0UL;
2530 ctx->ctx_used_dbrs[0] = 0UL;
2531}
2532
2533static int
2534pfm_ctx_getsize(void *arg, size_t *sz)
2535{
2536 pfarg_context_t *req = (pfarg_context_t *)arg;
2537 pfm_buffer_fmt_t *fmt;
2538
2539 *sz = 0;
2540
2541 if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2542
2543 fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2544 if (fmt == NULL) {
2545 DPRINT(("cannot find buffer format\n"));
2546 return -EINVAL;
2547 }
2548 /* get just enough to copy in user parameters */
2549 *sz = fmt->fmt_arg_size;
2550 DPRINT(("arg_size=%lu\n", *sz));
2551
2552 return 0;
2553}
2554
2555
2556
2557/*
2558 * cannot attach if :
2559 * - kernel task
2560 * - task not owned by caller
2561 * - task incompatible with context mode
2562 */
2563static int
2564pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2565{
2566 /*
2567 * no kernel task or task not owner by caller
2568 */
2569 if (task->mm == NULL) {
2570 DPRINT(("task [%d] has not memory context (kernel thread)\n", task->pid));
2571 return -EPERM;
2572 }
2573 if (pfm_bad_permissions(task)) {
2574 DPRINT(("no permission to attach to [%d]\n", task->pid));
2575 return -EPERM;
2576 }
2577 /*
2578 * cannot block in self-monitoring mode
2579 */
2580 if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2581 DPRINT(("cannot load a blocking context on self for [%d]\n", task->pid));
2582 return -EINVAL;
2583 }
2584
2585 if (task->exit_state == EXIT_ZOMBIE) {
2586 DPRINT(("cannot attach to zombie task [%d]\n", task->pid));
2587 return -EBUSY;
2588 }
2589
2590 /*
2591 * always ok for self
2592 */
2593 if (task == current) return 0;
2594
2595 if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
2596 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task->pid, task->state));
2597 return -EBUSY;
2598 }
2599 /*
2600 * make sure the task is off any CPU
2601 */
2602 wait_task_inactive(task);
2603
2604 /* more to come... */
2605
2606 return 0;
2607}
2608
2609static int
2610pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2611{
2612 struct task_struct *p = current;
2613 int ret;
2614
2615 /* XXX: need to add more checks here */
2616 if (pid < 2) return -EPERM;
2617
2618 if (pid != current->pid) {
2619
2620 read_lock(&tasklist_lock);
2621
2622 p = find_task_by_pid(pid);
2623
2624 /* make sure task cannot go away while we operate on it */
2625 if (p) get_task_struct(p);
2626
2627 read_unlock(&tasklist_lock);
2628
2629 if (p == NULL) return -ESRCH;
2630 }
2631
2632 ret = pfm_task_incompatible(ctx, p);
2633 if (ret == 0) {
2634 *task = p;
2635 } else if (p != current) {
2636 pfm_put_task(p);
2637 }
2638 return ret;
2639}
2640
2641
2642
2643static int
2644pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2645{
2646 pfarg_context_t *req = (pfarg_context_t *)arg;
2647 struct file *filp;
2648 int ctx_flags;
2649 int ret;
2650
2651 /* let's check the arguments first */
2652 ret = pfarg_is_sane(current, req);
2653 if (ret < 0) return ret;
2654
2655 ctx_flags = req->ctx_flags;
2656
2657 ret = -ENOMEM;
2658
2659 ctx = pfm_context_alloc();
2660 if (!ctx) goto error;
2661
2662 ret = pfm_alloc_fd(&filp);
2663 if (ret < 0) goto error_file;
2664
2665 req->ctx_fd = ctx->ctx_fd = ret;
2666
2667 /*
2668 * attach context to file
2669 */
2670 filp->private_data = ctx;
2671
2672 /*
2673 * does the user want to sample?
2674 */
2675 if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2676 ret = pfm_setup_buffer_fmt(current, ctx, ctx_flags, 0, req);
2677 if (ret) goto buffer_error;
2678 }
2679
2680 /*
2681 * init context protection lock
2682 */
2683 spin_lock_init(&ctx->ctx_lock);
2684
2685 /*
2686 * context is unloaded
2687 */
2688 ctx->ctx_state = PFM_CTX_UNLOADED;
2689
2690 /*
2691 * initialization of context's flags
2692 */
2693 ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
2694 ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
2695 ctx->ctx_fl_is_sampling = ctx->ctx_buf_fmt ? 1 : 0; /* assume record() is defined */
2696 ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
2697 /*
2698 * will move to set properties
2699 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
2700 */
2701
2702 /*
2703 * init restart semaphore to locked
2704 */
2705 sema_init(&ctx->ctx_restart_sem, 0);
2706
2707 /*
2708 * activation is used in SMP only
2709 */
2710 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
2711 SET_LAST_CPU(ctx, -1);
2712
2713 /*
2714 * initialize notification message queue
2715 */
2716 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
2717 init_waitqueue_head(&ctx->ctx_msgq_wait);
2718 init_waitqueue_head(&ctx->ctx_zombieq);
2719
2720 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d \n",
2721 ctx,
2722 ctx_flags,
2723 ctx->ctx_fl_system,
2724 ctx->ctx_fl_block,
2725 ctx->ctx_fl_excl_idle,
2726 ctx->ctx_fl_no_msg,
2727 ctx->ctx_fd));
2728
2729 /*
2730 * initialize soft PMU state
2731 */
2732 pfm_reset_pmu_state(ctx);
2733
2734 return 0;
2735
2736buffer_error:
2737 pfm_free_fd(ctx->ctx_fd, filp);
2738
2739 if (ctx->ctx_buf_fmt) {
2740 pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2741 }
2742error_file:
2743 pfm_context_free(ctx);
2744
2745error:
2746 return ret;
2747}
2748
2749static inline unsigned long
2750pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2751{
2752 unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2753 unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2754 extern unsigned long carta_random32 (unsigned long seed);
2755
2756 if (reg->flags & PFM_REGFL_RANDOM) {
2757 new_seed = carta_random32(old_seed);
2758 val -= (old_seed & mask); /* counter values are negative numbers! */
2759 if ((mask >> 32) != 0)
2760 /* construct a full 64-bit random value: */
2761 new_seed |= carta_random32(old_seed >> 32) << 32;
2762 reg->seed = new_seed;
2763 }
2764 reg->lval = val;
2765 return val;
2766}
2767
2768static void
2769pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2770{
2771 unsigned long mask = ovfl_regs[0];
2772 unsigned long reset_others = 0UL;
2773 unsigned long val;
2774 int i;
2775
2776 /*
2777 * now restore reset value on sampling overflowed counters
2778 */
2779 mask >>= PMU_FIRST_COUNTER;
2780 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2781
2782 if ((mask & 0x1UL) == 0UL) continue;
2783
2784 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2785 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2786
2787 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2788 }
2789
2790 /*
2791 * Now take care of resetting the other registers
2792 */
2793 for(i = 0; reset_others; i++, reset_others >>= 1) {
2794
2795 if ((reset_others & 0x1) == 0) continue;
2796
2797 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2798
2799 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2800 is_long_reset ? "long" : "short", i, val));
2801 }
2802}
2803
2804static void
2805pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2806{
2807 unsigned long mask = ovfl_regs[0];
2808 unsigned long reset_others = 0UL;
2809 unsigned long val;
2810 int i;
2811
2812 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2813
2814 if (ctx->ctx_state == PFM_CTX_MASKED) {
2815 pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2816 return;
2817 }
2818
2819 /*
2820 * now restore reset value on sampling overflowed counters
2821 */
2822 mask >>= PMU_FIRST_COUNTER;
2823 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2824
2825 if ((mask & 0x1UL) == 0UL) continue;
2826
2827 val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2828 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2829
2830 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2831
2832 pfm_write_soft_counter(ctx, i, val);
2833 }
2834
2835 /*
2836 * Now take care of resetting the other registers
2837 */
2838 for(i = 0; reset_others; i++, reset_others >>= 1) {
2839
2840 if ((reset_others & 0x1) == 0) continue;
2841
2842 val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2843
2844 if (PMD_IS_COUNTING(i)) {
2845 pfm_write_soft_counter(ctx, i, val);
2846 } else {
2847 ia64_set_pmd(i, val);
2848 }
2849 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2850 is_long_reset ? "long" : "short", i, val));
2851 }
2852 ia64_srlz_d();
2853}
2854
2855static int
2856pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2857{
2858 struct thread_struct *thread = NULL;
2859 struct task_struct *task;
2860 pfarg_reg_t *req = (pfarg_reg_t *)arg;
2861 unsigned long value, pmc_pm;
2862 unsigned long smpl_pmds, reset_pmds, impl_pmds;
2863 unsigned int cnum, reg_flags, flags, pmc_type;
2864 int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2865 int is_monitor, is_counting, state;
2866 int ret = -EINVAL;
2867 pfm_reg_check_t wr_func;
2868#define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2869
2870 state = ctx->ctx_state;
2871 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2872 is_system = ctx->ctx_fl_system;
2873 task = ctx->ctx_task;
2874 impl_pmds = pmu_conf->impl_pmds[0];
2875
2876 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2877
2878 if (is_loaded) {
2879 thread = &task->thread;
2880 /*
2881 * In system wide and when the context is loaded, access can only happen
2882 * when the caller is running on the CPU being monitored by the session.
2883 * It does not have to be the owner (ctx_task) of the context per se.
2884 */
2885 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2886 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2887 return -EBUSY;
2888 }
2889 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2890 }
2891 expert_mode = pfm_sysctl.expert_mode;
2892
2893 for (i = 0; i < count; i++, req++) {
2894
2895 cnum = req->reg_num;
2896 reg_flags = req->reg_flags;
2897 value = req->reg_value;
2898 smpl_pmds = req->reg_smpl_pmds[0];
2899 reset_pmds = req->reg_reset_pmds[0];
2900 flags = 0;
2901
2902
2903 if (cnum >= PMU_MAX_PMCS) {
2904 DPRINT(("pmc%u is invalid\n", cnum));
2905 goto error;
2906 }
2907
2908 pmc_type = pmu_conf->pmc_desc[cnum].type;
2909 pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2910 is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2911 is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2912
2913 /*
2914 * we reject all non implemented PMC as well
2915 * as attempts to modify PMC[0-3] which are used
2916 * as status registers by the PMU
2917 */
2918 if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2919 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2920 goto error;
2921 }
2922 wr_func = pmu_conf->pmc_desc[cnum].write_check;
2923 /*
2924 * If the PMC is a monitor, then if the value is not the default:
2925 * - system-wide session: PMCx.pm=1 (privileged monitor)
2926 * - per-task : PMCx.pm=0 (user monitor)
2927 */
2928 if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2929 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2930 cnum,
2931 pmc_pm,
2932 is_system));
2933 goto error;
2934 }
2935
2936 if (is_counting) {
2937 /*
2938 * enforce generation of overflow interrupt. Necessary on all
2939 * CPUs.
2940 */
2941 value |= 1 << PMU_PMC_OI;
2942
2943 if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2944 flags |= PFM_REGFL_OVFL_NOTIFY;
2945 }
2946
2947 if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2948
2949 /* verify validity of smpl_pmds */
2950 if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2951 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2952 goto error;
2953 }
2954
2955 /* verify validity of reset_pmds */
2956 if ((reset_pmds & impl_pmds) != reset_pmds) {
2957 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2958 goto error;
2959 }
2960 } else {
2961 if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2962 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2963 goto error;
2964 }
2965 /* eventid on non-counting monitors are ignored */
2966 }
2967
2968 /*
2969 * execute write checker, if any
2970 */
2971 if (likely(expert_mode == 0 && wr_func)) {
2972 ret = (*wr_func)(task, ctx, cnum, &value, regs);
2973 if (ret) goto error;
2974 ret = -EINVAL;
2975 }
2976
2977 /*
2978 * no error on this register
2979 */
2980 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2981
2982 /*
2983 * Now we commit the changes to the software state
2984 */
2985
2986 /*
2987 * update overflow information
2988 */
2989 if (is_counting) {
2990 /*
2991 * full flag update each time a register is programmed
2992 */
2993 ctx->ctx_pmds[cnum].flags = flags;
2994
2995 ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2996 ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
2997 ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
2998
2999 /*
3000 * Mark all PMDS to be accessed as used.
3001 *
3002 * We do not keep track of PMC because we have to
3003 * systematically restore ALL of them.
3004 *
3005 * We do not update the used_monitors mask, because
3006 * if we have not programmed them, then will be in
3007 * a quiescent state, therefore we will not need to
3008 * mask/restore then when context is MASKED.
3009 */
3010 CTX_USED_PMD(ctx, reset_pmds);
3011 CTX_USED_PMD(ctx, smpl_pmds);
3012 /*
3013 * make sure we do not try to reset on
3014 * restart because we have established new values
3015 */
3016 if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3017 }
3018 /*
3019 * Needed in case the user does not initialize the equivalent
3020 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3021 * possible leak here.
3022 */
3023 CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
3024
3025 /*
3026 * keep track of the monitor PMC that we are using.
3027 * we save the value of the pmc in ctx_pmcs[] and if
3028 * the monitoring is not stopped for the context we also
3029 * place it in the saved state area so that it will be
3030 * picked up later by the context switch code.
3031 *
3032 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3033 *
3034 * The value in thread->pmcs[] may be modified on overflow, i.e., when
3035 * monitoring needs to be stopped.
3036 */
3037 if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3038
3039 /*
3040 * update context state
3041 */
3042 ctx->ctx_pmcs[cnum] = value;
3043
3044 if (is_loaded) {
3045 /*
3046 * write thread state
3047 */
3048 if (is_system == 0) thread->pmcs[cnum] = value;
3049
3050 /*
3051 * write hardware register if we can
3052 */
3053 if (can_access_pmu) {
3054 ia64_set_pmc(cnum, value);
3055 }
3056#ifdef CONFIG_SMP
3057 else {
3058 /*
3059 * per-task SMP only here
3060 *
3061 * we are guaranteed that the task is not running on the other CPU,
3062 * we indicate that this PMD will need to be reloaded if the task
3063 * is rescheduled on the CPU it ran last on.
3064 */
3065 ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3066 }
3067#endif
3068 }
3069
3070 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3071 cnum,
3072 value,
3073 is_loaded,
3074 can_access_pmu,
3075 flags,
3076 ctx->ctx_all_pmcs[0],
3077 ctx->ctx_used_pmds[0],
3078 ctx->ctx_pmds[cnum].eventid,
3079 smpl_pmds,
3080 reset_pmds,
3081 ctx->ctx_reload_pmcs[0],
3082 ctx->ctx_used_monitors[0],
3083 ctx->ctx_ovfl_regs[0]));
3084 }
3085
3086 /*
3087 * make sure the changes are visible
3088 */
3089 if (can_access_pmu) ia64_srlz_d();
3090
3091 return 0;
3092error:
3093 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3094 return ret;
3095}
3096
3097static int
3098pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3099{
3100 struct thread_struct *thread = NULL;
3101 struct task_struct *task;
3102 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3103 unsigned long value, hw_value, ovfl_mask;
3104 unsigned int cnum;
3105 int i, can_access_pmu = 0, state;
3106 int is_counting, is_loaded, is_system, expert_mode;
3107 int ret = -EINVAL;
3108 pfm_reg_check_t wr_func;
3109
3110
3111 state = ctx->ctx_state;
3112 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3113 is_system = ctx->ctx_fl_system;
3114 ovfl_mask = pmu_conf->ovfl_val;
3115 task = ctx->ctx_task;
3116
3117 if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3118
3119 /*
3120 * on both UP and SMP, we can only write to the PMC when the task is
3121 * the owner of the local PMU.
3122 */
3123 if (likely(is_loaded)) {
3124 thread = &task->thread;
3125 /*
3126 * In system wide and when the context is loaded, access can only happen
3127 * when the caller is running on the CPU being monitored by the session.
3128 * It does not have to be the owner (ctx_task) of the context per se.
3129 */
3130 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3131 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3132 return -EBUSY;
3133 }
3134 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3135 }
3136 expert_mode = pfm_sysctl.expert_mode;
3137
3138 for (i = 0; i < count; i++, req++) {
3139
3140 cnum = req->reg_num;
3141 value = req->reg_value;
3142
3143 if (!PMD_IS_IMPL(cnum)) {
3144 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3145 goto abort_mission;
3146 }
3147 is_counting = PMD_IS_COUNTING(cnum);
3148 wr_func = pmu_conf->pmd_desc[cnum].write_check;
3149
3150 /*
3151 * execute write checker, if any
3152 */
3153 if (unlikely(expert_mode == 0 && wr_func)) {
3154 unsigned long v = value;
3155
3156 ret = (*wr_func)(task, ctx, cnum, &v, regs);
3157 if (ret) goto abort_mission;
3158
3159 value = v;
3160 ret = -EINVAL;
3161 }
3162
3163 /*
3164 * no error on this register
3165 */
3166 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3167
3168 /*
3169 * now commit changes to software state
3170 */
3171 hw_value = value;
3172
3173 /*
3174 * update virtualized (64bits) counter
3175 */
3176 if (is_counting) {
3177 /*
3178 * write context state
3179 */
3180 ctx->ctx_pmds[cnum].lval = value;
3181
3182 /*
3183 * when context is load we use the split value
3184 */
3185 if (is_loaded) {
3186 hw_value = value & ovfl_mask;
3187 value = value & ~ovfl_mask;
3188 }
3189 }
3190 /*
3191 * update reset values (not just for counters)
3192 */
3193 ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
3194 ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3195
3196 /*
3197 * update randomization parameters (not just for counters)
3198 */
3199 ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3200 ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3201
3202 /*
3203 * update context value
3204 */
3205 ctx->ctx_pmds[cnum].val = value;
3206
3207 /*
3208 * Keep track of what we use
3209 *
3210 * We do not keep track of PMC because we have to
3211 * systematically restore ALL of them.
3212 */
3213 CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3214
3215 /*
3216 * mark this PMD register used as well
3217 */
3218 CTX_USED_PMD(ctx, RDEP(cnum));
3219
3220 /*
3221 * make sure we do not try to reset on
3222 * restart because we have established new values
3223 */
3224 if (is_counting && state == PFM_CTX_MASKED) {
3225 ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3226 }
3227
3228 if (is_loaded) {
3229 /*
3230 * write thread state
3231 */
3232 if (is_system == 0) thread->pmds[cnum] = hw_value;
3233
3234 /*
3235 * write hardware register if we can
3236 */
3237 if (can_access_pmu) {
3238 ia64_set_pmd(cnum, hw_value);
3239 } else {
3240#ifdef CONFIG_SMP
3241 /*
3242 * we are guaranteed that the task is not running on the other CPU,
3243 * we indicate that this PMD will need to be reloaded if the task
3244 * is rescheduled on the CPU it ran last on.
3245 */
3246 ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3247#endif
3248 }
3249 }
3250
3251 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3252 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3253 cnum,
3254 value,
3255 is_loaded,
3256 can_access_pmu,
3257 hw_value,
3258 ctx->ctx_pmds[cnum].val,
3259 ctx->ctx_pmds[cnum].short_reset,
3260 ctx->ctx_pmds[cnum].long_reset,
3261 PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3262 ctx->ctx_pmds[cnum].seed,
3263 ctx->ctx_pmds[cnum].mask,
3264 ctx->ctx_used_pmds[0],
3265 ctx->ctx_pmds[cnum].reset_pmds[0],
3266 ctx->ctx_reload_pmds[0],
3267 ctx->ctx_all_pmds[0],
3268 ctx->ctx_ovfl_regs[0]));
3269 }
3270
3271 /*
3272 * make changes visible
3273 */
3274 if (can_access_pmu) ia64_srlz_d();
3275
3276 return 0;
3277
3278abort_mission:
3279 /*
3280 * for now, we have only one possibility for error
3281 */
3282 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3283 return ret;
3284}
3285
3286/*
3287 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3288 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3289 * interrupt is delivered during the call, it will be kept pending until we leave, making
3290 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3291 * guaranteed to return consistent data to the user, it may simply be old. It is not
3292 * trivial to treat the overflow while inside the call because you may end up in
3293 * some module sampling buffer code causing deadlocks.
3294 */
3295static int
3296pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3297{
3298 struct thread_struct *thread = NULL;
3299 struct task_struct *task;
3300 unsigned long val = 0UL, lval, ovfl_mask, sval;
3301 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3302 unsigned int cnum, reg_flags = 0;
3303 int i, can_access_pmu = 0, state;
3304 int is_loaded, is_system, is_counting, expert_mode;
3305 int ret = -EINVAL;
3306 pfm_reg_check_t rd_func;
3307
3308 /*
3309 * access is possible when loaded only for
3310 * self-monitoring tasks or in UP mode
3311 */
3312
3313 state = ctx->ctx_state;
3314 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3315 is_system = ctx->ctx_fl_system;
3316 ovfl_mask = pmu_conf->ovfl_val;
3317 task = ctx->ctx_task;
3318
3319 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3320
3321 if (likely(is_loaded)) {
3322 thread = &task->thread;
3323 /*
3324 * In system wide and when the context is loaded, access can only happen
3325 * when the caller is running on the CPU being monitored by the session.
3326 * It does not have to be the owner (ctx_task) of the context per se.
3327 */
3328 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3329 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3330 return -EBUSY;
3331 }
3332 /*
3333 * this can be true when not self-monitoring only in UP
3334 */
3335 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3336
3337 if (can_access_pmu) ia64_srlz_d();
3338 }
3339 expert_mode = pfm_sysctl.expert_mode;
3340
3341 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3342 is_loaded,
3343 can_access_pmu,
3344 state));
3345
3346 /*
3347 * on both UP and SMP, we can only read the PMD from the hardware register when
3348 * the task is the owner of the local PMU.
3349 */
3350
3351 for (i = 0; i < count; i++, req++) {
3352
3353 cnum = req->reg_num;
3354 reg_flags = req->reg_flags;
3355
3356 if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3357 /*
3358 * we can only read the register that we use. That includes
3359 * the one we explicitely initialize AND the one we want included
3360 * in the sampling buffer (smpl_regs).
3361 *
3362 * Having this restriction allows optimization in the ctxsw routine
3363 * without compromising security (leaks)
3364 */
3365 if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3366
3367 sval = ctx->ctx_pmds[cnum].val;
3368 lval = ctx->ctx_pmds[cnum].lval;
3369 is_counting = PMD_IS_COUNTING(cnum);
3370
3371 /*
3372 * If the task is not the current one, then we check if the
3373 * PMU state is still in the local live register due to lazy ctxsw.
3374 * If true, then we read directly from the registers.
3375 */
3376 if (can_access_pmu){
3377 val = ia64_get_pmd(cnum);
3378 } else {
3379 /*
3380 * context has been saved
3381 * if context is zombie, then task does not exist anymore.
3382 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3383 */
3384 val = is_loaded ? thread->pmds[cnum] : 0UL;
3385 }
3386 rd_func = pmu_conf->pmd_desc[cnum].read_check;
3387
3388 if (is_counting) {
3389 /*
3390 * XXX: need to check for overflow when loaded
3391 */
3392 val &= ovfl_mask;
3393 val += sval;
3394 }
3395
3396 /*
3397 * execute read checker, if any
3398 */
3399 if (unlikely(expert_mode == 0 && rd_func)) {
3400 unsigned long v = val;
3401 ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3402 if (ret) goto error;
3403 val = v;
3404 ret = -EINVAL;
3405 }
3406
3407 PFM_REG_RETFLAG_SET(reg_flags, 0);
3408
3409 DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3410
3411 /*
3412 * update register return value, abort all if problem during copy.
3413 * we only modify the reg_flags field. no check mode is fine because
3414 * access has been verified upfront in sys_perfmonctl().
3415 */
3416 req->reg_value = val;
3417 req->reg_flags = reg_flags;
3418 req->reg_last_reset_val = lval;
3419 }
3420
3421 return 0;
3422
3423error:
3424 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3425 return ret;
3426}
3427
3428int
3429pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3430{
3431 pfm_context_t *ctx;
3432
3433 if (req == NULL) return -EINVAL;
3434
3435 ctx = GET_PMU_CTX();
3436
3437 if (ctx == NULL) return -EINVAL;
3438
3439 /*
3440 * for now limit to current task, which is enough when calling
3441 * from overflow handler
3442 */
3443 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3444
3445 return pfm_write_pmcs(ctx, req, nreq, regs);
3446}
3447EXPORT_SYMBOL(pfm_mod_write_pmcs);
3448
3449int
3450pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3451{
3452 pfm_context_t *ctx;
3453
3454 if (req == NULL) return -EINVAL;
3455
3456 ctx = GET_PMU_CTX();
3457
3458 if (ctx == NULL) return -EINVAL;
3459
3460 /*
3461 * for now limit to current task, which is enough when calling
3462 * from overflow handler
3463 */
3464 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3465
3466 return pfm_read_pmds(ctx, req, nreq, regs);
3467}
3468EXPORT_SYMBOL(pfm_mod_read_pmds);
3469
3470/*
3471 * Only call this function when a process it trying to
3472 * write the debug registers (reading is always allowed)
3473 */
3474int
3475pfm_use_debug_registers(struct task_struct *task)
3476{
3477 pfm_context_t *ctx = task->thread.pfm_context;
3478 unsigned long flags;
3479 int ret = 0;
3480
3481 if (pmu_conf->use_rr_dbregs == 0) return 0;
3482
3483 DPRINT(("called for [%d]\n", task->pid));
3484
3485 /*
3486 * do it only once
3487 */
3488 if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3489
3490 /*
3491 * Even on SMP, we do not need to use an atomic here because
3492 * the only way in is via ptrace() and this is possible only when the
3493 * process is stopped. Even in the case where the ctxsw out is not totally
3494 * completed by the time we come here, there is no way the 'stopped' process
3495 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3496 * So this is always safe.
3497 */
3498 if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3499
3500 LOCK_PFS(flags);
3501
3502 /*
3503 * We cannot allow setting breakpoints when system wide monitoring
3504 * sessions are using the debug registers.
3505 */
3506 if (pfm_sessions.pfs_sys_use_dbregs> 0)
3507 ret = -1;
3508 else
3509 pfm_sessions.pfs_ptrace_use_dbregs++;
3510
3511 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3512 pfm_sessions.pfs_ptrace_use_dbregs,
3513 pfm_sessions.pfs_sys_use_dbregs,
3514 task->pid, ret));
3515
3516 UNLOCK_PFS(flags);
3517
3518 return ret;
3519}
3520
3521/*
3522 * This function is called for every task that exits with the
3523 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3524 * able to use the debug registers for debugging purposes via
3525 * ptrace(). Therefore we know it was not using them for
3526 * perfmormance monitoring, so we only decrement the number
3527 * of "ptraced" debug register users to keep the count up to date
3528 */
3529int
3530pfm_release_debug_registers(struct task_struct *task)
3531{
3532 unsigned long flags;
3533 int ret;
3534
3535 if (pmu_conf->use_rr_dbregs == 0) return 0;
3536
3537 LOCK_PFS(flags);
3538 if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3539 printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task->pid);
3540 ret = -1;
3541 } else {
3542 pfm_sessions.pfs_ptrace_use_dbregs--;
3543 ret = 0;
3544 }
3545 UNLOCK_PFS(flags);
3546
3547 return ret;
3548}
3549
3550static int
3551pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3552{
3553 struct task_struct *task;
3554 pfm_buffer_fmt_t *fmt;
3555 pfm_ovfl_ctrl_t rst_ctrl;
3556 int state, is_system;
3557 int ret = 0;
3558
3559 state = ctx->ctx_state;
3560 fmt = ctx->ctx_buf_fmt;
3561 is_system = ctx->ctx_fl_system;
3562 task = PFM_CTX_TASK(ctx);
3563
3564 switch(state) {
3565 case PFM_CTX_MASKED:
3566 break;
3567 case PFM_CTX_LOADED:
3568 if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3569 /* fall through */
3570 case PFM_CTX_UNLOADED:
3571 case PFM_CTX_ZOMBIE:
3572 DPRINT(("invalid state=%d\n", state));
3573 return -EBUSY;
3574 default:
3575 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3576 return -EINVAL;
3577 }
3578
3579 /*
3580 * In system wide and when the context is loaded, access can only happen
3581 * when the caller is running on the CPU being monitored by the session.
3582 * It does not have to be the owner (ctx_task) of the context per se.
3583 */
3584 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3585 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3586 return -EBUSY;
3587 }
3588
3589 /* sanity check */
3590 if (unlikely(task == NULL)) {
3591 printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", current->pid);
3592 return -EINVAL;
3593 }
3594
3595 if (task == current || is_system) {
3596
3597 fmt = ctx->ctx_buf_fmt;
3598
3599 DPRINT(("restarting self %d ovfl=0x%lx\n",
3600 task->pid,
3601 ctx->ctx_ovfl_regs[0]));
3602
3603 if (CTX_HAS_SMPL(ctx)) {
3604
3605 prefetch(ctx->ctx_smpl_hdr);
3606
3607 rst_ctrl.bits.mask_monitoring = 0;
3608 rst_ctrl.bits.reset_ovfl_pmds = 0;
3609
3610 if (state == PFM_CTX_LOADED)
3611 ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3612 else
3613 ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3614 } else {
3615 rst_ctrl.bits.mask_monitoring = 0;
3616 rst_ctrl.bits.reset_ovfl_pmds = 1;
3617 }
3618
3619 if (ret == 0) {
3620 if (rst_ctrl.bits.reset_ovfl_pmds)
3621 pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3622
3623 if (rst_ctrl.bits.mask_monitoring == 0) {
3624 DPRINT(("resuming monitoring for [%d]\n", task->pid));
3625
3626 if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3627 } else {
3628 DPRINT(("keeping monitoring stopped for [%d]\n", task->pid));
3629
3630 // cannot use pfm_stop_monitoring(task, regs);
3631 }
3632 }
3633 /*
3634 * clear overflowed PMD mask to remove any stale information
3635 */
3636 ctx->ctx_ovfl_regs[0] = 0UL;
3637
3638 /*
3639 * back to LOADED state
3640 */
3641 ctx->ctx_state = PFM_CTX_LOADED;
3642
3643 /*
3644 * XXX: not really useful for self monitoring
3645 */
3646 ctx->ctx_fl_can_restart = 0;
3647
3648 return 0;
3649 }
3650
3651 /*
3652 * restart another task
3653 */
3654
3655 /*
3656 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3657 * one is seen by the task.
3658 */
3659 if (state == PFM_CTX_MASKED) {
3660 if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3661 /*
3662 * will prevent subsequent restart before this one is
3663 * seen by other task
3664 */
3665 ctx->ctx_fl_can_restart = 0;
3666 }
3667
3668 /*
3669 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3670 * the task is blocked or on its way to block. That's the normal
3671 * restart path. If the monitoring is not masked, then the task
3672 * can be actively monitoring and we cannot directly intervene.
3673 * Therefore we use the trap mechanism to catch the task and
3674 * force it to reset the buffer/reset PMDs.
3675 *
3676 * if non-blocking, then we ensure that the task will go into
3677 * pfm_handle_work() before returning to user mode.
3678 *
3679 * We cannot explicitely reset another task, it MUST always
3680 * be done by the task itself. This works for system wide because
3681 * the tool that is controlling the session is logically doing
3682 * "self-monitoring".
3683 */
3684 if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3685 DPRINT(("unblocking [%d] \n", task->pid));
3686 up(&ctx->ctx_restart_sem);
3687 } else {
3688 DPRINT(("[%d] armed exit trap\n", task->pid));
3689
3690 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3691
3692 PFM_SET_WORK_PENDING(task, 1);
3693
3694 pfm_set_task_notify(task);
3695
3696 /*
3697 * XXX: send reschedule if task runs on another CPU
3698 */
3699 }
3700 return 0;
3701}
3702
3703static int
3704pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3705{
3706 unsigned int m = *(unsigned int *)arg;
3707
3708 pfm_sysctl.debug = m == 0 ? 0 : 1;
3709
1da177e4
LT
3710 printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3711
3712 if (m == 0) {
3713 memset(pfm_stats, 0, sizeof(pfm_stats));
3714 for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3715 }
3716 return 0;
3717}
3718
3719/*
3720 * arg can be NULL and count can be zero for this function
3721 */
3722static int
3723pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3724{
3725 struct thread_struct *thread = NULL;
3726 struct task_struct *task;
3727 pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3728 unsigned long flags;
3729 dbreg_t dbreg;
3730 unsigned int rnum;
3731 int first_time;
3732 int ret = 0, state;
3733 int i, can_access_pmu = 0;
3734 int is_system, is_loaded;
3735
3736 if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3737
3738 state = ctx->ctx_state;
3739 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3740 is_system = ctx->ctx_fl_system;
3741 task = ctx->ctx_task;
3742
3743 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3744
3745 /*
3746 * on both UP and SMP, we can only write to the PMC when the task is
3747 * the owner of the local PMU.
3748 */
3749 if (is_loaded) {
3750 thread = &task->thread;
3751 /*
3752 * In system wide and when the context is loaded, access can only happen
3753 * when the caller is running on the CPU being monitored by the session.
3754 * It does not have to be the owner (ctx_task) of the context per se.
3755 */
3756 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3757 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3758 return -EBUSY;
3759 }
3760 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3761 }
3762
3763 /*
3764 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3765 * ensuring that no real breakpoint can be installed via this call.
3766 *
3767 * IMPORTANT: regs can be NULL in this function
3768 */
3769
3770 first_time = ctx->ctx_fl_using_dbreg == 0;
3771
3772 /*
3773 * don't bother if we are loaded and task is being debugged
3774 */
3775 if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3776 DPRINT(("debug registers already in use for [%d]\n", task->pid));
3777 return -EBUSY;
3778 }
3779
3780 /*
3781 * check for debug registers in system wide mode
3782 *
3783 * If though a check is done in pfm_context_load(),
3784 * we must repeat it here, in case the registers are
3785 * written after the context is loaded
3786 */
3787 if (is_loaded) {
3788 LOCK_PFS(flags);
3789
3790 if (first_time && is_system) {
3791 if (pfm_sessions.pfs_ptrace_use_dbregs)
3792 ret = -EBUSY;
3793 else
3794 pfm_sessions.pfs_sys_use_dbregs++;
3795 }
3796 UNLOCK_PFS(flags);
3797 }
3798
3799 if (ret != 0) return ret;
3800
3801 /*
3802 * mark ourself as user of the debug registers for
3803 * perfmon purposes.
3804 */
3805 ctx->ctx_fl_using_dbreg = 1;
3806
3807 /*
3808 * clear hardware registers to make sure we don't
3809 * pick up stale state.
3810 *
3811 * for a system wide session, we do not use
3812 * thread.dbr, thread.ibr because this process
3813 * never leaves the current CPU and the state
3814 * is shared by all processes running on it
3815 */
3816 if (first_time && can_access_pmu) {
3817 DPRINT(("[%d] clearing ibrs, dbrs\n", task->pid));
3818 for (i=0; i < pmu_conf->num_ibrs; i++) {
3819 ia64_set_ibr(i, 0UL);
3820 ia64_dv_serialize_instruction();
3821 }
3822 ia64_srlz_i();
3823 for (i=0; i < pmu_conf->num_dbrs; i++) {
3824 ia64_set_dbr(i, 0UL);
3825 ia64_dv_serialize_data();
3826 }
3827 ia64_srlz_d();
3828 }
3829
3830 /*
3831 * Now install the values into the registers
3832 */
3833 for (i = 0; i < count; i++, req++) {
3834
3835 rnum = req->dbreg_num;
3836 dbreg.val = req->dbreg_value;
3837
3838 ret = -EINVAL;
3839
3840 if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3841 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3842 rnum, dbreg.val, mode, i, count));
3843
3844 goto abort_mission;
3845 }
3846
3847 /*
3848 * make sure we do not install enabled breakpoint
3849 */
3850 if (rnum & 0x1) {
3851 if (mode == PFM_CODE_RR)
3852 dbreg.ibr.ibr_x = 0;
3853 else
3854 dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3855 }
3856
3857 PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3858
3859 /*
3860 * Debug registers, just like PMC, can only be modified
3861 * by a kernel call. Moreover, perfmon() access to those
3862 * registers are centralized in this routine. The hardware
3863 * does not modify the value of these registers, therefore,
3864 * if we save them as they are written, we can avoid having
3865 * to save them on context switch out. This is made possible
3866 * by the fact that when perfmon uses debug registers, ptrace()
3867 * won't be able to modify them concurrently.
3868 */
3869 if (mode == PFM_CODE_RR) {
3870 CTX_USED_IBR(ctx, rnum);
3871
3872 if (can_access_pmu) {
3873 ia64_set_ibr(rnum, dbreg.val);
3874 ia64_dv_serialize_instruction();
3875 }
3876
3877 ctx->ctx_ibrs[rnum] = dbreg.val;
3878
3879 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3880 rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3881 } else {
3882 CTX_USED_DBR(ctx, rnum);
3883
3884 if (can_access_pmu) {
3885 ia64_set_dbr(rnum, dbreg.val);
3886 ia64_dv_serialize_data();
3887 }
3888 ctx->ctx_dbrs[rnum] = dbreg.val;
3889
3890 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3891 rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3892 }
3893 }
3894
3895 return 0;
3896
3897abort_mission:
3898 /*
3899 * in case it was our first attempt, we undo the global modifications
3900 */
3901 if (first_time) {
3902 LOCK_PFS(flags);
3903 if (ctx->ctx_fl_system) {
3904 pfm_sessions.pfs_sys_use_dbregs--;
3905 }
3906 UNLOCK_PFS(flags);
3907 ctx->ctx_fl_using_dbreg = 0;
3908 }
3909 /*
3910 * install error return flag
3911 */
3912 PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3913
3914 return ret;
3915}
3916
3917static int
3918pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3919{
3920 return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3921}
3922
3923static int
3924pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3925{
3926 return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3927}
3928
3929int
3930pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3931{
3932 pfm_context_t *ctx;
3933
3934 if (req == NULL) return -EINVAL;
3935
3936 ctx = GET_PMU_CTX();
3937
3938 if (ctx == NULL) return -EINVAL;
3939
3940 /*
3941 * for now limit to current task, which is enough when calling
3942 * from overflow handler
3943 */
3944 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3945
3946 return pfm_write_ibrs(ctx, req, nreq, regs);
3947}
3948EXPORT_SYMBOL(pfm_mod_write_ibrs);
3949
3950int
3951pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3952{
3953 pfm_context_t *ctx;
3954
3955 if (req == NULL) return -EINVAL;
3956
3957 ctx = GET_PMU_CTX();
3958
3959 if (ctx == NULL) return -EINVAL;
3960
3961 /*
3962 * for now limit to current task, which is enough when calling
3963 * from overflow handler
3964 */
3965 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3966
3967 return pfm_write_dbrs(ctx, req, nreq, regs);
3968}
3969EXPORT_SYMBOL(pfm_mod_write_dbrs);
3970
3971
3972static int
3973pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3974{
3975 pfarg_features_t *req = (pfarg_features_t *)arg;
3976
3977 req->ft_version = PFM_VERSION;
3978 return 0;
3979}
3980
3981static int
3982pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3983{
3984 struct pt_regs *tregs;
3985 struct task_struct *task = PFM_CTX_TASK(ctx);
3986 int state, is_system;
3987
3988 state = ctx->ctx_state;
3989 is_system = ctx->ctx_fl_system;
3990
3991 /*
3992 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3993 */
3994 if (state == PFM_CTX_UNLOADED) return -EINVAL;
3995
3996 /*
3997 * In system wide and when the context is loaded, access can only happen
3998 * when the caller is running on the CPU being monitored by the session.
3999 * It does not have to be the owner (ctx_task) of the context per se.
4000 */
4001 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4002 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4003 return -EBUSY;
4004 }
4005 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
4006 PFM_CTX_TASK(ctx)->pid,
4007 state,
4008 is_system));
4009 /*
4010 * in system mode, we need to update the PMU directly
4011 * and the user level state of the caller, which may not
4012 * necessarily be the creator of the context.
4013 */
4014 if (is_system) {
4015 /*
4016 * Update local PMU first
4017 *
4018 * disable dcr pp
4019 */
4020 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
4021 ia64_srlz_i();
4022
4023 /*
4024 * update local cpuinfo
4025 */
4026 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4027
4028 /*
4029 * stop monitoring, does srlz.i
4030 */
4031 pfm_clear_psr_pp();
4032
4033 /*
4034 * stop monitoring in the caller
4035 */
4036 ia64_psr(regs)->pp = 0;
4037
4038 return 0;
4039 }
4040 /*
4041 * per-task mode
4042 */
4043
4044 if (task == current) {
4045 /* stop monitoring at kernel level */
4046 pfm_clear_psr_up();
4047
4048 /*
4049 * stop monitoring at the user level
4050 */
4051 ia64_psr(regs)->up = 0;
4052 } else {
4053 tregs = ia64_task_regs(task);
4054
4055 /*
4056 * stop monitoring at the user level
4057 */
4058 ia64_psr(tregs)->up = 0;
4059
4060 /*
4061 * monitoring disabled in kernel at next reschedule
4062 */
4063 ctx->ctx_saved_psr_up = 0;
4064 DPRINT(("task=[%d]\n", task->pid));
4065 }
4066 return 0;
4067}
4068
4069
4070static int
4071pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4072{
4073 struct pt_regs *tregs;
4074 int state, is_system;
4075
4076 state = ctx->ctx_state;
4077 is_system = ctx->ctx_fl_system;
4078
4079 if (state != PFM_CTX_LOADED) return -EINVAL;
4080
4081 /*
4082 * In system wide and when the context is loaded, access can only happen
4083 * when the caller is running on the CPU being monitored by the session.
4084 * It does not have to be the owner (ctx_task) of the context per se.
4085 */
4086 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4087 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4088 return -EBUSY;
4089 }
4090
4091 /*
4092 * in system mode, we need to update the PMU directly
4093 * and the user level state of the caller, which may not
4094 * necessarily be the creator of the context.
4095 */
4096 if (is_system) {
4097
4098 /*
4099 * set user level psr.pp for the caller
4100 */
4101 ia64_psr(regs)->pp = 1;
4102
4103 /*
4104 * now update the local PMU and cpuinfo
4105 */
4106 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4107
4108 /*
4109 * start monitoring at kernel level
4110 */
4111 pfm_set_psr_pp();
4112
4113 /* enable dcr pp */
4114 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4115 ia64_srlz_i();
4116
4117 return 0;
4118 }
4119
4120 /*
4121 * per-process mode
4122 */
4123
4124 if (ctx->ctx_task == current) {
4125
4126 /* start monitoring at kernel level */
4127 pfm_set_psr_up();
4128
4129 /*
4130 * activate monitoring at user level
4131 */
4132 ia64_psr(regs)->up = 1;
4133
4134 } else {
4135 tregs = ia64_task_regs(ctx->ctx_task);
4136
4137 /*
4138 * start monitoring at the kernel level the next
4139 * time the task is scheduled
4140 */
4141 ctx->ctx_saved_psr_up = IA64_PSR_UP;
4142
4143 /*
4144 * activate monitoring at user level
4145 */
4146 ia64_psr(tregs)->up = 1;
4147 }
4148 return 0;
4149}
4150
4151static int
4152pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4153{
4154 pfarg_reg_t *req = (pfarg_reg_t *)arg;
4155 unsigned int cnum;
4156 int i;
4157 int ret = -EINVAL;
4158
4159 for (i = 0; i < count; i++, req++) {
4160
4161 cnum = req->reg_num;
4162
4163 if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4164
4165 req->reg_value = PMC_DFL_VAL(cnum);
4166
4167 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4168
4169 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4170 }
4171 return 0;
4172
4173abort_mission:
4174 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4175 return ret;
4176}
4177
4178static int
4179pfm_check_task_exist(pfm_context_t *ctx)
4180{
4181 struct task_struct *g, *t;
4182 int ret = -ESRCH;
4183
4184 read_lock(&tasklist_lock);
4185
4186 do_each_thread (g, t) {
4187 if (t->thread.pfm_context == ctx) {
4188 ret = 0;
4189 break;
4190 }
4191 } while_each_thread (g, t);
4192
4193 read_unlock(&tasklist_lock);
4194
4195 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4196
4197 return ret;
4198}
4199
4200static int
4201pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4202{
4203 struct task_struct *task;
4204 struct thread_struct *thread;
4205 struct pfm_context_t *old;
4206 unsigned long flags;
4207#ifndef CONFIG_SMP
4208 struct task_struct *owner_task = NULL;
4209#endif
4210 pfarg_load_t *req = (pfarg_load_t *)arg;
4211 unsigned long *pmcs_source, *pmds_source;
4212 int the_cpu;
4213 int ret = 0;
4214 int state, is_system, set_dbregs = 0;
4215
4216 state = ctx->ctx_state;
4217 is_system = ctx->ctx_fl_system;
4218 /*
4219 * can only load from unloaded or terminated state
4220 */
4221 if (state != PFM_CTX_UNLOADED) {
4222 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4223 req->load_pid,
4224 ctx->ctx_state));
a5a70b75 4225 return -EBUSY;
1da177e4
LT
4226 }
4227
4228 DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4229
4230 if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4231 DPRINT(("cannot use blocking mode on self\n"));
4232 return -EINVAL;
4233 }
4234
4235 ret = pfm_get_task(ctx, req->load_pid, &task);
4236 if (ret) {
4237 DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4238 return ret;
4239 }
4240
4241 ret = -EINVAL;
4242
4243 /*
4244 * system wide is self monitoring only
4245 */
4246 if (is_system && task != current) {
4247 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4248 req->load_pid));
4249 goto error;
4250 }
4251
4252 thread = &task->thread;
4253
4254 ret = 0;
4255 /*
4256 * cannot load a context which is using range restrictions,
4257 * into a task that is being debugged.
4258 */
4259 if (ctx->ctx_fl_using_dbreg) {
4260 if (thread->flags & IA64_THREAD_DBG_VALID) {
4261 ret = -EBUSY;
4262 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4263 goto error;
4264 }
4265 LOCK_PFS(flags);
4266
4267 if (is_system) {
4268 if (pfm_sessions.pfs_ptrace_use_dbregs) {
4269 DPRINT(("cannot load [%d] dbregs in use\n", task->pid));
4270 ret = -EBUSY;
4271 } else {
4272 pfm_sessions.pfs_sys_use_dbregs++;
4273 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task->pid, pfm_sessions.pfs_sys_use_dbregs));
4274 set_dbregs = 1;
4275 }
4276 }
4277
4278 UNLOCK_PFS(flags);
4279
4280 if (ret) goto error;
4281 }
4282
4283 /*
4284 * SMP system-wide monitoring implies self-monitoring.
4285 *
4286 * The programming model expects the task to
4287 * be pinned on a CPU throughout the session.
4288 * Here we take note of the current CPU at the
4289 * time the context is loaded. No call from
4290 * another CPU will be allowed.
4291 *
4292 * The pinning via shed_setaffinity()
4293 * must be done by the calling task prior
4294 * to this call.
4295 *
4296 * systemwide: keep track of CPU this session is supposed to run on
4297 */
4298 the_cpu = ctx->ctx_cpu = smp_processor_id();
4299
4300 ret = -EBUSY;
4301 /*
4302 * now reserve the session
4303 */
4304 ret = pfm_reserve_session(current, is_system, the_cpu);
4305 if (ret) goto error;
4306
4307 /*
4308 * task is necessarily stopped at this point.
4309 *
4310 * If the previous context was zombie, then it got removed in
4311 * pfm_save_regs(). Therefore we should not see it here.
4312 * If we see a context, then this is an active context
4313 *
4314 * XXX: needs to be atomic
4315 */
4316 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4317 thread->pfm_context, ctx));
4318
6bf11e8c 4319 ret = -EBUSY;
1da177e4
LT
4320 old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4321 if (old != NULL) {
4322 DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4323 goto error_unres;
4324 }
4325
4326 pfm_reset_msgq(ctx);
4327
4328 ctx->ctx_state = PFM_CTX_LOADED;
4329
4330 /*
4331 * link context to task
4332 */
4333 ctx->ctx_task = task;
4334
4335 if (is_system) {
4336 /*
4337 * we load as stopped
4338 */
4339 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4340 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4341
4342 if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4343 } else {
4344 thread->flags |= IA64_THREAD_PM_VALID;
4345 }
4346
4347 /*
4348 * propagate into thread-state
4349 */
4350 pfm_copy_pmds(task, ctx);
4351 pfm_copy_pmcs(task, ctx);
4352
4353 pmcs_source = thread->pmcs;
4354 pmds_source = thread->pmds;
4355
4356 /*
4357 * always the case for system-wide
4358 */
4359 if (task == current) {
4360
4361 if (is_system == 0) {
4362
4363 /* allow user level control */
4364 ia64_psr(regs)->sp = 0;
4365 DPRINT(("clearing psr.sp for [%d]\n", task->pid));
4366
4367 SET_LAST_CPU(ctx, smp_processor_id());
4368 INC_ACTIVATION();
4369 SET_ACTIVATION(ctx);
4370#ifndef CONFIG_SMP
4371 /*
4372 * push the other task out, if any
4373 */
4374 owner_task = GET_PMU_OWNER();
4375 if (owner_task) pfm_lazy_save_regs(owner_task);
4376#endif
4377 }
4378 /*
4379 * load all PMD from ctx to PMU (as opposed to thread state)
4380 * restore all PMC from ctx to PMU
4381 */
4382 pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4383 pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4384
4385 ctx->ctx_reload_pmcs[0] = 0UL;
4386 ctx->ctx_reload_pmds[0] = 0UL;
4387
4388 /*
4389 * guaranteed safe by earlier check against DBG_VALID
4390 */
4391 if (ctx->ctx_fl_using_dbreg) {
4392 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4393 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4394 }
4395 /*
4396 * set new ownership
4397 */
4398 SET_PMU_OWNER(task, ctx);
4399
4400 DPRINT(("context loaded on PMU for [%d]\n", task->pid));
4401 } else {
4402 /*
4403 * when not current, task MUST be stopped, so this is safe
4404 */
4405 regs = ia64_task_regs(task);
4406
4407 /* force a full reload */
4408 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4409 SET_LAST_CPU(ctx, -1);
4410
4411 /* initial saved psr (stopped) */
4412 ctx->ctx_saved_psr_up = 0UL;
4413 ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4414 }
4415
4416 ret = 0;
4417
4418error_unres:
4419 if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4420error:
4421 /*
4422 * we must undo the dbregs setting (for system-wide)
4423 */
4424 if (ret && set_dbregs) {
4425 LOCK_PFS(flags);
4426 pfm_sessions.pfs_sys_use_dbregs--;
4427 UNLOCK_PFS(flags);
4428 }
4429 /*
4430 * release task, there is now a link with the context
4431 */
4432 if (is_system == 0 && task != current) {
4433 pfm_put_task(task);
4434
4435 if (ret == 0) {
4436 ret = pfm_check_task_exist(ctx);
4437 if (ret) {
4438 ctx->ctx_state = PFM_CTX_UNLOADED;
4439 ctx->ctx_task = NULL;
4440 }
4441 }
4442 }
4443 return ret;
4444}
4445
4446/*
4447 * in this function, we do not need to increase the use count
4448 * for the task via get_task_struct(), because we hold the
4449 * context lock. If the task were to disappear while having
4450 * a context attached, it would go through pfm_exit_thread()
4451 * which also grabs the context lock and would therefore be blocked
4452 * until we are here.
4453 */
4454static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4455
4456static int
4457pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4458{
4459 struct task_struct *task = PFM_CTX_TASK(ctx);
4460 struct pt_regs *tregs;
4461 int prev_state, is_system;
4462 int ret;
4463
4464 DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task->pid : -1));
4465
4466 prev_state = ctx->ctx_state;
4467 is_system = ctx->ctx_fl_system;
4468
4469 /*
4470 * unload only when necessary
4471 */
4472 if (prev_state == PFM_CTX_UNLOADED) {
4473 DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4474 return 0;
4475 }
4476
4477 /*
4478 * clear psr and dcr bits
4479 */
4480 ret = pfm_stop(ctx, NULL, 0, regs);
4481 if (ret) return ret;
4482
4483 ctx->ctx_state = PFM_CTX_UNLOADED;
4484
4485 /*
4486 * in system mode, we need to update the PMU directly
4487 * and the user level state of the caller, which may not
4488 * necessarily be the creator of the context.
4489 */
4490 if (is_system) {
4491
4492 /*
4493 * Update cpuinfo
4494 *
4495 * local PMU is taken care of in pfm_stop()
4496 */
4497 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4498 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4499
4500 /*
4501 * save PMDs in context
4502 * release ownership
4503 */
4504 pfm_flush_pmds(current, ctx);
4505
4506 /*
4507 * at this point we are done with the PMU
4508 * so we can unreserve the resource.
4509 */
4510 if (prev_state != PFM_CTX_ZOMBIE)
4511 pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4512
4513 /*
4514 * disconnect context from task
4515 */
4516 task->thread.pfm_context = NULL;
4517 /*
4518 * disconnect task from context
4519 */
4520 ctx->ctx_task = NULL;
4521
4522 /*
4523 * There is nothing more to cleanup here.
4524 */
4525 return 0;
4526 }
4527
4528 /*
4529 * per-task mode
4530 */
4531 tregs = task == current ? regs : ia64_task_regs(task);
4532
4533 if (task == current) {
4534 /*
4535 * cancel user level control
4536 */
4537 ia64_psr(regs)->sp = 1;
4538
4539 DPRINT(("setting psr.sp for [%d]\n", task->pid));
4540 }
4541 /*
4542 * save PMDs to context
4543 * release ownership
4544 */
4545 pfm_flush_pmds(task, ctx);
4546
4547 /*
4548 * at this point we are done with the PMU
4549 * so we can unreserve the resource.
4550 *
4551 * when state was ZOMBIE, we have already unreserved.
4552 */
4553 if (prev_state != PFM_CTX_ZOMBIE)
4554 pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4555
4556 /*
4557 * reset activation counter and psr
4558 */
4559 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4560 SET_LAST_CPU(ctx, -1);
4561
4562 /*
4563 * PMU state will not be restored
4564 */
4565 task->thread.flags &= ~IA64_THREAD_PM_VALID;
4566
4567 /*
4568 * break links between context and task
4569 */
4570 task->thread.pfm_context = NULL;
4571 ctx->ctx_task = NULL;
4572
4573 PFM_SET_WORK_PENDING(task, 0);
4574
4575 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
4576 ctx->ctx_fl_can_restart = 0;
4577 ctx->ctx_fl_going_zombie = 0;
4578
4579 DPRINT(("disconnected [%d] from context\n", task->pid));
4580
4581 return 0;
4582}
4583
4584
4585/*
4586 * called only from exit_thread(): task == current
4587 * we come here only if current has a context attached (loaded or masked)
4588 */
4589void
4590pfm_exit_thread(struct task_struct *task)
4591{
4592 pfm_context_t *ctx;
4593 unsigned long flags;
4594 struct pt_regs *regs = ia64_task_regs(task);
4595 int ret, state;
4596 int free_ok = 0;
4597
4598 ctx = PFM_GET_CTX(task);
4599
4600 PROTECT_CTX(ctx, flags);
4601
4602 DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task->pid));
4603
4604 state = ctx->ctx_state;
4605 switch(state) {
4606 case PFM_CTX_UNLOADED:
4607 /*
4608 * only comes to thios function if pfm_context is not NULL, i.e., cannot
4609 * be in unloaded state
4610 */
4611 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task->pid);
4612 break;
4613 case PFM_CTX_LOADED:
4614 case PFM_CTX_MASKED:
4615 ret = pfm_context_unload(ctx, NULL, 0, regs);
4616 if (ret) {
4617 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
4618 }
4619 DPRINT(("ctx unloaded for current state was %d\n", state));
4620
4621 pfm_end_notify_user(ctx);
4622 break;
4623 case PFM_CTX_ZOMBIE:
4624 ret = pfm_context_unload(ctx, NULL, 0, regs);
4625 if (ret) {
4626 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
4627 }
4628 free_ok = 1;
4629 break;
4630 default:
4631 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task->pid, state);
4632 break;
4633 }
4634 UNPROTECT_CTX(ctx, flags);
4635
4636 { u64 psr = pfm_get_psr();
4637 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4638 BUG_ON(GET_PMU_OWNER());
4639 BUG_ON(ia64_psr(regs)->up);
4640 BUG_ON(ia64_psr(regs)->pp);
4641 }
4642
4643 /*
4644 * All memory free operations (especially for vmalloc'ed memory)
4645 * MUST be done with interrupts ENABLED.
4646 */
4647 if (free_ok) pfm_context_free(ctx);
4648}
4649
4650/*
4651 * functions MUST be listed in the increasing order of their index (see permfon.h)
4652 */
4653#define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4654#define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4655#define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4656#define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4657#define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4658
4659static pfm_cmd_desc_t pfm_cmd_tab[]={
4660/* 0 */PFM_CMD_NONE,
4661/* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4662/* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4663/* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4664/* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4665/* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4666/* 6 */PFM_CMD_NONE,
4667/* 7 */PFM_CMD_NONE,
4668/* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4669/* 9 */PFM_CMD_NONE,
4670/* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4671/* 11 */PFM_CMD_NONE,
4672/* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4673/* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4674/* 14 */PFM_CMD_NONE,
4675/* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4676/* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4677/* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4678/* 18 */PFM_CMD_NONE,
4679/* 19 */PFM_CMD_NONE,
4680/* 20 */PFM_CMD_NONE,
4681/* 21 */PFM_CMD_NONE,
4682/* 22 */PFM_CMD_NONE,
4683/* 23 */PFM_CMD_NONE,
4684/* 24 */PFM_CMD_NONE,
4685/* 25 */PFM_CMD_NONE,
4686/* 26 */PFM_CMD_NONE,
4687/* 27 */PFM_CMD_NONE,
4688/* 28 */PFM_CMD_NONE,
4689/* 29 */PFM_CMD_NONE,
4690/* 30 */PFM_CMD_NONE,
4691/* 31 */PFM_CMD_NONE,
4692/* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4693/* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4694};
4695#define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4696
4697static int
4698pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4699{
4700 struct task_struct *task;
4701 int state, old_state;
4702
4703recheck:
4704 state = ctx->ctx_state;
4705 task = ctx->ctx_task;
4706
4707 if (task == NULL) {
4708 DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4709 return 0;
4710 }
4711
4712 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4713 ctx->ctx_fd,
4714 state,
4715 task->pid,
4716 task->state, PFM_CMD_STOPPED(cmd)));
4717
4718 /*
4719 * self-monitoring always ok.
4720 *
4721 * for system-wide the caller can either be the creator of the
4722 * context (to one to which the context is attached to) OR
4723 * a task running on the same CPU as the session.
4724 */
4725 if (task == current || ctx->ctx_fl_system) return 0;
4726
4727 /*
a5a70b75 4728 * we are monitoring another thread
1da177e4 4729 */
a5a70b75 4730 switch(state) {
4731 case PFM_CTX_UNLOADED:
4732 /*
4733 * if context is UNLOADED we are safe to go
4734 */
4735 return 0;
4736 case PFM_CTX_ZOMBIE:
4737 /*
4738 * no command can operate on a zombie context
4739 */
4740 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4741 return -EINVAL;
4742 case PFM_CTX_MASKED:
4743 /*
4744 * PMU state has been saved to software even though
4745 * the thread may still be running.
4746 */
4747 if (cmd != PFM_UNLOAD_CONTEXT) return 0;
1da177e4
LT
4748 }
4749
4750 /*
4751 * context is LOADED or MASKED. Some commands may need to have
4752 * the task stopped.
4753 *
4754 * We could lift this restriction for UP but it would mean that
4755 * the user has no guarantee the task would not run between
4756 * two successive calls to perfmonctl(). That's probably OK.
4757 * If this user wants to ensure the task does not run, then
4758 * the task must be stopped.
4759 */
4760 if (PFM_CMD_STOPPED(cmd)) {
4761 if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
4762 DPRINT(("[%d] task not in stopped state\n", task->pid));
4763 return -EBUSY;
4764 }
4765 /*
4766 * task is now stopped, wait for ctxsw out
4767 *
4768 * This is an interesting point in the code.
4769 * We need to unprotect the context because
4770 * the pfm_save_regs() routines needs to grab
4771 * the same lock. There are danger in doing
4772 * this because it leaves a window open for
4773 * another task to get access to the context
4774 * and possibly change its state. The one thing
4775 * that is not possible is for the context to disappear
4776 * because we are protected by the VFS layer, i.e.,
4777 * get_fd()/put_fd().
4778 */
4779 old_state = state;
4780
4781 UNPROTECT_CTX(ctx, flags);
4782
4783 wait_task_inactive(task);
4784
4785 PROTECT_CTX(ctx, flags);
4786
4787 /*
4788 * we must recheck to verify if state has changed
4789 */
4790 if (ctx->ctx_state != old_state) {
4791 DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4792 goto recheck;
4793 }
4794 }
4795 return 0;
4796}
4797
4798/*
4799 * system-call entry point (must return long)
4800 */
4801asmlinkage long
4802sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4803{
4804 struct file *file = NULL;
4805 pfm_context_t *ctx = NULL;
4806 unsigned long flags = 0UL;
4807 void *args_k = NULL;
4808 long ret; /* will expand int return types */
4809 size_t base_sz, sz, xtra_sz = 0;
4810 int narg, completed_args = 0, call_made = 0, cmd_flags;
4811 int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4812 int (*getsize)(void *arg, size_t *sz);
4813#define PFM_MAX_ARGSIZE 4096
4814
4815 /*
4816 * reject any call if perfmon was disabled at initialization
4817 */
4818 if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4819
4820 if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4821 DPRINT(("invalid cmd=%d\n", cmd));
4822 return -EINVAL;
4823 }
4824
4825 func = pfm_cmd_tab[cmd].cmd_func;
4826 narg = pfm_cmd_tab[cmd].cmd_narg;
4827 base_sz = pfm_cmd_tab[cmd].cmd_argsize;
4828 getsize = pfm_cmd_tab[cmd].cmd_getsize;
4829 cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4830
4831 if (unlikely(func == NULL)) {
4832 DPRINT(("invalid cmd=%d\n", cmd));
4833 return -EINVAL;
4834 }
4835
4836 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4837 PFM_CMD_NAME(cmd),
4838 cmd,
4839 narg,
4840 base_sz,
4841 count));
4842
4843 /*
4844 * check if number of arguments matches what the command expects
4845 */
4846 if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4847 return -EINVAL;
4848
4849restart_args:
4850 sz = xtra_sz + base_sz*count;
4851 /*
4852 * limit abuse to min page size
4853 */
4854 if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4855 printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", current->pid, sz);
4856 return -E2BIG;
4857 }
4858
4859 /*
4860 * allocate default-sized argument buffer
4861 */
4862 if (likely(count && args_k == NULL)) {
4863 args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4864 if (args_k == NULL) return -ENOMEM;
4865 }
4866
4867 ret = -EFAULT;
4868
4869 /*
4870 * copy arguments
4871 *
4872 * assume sz = 0 for command without parameters
4873 */
4874 if (sz && copy_from_user(args_k, arg, sz)) {
4875 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4876 goto error_args;
4877 }
4878
4879 /*
4880 * check if command supports extra parameters
4881 */
4882 if (completed_args == 0 && getsize) {
4883 /*
4884 * get extra parameters size (based on main argument)
4885 */
4886 ret = (*getsize)(args_k, &xtra_sz);
4887 if (ret) goto error_args;
4888
4889 completed_args = 1;
4890
4891 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4892
4893 /* retry if necessary */
4894 if (likely(xtra_sz)) goto restart_args;
4895 }
4896
4897 if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4898
4899 ret = -EBADF;
4900
4901 file = fget(fd);
4902 if (unlikely(file == NULL)) {
4903 DPRINT(("invalid fd %d\n", fd));
4904 goto error_args;
4905 }
4906 if (unlikely(PFM_IS_FILE(file) == 0)) {
4907 DPRINT(("fd %d not related to perfmon\n", fd));
4908 goto error_args;
4909 }
4910
4911 ctx = (pfm_context_t *)file->private_data;
4912 if (unlikely(ctx == NULL)) {
4913 DPRINT(("no context for fd %d\n", fd));
4914 goto error_args;
4915 }
4916 prefetch(&ctx->ctx_state);
4917
4918 PROTECT_CTX(ctx, flags);
4919
4920 /*
4921 * check task is stopped
4922 */
4923 ret = pfm_check_task_state(ctx, cmd, flags);
4924 if (unlikely(ret)) goto abort_locked;
4925
4926skip_fd:
4927 ret = (*func)(ctx, args_k, count, ia64_task_regs(current));
4928
4929 call_made = 1;
4930
4931abort_locked:
4932 if (likely(ctx)) {
4933 DPRINT(("context unlocked\n"));
4934 UNPROTECT_CTX(ctx, flags);
4935 fput(file);
4936 }
4937
4938 /* copy argument back to user, if needed */
4939 if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4940
4941error_args:
4942 if (args_k) kfree(args_k);
4943
4944 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4945
4946 return ret;
4947}
4948
4949static void
4950pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4951{
4952 pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4953 pfm_ovfl_ctrl_t rst_ctrl;
4954 int state;
4955 int ret = 0;
4956
4957 state = ctx->ctx_state;
4958 /*
4959 * Unlock sampling buffer and reset index atomically
4960 * XXX: not really needed when blocking
4961 */
4962 if (CTX_HAS_SMPL(ctx)) {
4963
4964 rst_ctrl.bits.mask_monitoring = 0;
4965 rst_ctrl.bits.reset_ovfl_pmds = 0;
4966
4967 if (state == PFM_CTX_LOADED)
4968 ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4969 else
4970 ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4971 } else {
4972 rst_ctrl.bits.mask_monitoring = 0;
4973 rst_ctrl.bits.reset_ovfl_pmds = 1;
4974 }
4975
4976 if (ret == 0) {
4977 if (rst_ctrl.bits.reset_ovfl_pmds) {
4978 pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4979 }
4980 if (rst_ctrl.bits.mask_monitoring == 0) {
4981 DPRINT(("resuming monitoring\n"));
4982 if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4983 } else {
4984 DPRINT(("stopping monitoring\n"));
4985 //pfm_stop_monitoring(current, regs);
4986 }
4987 ctx->ctx_state = PFM_CTX_LOADED;
4988 }
4989}
4990
4991/*
4992 * context MUST BE LOCKED when calling
4993 * can only be called for current
4994 */
4995static void
4996pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4997{
4998 int ret;
4999
5000 DPRINT(("entering for [%d]\n", current->pid));
5001
5002 ret = pfm_context_unload(ctx, NULL, 0, regs);
5003 if (ret) {
5004 printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", current->pid, ret);
5005 }
5006
5007 /*
5008 * and wakeup controlling task, indicating we are now disconnected
5009 */
5010 wake_up_interruptible(&ctx->ctx_zombieq);
5011
5012 /*
5013 * given that context is still locked, the controlling
5014 * task will only get access when we return from
5015 * pfm_handle_work().
5016 */
5017}
5018
5019static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
4944930a
SE
5020 /*
5021 * pfm_handle_work() can be called with interrupts enabled
5022 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5023 * call may sleep, therefore we must re-enable interrupts
5024 * to avoid deadlocks. It is safe to do so because this function
5025 * is called ONLY when returning to user level (PUStk=1), in which case
5026 * there is no risk of kernel stack overflow due to deep
5027 * interrupt nesting.
5028 */
1da177e4
LT
5029void
5030pfm_handle_work(void)
5031{
5032 pfm_context_t *ctx;
5033 struct pt_regs *regs;
4944930a 5034 unsigned long flags, dummy_flags;
1da177e4
LT
5035 unsigned long ovfl_regs;
5036 unsigned int reason;
5037 int ret;
5038
5039 ctx = PFM_GET_CTX(current);
5040 if (ctx == NULL) {
5041 printk(KERN_ERR "perfmon: [%d] has no PFM context\n", current->pid);
5042 return;
5043 }
5044
5045 PROTECT_CTX(ctx, flags);
5046
5047 PFM_SET_WORK_PENDING(current, 0);
5048
5049 pfm_clear_task_notify();
5050
5051 regs = ia64_task_regs(current);
5052
5053 /*
5054 * extract reason for being here and clear
5055 */
5056 reason = ctx->ctx_fl_trap_reason;
5057 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5058 ovfl_regs = ctx->ctx_ovfl_regs[0];
5059
5060 DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5061
5062 /*
5063 * must be done before we check for simple-reset mode
5064 */
5065 if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE) goto do_zombie;
5066
5067
5068 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5069 if (reason == PFM_TRAP_REASON_RESET) goto skip_blocking;
5070
4944930a
SE
5071 /*
5072 * restore interrupt mask to what it was on entry.
5073 * Could be enabled/diasbled.
5074 */
1da177e4
LT
5075 UNPROTECT_CTX(ctx, flags);
5076
4944930a
SE
5077 /*
5078 * force interrupt enable because of down_interruptible()
5079 */
1da177e4
LT
5080 local_irq_enable();
5081
5082 DPRINT(("before block sleeping\n"));
5083
5084 /*
5085 * may go through without blocking on SMP systems
5086 * if restart has been received already by the time we call down()
5087 */
5088 ret = down_interruptible(&ctx->ctx_restart_sem);
5089
5090 DPRINT(("after block sleeping ret=%d\n", ret));
5091
5092 /*
4944930a
SE
5093 * lock context and mask interrupts again
5094 * We save flags into a dummy because we may have
5095 * altered interrupts mask compared to entry in this
5096 * function.
1da177e4 5097 */
4944930a 5098 PROTECT_CTX(ctx, dummy_flags);
1da177e4
LT
5099
5100 /*
5101 * we need to read the ovfl_regs only after wake-up
5102 * because we may have had pfm_write_pmds() in between
5103 * and that can changed PMD values and therefore
5104 * ovfl_regs is reset for these new PMD values.
5105 */
5106 ovfl_regs = ctx->ctx_ovfl_regs[0];
5107
5108 if (ctx->ctx_fl_going_zombie) {
5109do_zombie:
5110 DPRINT(("context is zombie, bailing out\n"));
5111 pfm_context_force_terminate(ctx, regs);
5112 goto nothing_to_do;
5113 }
5114 /*
5115 * in case of interruption of down() we don't restart anything
5116 */
5117 if (ret < 0) goto nothing_to_do;
5118
5119skip_blocking:
5120 pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5121 ctx->ctx_ovfl_regs[0] = 0UL;
5122
5123nothing_to_do:
4944930a
SE
5124 /*
5125 * restore flags as they were upon entry
5126 */
1da177e4
LT
5127 UNPROTECT_CTX(ctx, flags);
5128}
5129
5130static int
5131pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5132{
5133 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5134 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5135 return 0;
5136 }
5137
5138 DPRINT(("waking up somebody\n"));
5139
5140 if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5141
5142 /*
5143 * safe, we are not in intr handler, nor in ctxsw when
5144 * we come here
5145 */
5146 kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5147
5148 return 0;
5149}
5150
5151static int
5152pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5153{
5154 pfm_msg_t *msg = NULL;
5155
5156 if (ctx->ctx_fl_no_msg == 0) {
5157 msg = pfm_get_new_msg(ctx);
5158 if (msg == NULL) {
5159 printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5160 return -1;
5161 }
5162
5163 msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL;
5164 msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd;
5165 msg->pfm_ovfl_msg.msg_active_set = 0;
5166 msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5167 msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5168 msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5169 msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5170 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5171 }
5172
5173 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5174 msg,
5175 ctx->ctx_fl_no_msg,
5176 ctx->ctx_fd,
5177 ovfl_pmds));
5178
5179 return pfm_notify_user(ctx, msg);
5180}
5181
5182static int
5183pfm_end_notify_user(pfm_context_t *ctx)
5184{
5185 pfm_msg_t *msg;
5186
5187 msg = pfm_get_new_msg(ctx);
5188 if (msg == NULL) {
5189 printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5190 return -1;
5191 }
5192 /* no leak */
5193 memset(msg, 0, sizeof(*msg));
5194
5195 msg->pfm_end_msg.msg_type = PFM_MSG_END;
5196 msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd;
5197 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5198
5199 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5200 msg,
5201 ctx->ctx_fl_no_msg,
5202 ctx->ctx_fd));
5203
5204 return pfm_notify_user(ctx, msg);
5205}
5206
5207/*
5208 * main overflow processing routine.
5209 * it can be called from the interrupt path or explicitely during the context switch code
5210 */
5211static void
5212pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx, u64 pmc0, struct pt_regs *regs)
5213{
5214 pfm_ovfl_arg_t *ovfl_arg;
5215 unsigned long mask;
5216 unsigned long old_val, ovfl_val, new_val;
5217 unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5218 unsigned long tstamp;
5219 pfm_ovfl_ctrl_t ovfl_ctrl;
5220 unsigned int i, has_smpl;
5221 int must_notify = 0;
5222
5223 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5224
5225 /*
5226 * sanity test. Should never happen
5227 */
5228 if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5229
5230 tstamp = ia64_get_itc();
5231 mask = pmc0 >> PMU_FIRST_COUNTER;
5232 ovfl_val = pmu_conf->ovfl_val;
5233 has_smpl = CTX_HAS_SMPL(ctx);
5234
5235 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5236 "used_pmds=0x%lx\n",
5237 pmc0,
5238 task ? task->pid: -1,
5239 (regs ? regs->cr_iip : 0),
5240 CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5241 ctx->ctx_used_pmds[0]));
5242
5243
5244 /*
5245 * first we update the virtual counters
5246 * assume there was a prior ia64_srlz_d() issued
5247 */
5248 for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5249
5250 /* skip pmd which did not overflow */
5251 if ((mask & 0x1) == 0) continue;
5252
5253 /*
5254 * Note that the pmd is not necessarily 0 at this point as qualified events
5255 * may have happened before the PMU was frozen. The residual count is not
5256 * taken into consideration here but will be with any read of the pmd via
5257 * pfm_read_pmds().
5258 */
5259 old_val = new_val = ctx->ctx_pmds[i].val;
5260 new_val += 1 + ovfl_val;
5261 ctx->ctx_pmds[i].val = new_val;
5262
5263 /*
5264 * check for overflow condition
5265 */
5266 if (likely(old_val > new_val)) {
5267 ovfl_pmds |= 1UL << i;
5268 if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5269 }
5270
5271 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5272 i,
5273 new_val,
5274 old_val,
5275 ia64_get_pmd(i) & ovfl_val,
5276 ovfl_pmds,
5277 ovfl_notify));
5278 }
5279
5280 /*
5281 * there was no 64-bit overflow, nothing else to do
5282 */
5283 if (ovfl_pmds == 0UL) return;
5284
5285 /*
5286 * reset all control bits
5287 */
5288 ovfl_ctrl.val = 0;
5289 reset_pmds = 0UL;
5290
5291 /*
5292 * if a sampling format module exists, then we "cache" the overflow by
5293 * calling the module's handler() routine.
5294 */
5295 if (has_smpl) {
5296 unsigned long start_cycles, end_cycles;
5297 unsigned long pmd_mask;
5298 int j, k, ret = 0;
5299 int this_cpu = smp_processor_id();
5300
5301 pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5302 ovfl_arg = &ctx->ctx_ovfl_arg;
5303
5304 prefetch(ctx->ctx_smpl_hdr);
5305
5306 for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5307
5308 mask = 1UL << i;
5309
5310 if ((pmd_mask & 0x1) == 0) continue;
5311
5312 ovfl_arg->ovfl_pmd = (unsigned char )i;
5313 ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0;
5314 ovfl_arg->active_set = 0;
5315 ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5316 ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5317
5318 ovfl_arg->pmd_value = ctx->ctx_pmds[i].val;
5319 ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5320 ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid;
5321
5322 /*
5323 * copy values of pmds of interest. Sampling format may copy them
5324 * into sampling buffer.
5325 */
5326 if (smpl_pmds) {
5327 for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5328 if ((smpl_pmds & 0x1) == 0) continue;
5329 ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5330 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5331 }
5332 }
5333
5334 pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5335
5336 start_cycles = ia64_get_itc();
5337
5338 /*
5339 * call custom buffer format record (handler) routine
5340 */
5341 ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5342
5343 end_cycles = ia64_get_itc();
5344
5345 /*
5346 * For those controls, we take the union because they have
5347 * an all or nothing behavior.
5348 */
5349 ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5350 ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task;
5351 ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5352 /*
5353 * build the bitmask of pmds to reset now
5354 */
5355 if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5356
5357 pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5358 }
5359 /*
5360 * when the module cannot handle the rest of the overflows, we abort right here
5361 */
5362 if (ret && pmd_mask) {
5363 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5364 pmd_mask<<PMU_FIRST_COUNTER));
5365 }
5366 /*
5367 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5368 */
5369 ovfl_pmds &= ~reset_pmds;
5370 } else {
5371 /*
5372 * when no sampling module is used, then the default
5373 * is to notify on overflow if requested by user
5374 */
5375 ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0;
5376 ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0;
5377 ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5378 ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5379 /*
5380 * if needed, we reset all overflowed pmds
5381 */
5382 if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5383 }
5384
5385 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5386
5387 /*
5388 * reset the requested PMD registers using the short reset values
5389 */
5390 if (reset_pmds) {
5391 unsigned long bm = reset_pmds;
5392 pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5393 }
5394
5395 if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5396 /*
5397 * keep track of what to reset when unblocking
5398 */
5399 ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5400
5401 /*
5402 * check for blocking context
5403 */
5404 if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5405
5406 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5407
5408 /*
5409 * set the perfmon specific checking pending work for the task
5410 */
5411 PFM_SET_WORK_PENDING(task, 1);
5412
5413 /*
5414 * when coming from ctxsw, current still points to the
5415 * previous task, therefore we must work with task and not current.
5416 */
5417 pfm_set_task_notify(task);
5418 }
5419 /*
5420 * defer until state is changed (shorten spin window). the context is locked
5421 * anyway, so the signal receiver would come spin for nothing.
5422 */
5423 must_notify = 1;
5424 }
5425
5426 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5427 GET_PMU_OWNER() ? GET_PMU_OWNER()->pid : -1,
5428 PFM_GET_WORK_PENDING(task),
5429 ctx->ctx_fl_trap_reason,
5430 ovfl_pmds,
5431 ovfl_notify,
5432 ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5433 /*
5434 * in case monitoring must be stopped, we toggle the psr bits
5435 */
5436 if (ovfl_ctrl.bits.mask_monitoring) {
5437 pfm_mask_monitoring(task);
5438 ctx->ctx_state = PFM_CTX_MASKED;
5439 ctx->ctx_fl_can_restart = 1;
5440 }
5441
5442 /*
5443 * send notification now
5444 */
5445 if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5446
5447 return;
5448
5449sanity_check:
5450 printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5451 smp_processor_id(),
5452 task ? task->pid : -1,
5453 pmc0);
5454 return;
5455
5456stop_monitoring:
5457 /*
5458 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5459 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5460 * come here as zombie only if the task is the current task. In which case, we
5461 * can access the PMU hardware directly.
5462 *
5463 * Note that zombies do have PM_VALID set. So here we do the minimal.
5464 *
5465 * In case the context was zombified it could not be reclaimed at the time
5466 * the monitoring program exited. At this point, the PMU reservation has been
5467 * returned, the sampiing buffer has been freed. We must convert this call
5468 * into a spurious interrupt. However, we must also avoid infinite overflows
5469 * by stopping monitoring for this task. We can only come here for a per-task
5470 * context. All we need to do is to stop monitoring using the psr bits which
5471 * are always task private. By re-enabling secure montioring, we ensure that
5472 * the monitored task will not be able to re-activate monitoring.
5473 * The task will eventually be context switched out, at which point the context
5474 * will be reclaimed (that includes releasing ownership of the PMU).
5475 *
5476 * So there might be a window of time where the number of per-task session is zero
5477 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5478 * context. This is safe because if a per-task session comes in, it will push this one
5479 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5480 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5481 * also push our zombie context out.
5482 *
5483 * Overall pretty hairy stuff....
5484 */
5485 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task->pid: -1));
5486 pfm_clear_psr_up();
5487 ia64_psr(regs)->up = 0;
5488 ia64_psr(regs)->sp = 1;
5489 return;
5490}
5491
5492static int
5493pfm_do_interrupt_handler(int irq, void *arg, struct pt_regs *regs)
5494{
5495 struct task_struct *task;
5496 pfm_context_t *ctx;
5497 unsigned long flags;
5498 u64 pmc0;
5499 int this_cpu = smp_processor_id();
5500 int retval = 0;
5501
5502 pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5503
5504 /*
5505 * srlz.d done before arriving here
5506 */
5507 pmc0 = ia64_get_pmc(0);
5508
5509 task = GET_PMU_OWNER();
5510 ctx = GET_PMU_CTX();
5511
5512 /*
5513 * if we have some pending bits set
5514 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5515 */
5516 if (PMC0_HAS_OVFL(pmc0) && task) {
5517 /*
5518 * we assume that pmc0.fr is always set here
5519 */
5520
5521 /* sanity check */
5522 if (!ctx) goto report_spurious1;
5523
5524 if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5525 goto report_spurious2;
5526
5527 PROTECT_CTX_NOPRINT(ctx, flags);
5528
5529 pfm_overflow_handler(task, ctx, pmc0, regs);
5530
5531 UNPROTECT_CTX_NOPRINT(ctx, flags);
5532
5533 } else {
5534 pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5535 retval = -1;
5536 }
5537 /*
5538 * keep it unfrozen at all times
5539 */
5540 pfm_unfreeze_pmu();
5541
5542 return retval;
5543
5544report_spurious1:
5545 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5546 this_cpu, task->pid);
5547 pfm_unfreeze_pmu();
5548 return -1;
5549report_spurious2:
5550 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5551 this_cpu,
5552 task->pid);
5553 pfm_unfreeze_pmu();
5554 return -1;
5555}
5556
5557static irqreturn_t
5558pfm_interrupt_handler(int irq, void *arg, struct pt_regs *regs)
5559{
5560 unsigned long start_cycles, total_cycles;
5561 unsigned long min, max;
5562 int this_cpu;
5563 int ret;
5564
5565 this_cpu = get_cpu();
a1ecf7f6
TL
5566 if (likely(!pfm_alt_intr_handler)) {
5567 min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5568 max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
1da177e4 5569
a1ecf7f6 5570 start_cycles = ia64_get_itc();
1da177e4 5571
a1ecf7f6 5572 ret = pfm_do_interrupt_handler(irq, arg, regs);
1da177e4 5573
a1ecf7f6 5574 total_cycles = ia64_get_itc();
1da177e4 5575
a1ecf7f6
TL
5576 /*
5577 * don't measure spurious interrupts
5578 */
5579 if (likely(ret == 0)) {
5580 total_cycles -= start_cycles;
1da177e4 5581
a1ecf7f6
TL
5582 if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5583 if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
1da177e4 5584
a1ecf7f6
TL
5585 pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5586 }
5587 }
5588 else {
5589 (*pfm_alt_intr_handler->handler)(irq, arg, regs);
1da177e4 5590 }
a1ecf7f6 5591
1da177e4
LT
5592 put_cpu_no_resched();
5593 return IRQ_HANDLED;
5594}
5595
5596/*
5597 * /proc/perfmon interface, for debug only
5598 */
5599
5600#define PFM_PROC_SHOW_HEADER ((void *)NR_CPUS+1)
5601
5602static void *
5603pfm_proc_start(struct seq_file *m, loff_t *pos)
5604{
5605 if (*pos == 0) {
5606 return PFM_PROC_SHOW_HEADER;
5607 }
5608
5609 while (*pos <= NR_CPUS) {
5610 if (cpu_online(*pos - 1)) {
5611 return (void *)*pos;
5612 }
5613 ++*pos;
5614 }
5615 return NULL;
5616}
5617
5618static void *
5619pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5620{
5621 ++*pos;
5622 return pfm_proc_start(m, pos);
5623}
5624
5625static void
5626pfm_proc_stop(struct seq_file *m, void *v)
5627{
5628}
5629
5630static void
5631pfm_proc_show_header(struct seq_file *m)
5632{
5633 struct list_head * pos;
5634 pfm_buffer_fmt_t * entry;
5635 unsigned long flags;
5636
5637 seq_printf(m,
5638 "perfmon version : %u.%u\n"
5639 "model : %s\n"
5640 "fastctxsw : %s\n"
5641 "expert mode : %s\n"
5642 "ovfl_mask : 0x%lx\n"
5643 "PMU flags : 0x%x\n",
5644 PFM_VERSION_MAJ, PFM_VERSION_MIN,
5645 pmu_conf->pmu_name,
5646 pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5647 pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5648 pmu_conf->ovfl_val,
5649 pmu_conf->flags);
5650
5651 LOCK_PFS(flags);
5652
5653 seq_printf(m,
5654 "proc_sessions : %u\n"
5655 "sys_sessions : %u\n"
5656 "sys_use_dbregs : %u\n"
5657 "ptrace_use_dbregs : %u\n",
5658 pfm_sessions.pfs_task_sessions,
5659 pfm_sessions.pfs_sys_sessions,
5660 pfm_sessions.pfs_sys_use_dbregs,
5661 pfm_sessions.pfs_ptrace_use_dbregs);
5662
5663 UNLOCK_PFS(flags);
5664
5665 spin_lock(&pfm_buffer_fmt_lock);
5666
5667 list_for_each(pos, &pfm_buffer_fmt_list) {
5668 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5669 seq_printf(m, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5670 entry->fmt_uuid[0],
5671 entry->fmt_uuid[1],
5672 entry->fmt_uuid[2],
5673 entry->fmt_uuid[3],
5674 entry->fmt_uuid[4],
5675 entry->fmt_uuid[5],
5676 entry->fmt_uuid[6],
5677 entry->fmt_uuid[7],
5678 entry->fmt_uuid[8],
5679 entry->fmt_uuid[9],
5680 entry->fmt_uuid[10],
5681 entry->fmt_uuid[11],
5682 entry->fmt_uuid[12],
5683 entry->fmt_uuid[13],
5684 entry->fmt_uuid[14],
5685 entry->fmt_uuid[15],
5686 entry->fmt_name);
5687 }
5688 spin_unlock(&pfm_buffer_fmt_lock);
5689
5690}
5691
5692static int
5693pfm_proc_show(struct seq_file *m, void *v)
5694{
5695 unsigned long psr;
5696 unsigned int i;
5697 int cpu;
5698
5699 if (v == PFM_PROC_SHOW_HEADER) {
5700 pfm_proc_show_header(m);
5701 return 0;
5702 }
5703
5704 /* show info for CPU (v - 1) */
5705
5706 cpu = (long)v - 1;
5707 seq_printf(m,
5708 "CPU%-2d overflow intrs : %lu\n"
5709 "CPU%-2d overflow cycles : %lu\n"
5710 "CPU%-2d overflow min : %lu\n"
5711 "CPU%-2d overflow max : %lu\n"
5712 "CPU%-2d smpl handler calls : %lu\n"
5713 "CPU%-2d smpl handler cycles : %lu\n"
5714 "CPU%-2d spurious intrs : %lu\n"
5715 "CPU%-2d replay intrs : %lu\n"
5716 "CPU%-2d syst_wide : %d\n"
5717 "CPU%-2d dcr_pp : %d\n"
5718 "CPU%-2d exclude idle : %d\n"
5719 "CPU%-2d owner : %d\n"
5720 "CPU%-2d context : %p\n"
5721 "CPU%-2d activations : %lu\n",
5722 cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5723 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5724 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5725 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5726 cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5727 cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5728 cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5729 cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5730 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5731 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5732 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5733 cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5734 cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5735 cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5736
5737 if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5738
5739 psr = pfm_get_psr();
5740
5741 ia64_srlz_d();
5742
5743 seq_printf(m,
5744 "CPU%-2d psr : 0x%lx\n"
5745 "CPU%-2d pmc0 : 0x%lx\n",
5746 cpu, psr,
5747 cpu, ia64_get_pmc(0));
5748
5749 for (i=0; PMC_IS_LAST(i) == 0; i++) {
5750 if (PMC_IS_COUNTING(i) == 0) continue;
5751 seq_printf(m,
5752 "CPU%-2d pmc%u : 0x%lx\n"
5753 "CPU%-2d pmd%u : 0x%lx\n",
5754 cpu, i, ia64_get_pmc(i),
5755 cpu, i, ia64_get_pmd(i));
5756 }
5757 }
5758 return 0;
5759}
5760
5761struct seq_operations pfm_seq_ops = {
5762 .start = pfm_proc_start,
5763 .next = pfm_proc_next,
5764 .stop = pfm_proc_stop,
5765 .show = pfm_proc_show
5766};
5767
5768static int
5769pfm_proc_open(struct inode *inode, struct file *file)
5770{
5771 return seq_open(file, &pfm_seq_ops);
5772}
5773
5774
5775/*
5776 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5777 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5778 * is active or inactive based on mode. We must rely on the value in
5779 * local_cpu_data->pfm_syst_info
5780 */
5781void
5782pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5783{
5784 struct pt_regs *regs;
5785 unsigned long dcr;
5786 unsigned long dcr_pp;
5787
5788 dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5789
5790 /*
5791 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5792 * on every CPU, so we can rely on the pid to identify the idle task.
5793 */
5794 if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5795 regs = ia64_task_regs(task);
5796 ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5797 return;
5798 }
5799 /*
5800 * if monitoring has started
5801 */
5802 if (dcr_pp) {
5803 dcr = ia64_getreg(_IA64_REG_CR_DCR);
5804 /*
5805 * context switching in?
5806 */
5807 if (is_ctxswin) {
5808 /* mask monitoring for the idle task */
5809 ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5810 pfm_clear_psr_pp();
5811 ia64_srlz_i();
5812 return;
5813 }
5814 /*
5815 * context switching out
5816 * restore monitoring for next task
5817 *
5818 * Due to inlining this odd if-then-else construction generates
5819 * better code.
5820 */
5821 ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5822 pfm_set_psr_pp();
5823 ia64_srlz_i();
5824 }
5825}
5826
5827#ifdef CONFIG_SMP
5828
5829static void
5830pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5831{
5832 struct task_struct *task = ctx->ctx_task;
5833
5834 ia64_psr(regs)->up = 0;
5835 ia64_psr(regs)->sp = 1;
5836
5837 if (GET_PMU_OWNER() == task) {
5838 DPRINT(("cleared ownership for [%d]\n", ctx->ctx_task->pid));
5839 SET_PMU_OWNER(NULL, NULL);
5840 }
5841
5842 /*
5843 * disconnect the task from the context and vice-versa
5844 */
5845 PFM_SET_WORK_PENDING(task, 0);
5846
5847 task->thread.pfm_context = NULL;
5848 task->thread.flags &= ~IA64_THREAD_PM_VALID;
5849
5850 DPRINT(("force cleanup for [%d]\n", task->pid));
5851}
5852
5853
5854/*
5855 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5856 */
5857void
5858pfm_save_regs(struct task_struct *task)
5859{
5860 pfm_context_t *ctx;
5861 struct thread_struct *t;
5862 unsigned long flags;
5863 u64 psr;
5864
5865
5866 ctx = PFM_GET_CTX(task);
5867 if (ctx == NULL) return;
5868 t = &task->thread;
5869
5870 /*
5871 * we always come here with interrupts ALREADY disabled by
5872 * the scheduler. So we simply need to protect against concurrent
5873 * access, not CPU concurrency.
5874 */
5875 flags = pfm_protect_ctx_ctxsw(ctx);
5876
5877 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5878 struct pt_regs *regs = ia64_task_regs(task);
5879
5880 pfm_clear_psr_up();
5881
5882 pfm_force_cleanup(ctx, regs);
5883
5884 BUG_ON(ctx->ctx_smpl_hdr);
5885
5886 pfm_unprotect_ctx_ctxsw(ctx, flags);
5887
5888 pfm_context_free(ctx);
5889 return;
5890 }
5891
5892 /*
5893 * save current PSR: needed because we modify it
5894 */
5895 ia64_srlz_d();
5896 psr = pfm_get_psr();
5897
5898 BUG_ON(psr & (IA64_PSR_I));
5899
5900 /*
5901 * stop monitoring:
5902 * This is the last instruction which may generate an overflow
5903 *
5904 * We do not need to set psr.sp because, it is irrelevant in kernel.
5905 * It will be restored from ipsr when going back to user level
5906 */
5907 pfm_clear_psr_up();
5908
5909 /*
5910 * keep a copy of psr.up (for reload)
5911 */
5912 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5913
5914 /*
5915 * release ownership of this PMU.
5916 * PM interrupts are masked, so nothing
5917 * can happen.
5918 */
5919 SET_PMU_OWNER(NULL, NULL);
5920
5921 /*
5922 * we systematically save the PMD as we have no
5923 * guarantee we will be schedule at that same
5924 * CPU again.
5925 */
5926 pfm_save_pmds(t->pmds, ctx->ctx_used_pmds[0]);
5927
5928 /*
5929 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5930 * we will need it on the restore path to check
5931 * for pending overflow.
5932 */
5933 t->pmcs[0] = ia64_get_pmc(0);
5934
5935 /*
5936 * unfreeze PMU if had pending overflows
5937 */
5938 if (t->pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5939
5940 /*
5941 * finally, allow context access.
5942 * interrupts will still be masked after this call.
5943 */
5944 pfm_unprotect_ctx_ctxsw(ctx, flags);
5945}
5946
5947#else /* !CONFIG_SMP */
5948void
5949pfm_save_regs(struct task_struct *task)
5950{
5951 pfm_context_t *ctx;
5952 u64 psr;
5953
5954 ctx = PFM_GET_CTX(task);
5955 if (ctx == NULL) return;
5956
5957 /*
5958 * save current PSR: needed because we modify it
5959 */
5960 psr = pfm_get_psr();
5961
5962 BUG_ON(psr & (IA64_PSR_I));
5963
5964 /*
5965 * stop monitoring:
5966 * This is the last instruction which may generate an overflow
5967 *
5968 * We do not need to set psr.sp because, it is irrelevant in kernel.
5969 * It will be restored from ipsr when going back to user level
5970 */
5971 pfm_clear_psr_up();
5972
5973 /*
5974 * keep a copy of psr.up (for reload)
5975 */
5976 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5977}
5978
5979static void
5980pfm_lazy_save_regs (struct task_struct *task)
5981{
5982 pfm_context_t *ctx;
5983 struct thread_struct *t;
5984 unsigned long flags;
5985
5986 { u64 psr = pfm_get_psr();
5987 BUG_ON(psr & IA64_PSR_UP);
5988 }
5989
5990 ctx = PFM_GET_CTX(task);
5991 t = &task->thread;
5992
5993 /*
5994 * we need to mask PMU overflow here to
5995 * make sure that we maintain pmc0 until
5996 * we save it. overflow interrupts are
5997 * treated as spurious if there is no
5998 * owner.
5999 *
6000 * XXX: I don't think this is necessary
6001 */
6002 PROTECT_CTX(ctx,flags);
6003
6004 /*
6005 * release ownership of this PMU.
6006 * must be done before we save the registers.
6007 *
6008 * after this call any PMU interrupt is treated
6009 * as spurious.
6010 */
6011 SET_PMU_OWNER(NULL, NULL);
6012
6013 /*
6014 * save all the pmds we use
6015 */
6016 pfm_save_pmds(t->pmds, ctx->ctx_used_pmds[0]);
6017
6018 /*
6019 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
6020 * it is needed to check for pended overflow
6021 * on the restore path
6022 */
6023 t->pmcs[0] = ia64_get_pmc(0);
6024
6025 /*
6026 * unfreeze PMU if had pending overflows
6027 */
6028 if (t->pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
6029
6030 /*
6031 * now get can unmask PMU interrupts, they will
6032 * be treated as purely spurious and we will not
6033 * lose any information
6034 */
6035 UNPROTECT_CTX(ctx,flags);
6036}
6037#endif /* CONFIG_SMP */
6038
6039#ifdef CONFIG_SMP
6040/*
6041 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6042 */
6043void
6044pfm_load_regs (struct task_struct *task)
6045{
6046 pfm_context_t *ctx;
6047 struct thread_struct *t;
6048 unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6049 unsigned long flags;
6050 u64 psr, psr_up;
6051 int need_irq_resend;
6052
6053 ctx = PFM_GET_CTX(task);
6054 if (unlikely(ctx == NULL)) return;
6055
6056 BUG_ON(GET_PMU_OWNER());
6057
6058 t = &task->thread;
6059 /*
6060 * possible on unload
6061 */
6062 if (unlikely((t->flags & IA64_THREAD_PM_VALID) == 0)) return;
6063
6064 /*
6065 * we always come here with interrupts ALREADY disabled by
6066 * the scheduler. So we simply need to protect against concurrent
6067 * access, not CPU concurrency.
6068 */
6069 flags = pfm_protect_ctx_ctxsw(ctx);
6070 psr = pfm_get_psr();
6071
6072 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6073
6074 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6075 BUG_ON(psr & IA64_PSR_I);
6076
6077 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6078 struct pt_regs *regs = ia64_task_regs(task);
6079
6080 BUG_ON(ctx->ctx_smpl_hdr);
6081
6082 pfm_force_cleanup(ctx, regs);
6083
6084 pfm_unprotect_ctx_ctxsw(ctx, flags);
6085
6086 /*
6087 * this one (kmalloc'ed) is fine with interrupts disabled
6088 */
6089 pfm_context_free(ctx);
6090
6091 return;
6092 }
6093
6094 /*
6095 * we restore ALL the debug registers to avoid picking up
6096 * stale state.
6097 */
6098 if (ctx->ctx_fl_using_dbreg) {
6099 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6100 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6101 }
6102 /*
6103 * retrieve saved psr.up
6104 */
6105 psr_up = ctx->ctx_saved_psr_up;
6106
6107 /*
6108 * if we were the last user of the PMU on that CPU,
6109 * then nothing to do except restore psr
6110 */
6111 if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6112
6113 /*
6114 * retrieve partial reload masks (due to user modifications)
6115 */
6116 pmc_mask = ctx->ctx_reload_pmcs[0];
6117 pmd_mask = ctx->ctx_reload_pmds[0];
6118
6119 } else {
6120 /*
6121 * To avoid leaking information to the user level when psr.sp=0,
6122 * we must reload ALL implemented pmds (even the ones we don't use).
6123 * In the kernel we only allow PFM_READ_PMDS on registers which
6124 * we initialized or requested (sampling) so there is no risk there.
6125 */
6126 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6127
6128 /*
6129 * ALL accessible PMCs are systematically reloaded, unused registers
6130 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6131 * up stale configuration.
6132 *
6133 * PMC0 is never in the mask. It is always restored separately.
6134 */
6135 pmc_mask = ctx->ctx_all_pmcs[0];
6136 }
6137 /*
6138 * when context is MASKED, we will restore PMC with plm=0
6139 * and PMD with stale information, but that's ok, nothing
6140 * will be captured.
6141 *
6142 * XXX: optimize here
6143 */
6144 if (pmd_mask) pfm_restore_pmds(t->pmds, pmd_mask);
6145 if (pmc_mask) pfm_restore_pmcs(t->pmcs, pmc_mask);
6146
6147 /*
6148 * check for pending overflow at the time the state
6149 * was saved.
6150 */
6151 if (unlikely(PMC0_HAS_OVFL(t->pmcs[0]))) {
6152 /*
6153 * reload pmc0 with the overflow information
6154 * On McKinley PMU, this will trigger a PMU interrupt
6155 */
6156 ia64_set_pmc(0, t->pmcs[0]);
6157 ia64_srlz_d();
6158 t->pmcs[0] = 0UL;
6159
6160 /*
6161 * will replay the PMU interrupt
6162 */
6163 if (need_irq_resend) hw_resend_irq(NULL, IA64_PERFMON_VECTOR);
6164
6165 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6166 }
6167
6168 /*
6169 * we just did a reload, so we reset the partial reload fields
6170 */
6171 ctx->ctx_reload_pmcs[0] = 0UL;
6172 ctx->ctx_reload_pmds[0] = 0UL;
6173
6174 SET_LAST_CPU(ctx, smp_processor_id());
6175
6176 /*
6177 * dump activation value for this PMU
6178 */
6179 INC_ACTIVATION();
6180 /*
6181 * record current activation for this context
6182 */
6183 SET_ACTIVATION(ctx);
6184
6185 /*
6186 * establish new ownership.
6187 */
6188 SET_PMU_OWNER(task, ctx);
6189
6190 /*
6191 * restore the psr.up bit. measurement
6192 * is active again.
6193 * no PMU interrupt can happen at this point
6194 * because we still have interrupts disabled.
6195 */
6196 if (likely(psr_up)) pfm_set_psr_up();
6197
6198 /*
6199 * allow concurrent access to context
6200 */
6201 pfm_unprotect_ctx_ctxsw(ctx, flags);
6202}
6203#else /* !CONFIG_SMP */
6204/*
6205 * reload PMU state for UP kernels
6206 * in 2.5 we come here with interrupts disabled
6207 */
6208void
6209pfm_load_regs (struct task_struct *task)
6210{
6211 struct thread_struct *t;
6212 pfm_context_t *ctx;
6213 struct task_struct *owner;
6214 unsigned long pmd_mask, pmc_mask;
6215 u64 psr, psr_up;
6216 int need_irq_resend;
6217
6218 owner = GET_PMU_OWNER();
6219 ctx = PFM_GET_CTX(task);
6220 t = &task->thread;
6221 psr = pfm_get_psr();
6222
6223 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6224 BUG_ON(psr & IA64_PSR_I);
6225
6226 /*
6227 * we restore ALL the debug registers to avoid picking up
6228 * stale state.
6229 *
6230 * This must be done even when the task is still the owner
6231 * as the registers may have been modified via ptrace()
6232 * (not perfmon) by the previous task.
6233 */
6234 if (ctx->ctx_fl_using_dbreg) {
6235 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6236 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6237 }
6238
6239 /*
6240 * retrieved saved psr.up
6241 */
6242 psr_up = ctx->ctx_saved_psr_up;
6243 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6244
6245 /*
6246 * short path, our state is still there, just
6247 * need to restore psr and we go
6248 *
6249 * we do not touch either PMC nor PMD. the psr is not touched
6250 * by the overflow_handler. So we are safe w.r.t. to interrupt
6251 * concurrency even without interrupt masking.
6252 */
6253 if (likely(owner == task)) {
6254 if (likely(psr_up)) pfm_set_psr_up();
6255 return;
6256 }
6257
6258 /*
6259 * someone else is still using the PMU, first push it out and
6260 * then we'll be able to install our stuff !
6261 *
6262 * Upon return, there will be no owner for the current PMU
6263 */
6264 if (owner) pfm_lazy_save_regs(owner);
6265
6266 /*
6267 * To avoid leaking information to the user level when psr.sp=0,
6268 * we must reload ALL implemented pmds (even the ones we don't use).
6269 * In the kernel we only allow PFM_READ_PMDS on registers which
6270 * we initialized or requested (sampling) so there is no risk there.
6271 */
6272 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6273
6274 /*
6275 * ALL accessible PMCs are systematically reloaded, unused registers
6276 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6277 * up stale configuration.
6278 *
6279 * PMC0 is never in the mask. It is always restored separately
6280 */
6281 pmc_mask = ctx->ctx_all_pmcs[0];
6282
6283 pfm_restore_pmds(t->pmds, pmd_mask);
6284 pfm_restore_pmcs(t->pmcs, pmc_mask);
6285
6286 /*
6287 * check for pending overflow at the time the state
6288 * was saved.
6289 */
6290 if (unlikely(PMC0_HAS_OVFL(t->pmcs[0]))) {
6291 /*
6292 * reload pmc0 with the overflow information
6293 * On McKinley PMU, this will trigger a PMU interrupt
6294 */
6295 ia64_set_pmc(0, t->pmcs[0]);
6296 ia64_srlz_d();
6297
6298 t->pmcs[0] = 0UL;
6299
6300 /*
6301 * will replay the PMU interrupt
6302 */
6303 if (need_irq_resend) hw_resend_irq(NULL, IA64_PERFMON_VECTOR);
6304
6305 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6306 }
6307
6308 /*
6309 * establish new ownership.
6310 */
6311 SET_PMU_OWNER(task, ctx);
6312
6313 /*
6314 * restore the psr.up bit. measurement
6315 * is active again.
6316 * no PMU interrupt can happen at this point
6317 * because we still have interrupts disabled.
6318 */
6319 if (likely(psr_up)) pfm_set_psr_up();
6320}
6321#endif /* CONFIG_SMP */
6322
6323/*
6324 * this function assumes monitoring is stopped
6325 */
6326static void
6327pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6328{
6329 u64 pmc0;
6330 unsigned long mask2, val, pmd_val, ovfl_val;
6331 int i, can_access_pmu = 0;
6332 int is_self;
6333
6334 /*
6335 * is the caller the task being monitored (or which initiated the
6336 * session for system wide measurements)
6337 */
6338 is_self = ctx->ctx_task == task ? 1 : 0;
6339
6340 /*
6341 * can access PMU is task is the owner of the PMU state on the current CPU
6342 * or if we are running on the CPU bound to the context in system-wide mode
6343 * (that is not necessarily the task the context is attached to in this mode).
6344 * In system-wide we always have can_access_pmu true because a task running on an
6345 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6346 */
6347 can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6348 if (can_access_pmu) {
6349 /*
6350 * Mark the PMU as not owned
6351 * This will cause the interrupt handler to do nothing in case an overflow
6352 * interrupt was in-flight
6353 * This also guarantees that pmc0 will contain the final state
6354 * It virtually gives us full control on overflow processing from that point
6355 * on.
6356 */
6357 SET_PMU_OWNER(NULL, NULL);
6358 DPRINT(("releasing ownership\n"));
6359
6360 /*
6361 * read current overflow status:
6362 *
6363 * we are guaranteed to read the final stable state
6364 */
6365 ia64_srlz_d();
6366 pmc0 = ia64_get_pmc(0); /* slow */
6367
6368 /*
6369 * reset freeze bit, overflow status information destroyed
6370 */
6371 pfm_unfreeze_pmu();
6372 } else {
6373 pmc0 = task->thread.pmcs[0];
6374 /*
6375 * clear whatever overflow status bits there were
6376 */
6377 task->thread.pmcs[0] = 0;
6378 }
6379 ovfl_val = pmu_conf->ovfl_val;
6380 /*
6381 * we save all the used pmds
6382 * we take care of overflows for counting PMDs
6383 *
6384 * XXX: sampling situation is not taken into account here
6385 */
6386 mask2 = ctx->ctx_used_pmds[0];
6387
6388 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6389
6390 for (i = 0; mask2; i++, mask2>>=1) {
6391
6392 /* skip non used pmds */
6393 if ((mask2 & 0x1) == 0) continue;
6394
6395 /*
6396 * can access PMU always true in system wide mode
6397 */
6398 val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : task->thread.pmds[i];
6399
6400 if (PMD_IS_COUNTING(i)) {
6401 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6402 task->pid,
6403 i,
6404 ctx->ctx_pmds[i].val,
6405 val & ovfl_val));
6406
6407 /*
6408 * we rebuild the full 64 bit value of the counter
6409 */
6410 val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6411
6412 /*
6413 * now everything is in ctx_pmds[] and we need
6414 * to clear the saved context from save_regs() such that
6415 * pfm_read_pmds() gets the correct value
6416 */
6417 pmd_val = 0UL;
6418
6419 /*
6420 * take care of overflow inline
6421 */
6422 if (pmc0 & (1UL << i)) {
6423 val += 1 + ovfl_val;
6424 DPRINT(("[%d] pmd[%d] overflowed\n", task->pid, i));
6425 }
6426 }
6427
6428 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task->pid, i, val, pmd_val));
6429
6430 if (is_self) task->thread.pmds[i] = pmd_val;
6431
6432 ctx->ctx_pmds[i].val = val;
6433 }
6434}
6435
6436static struct irqaction perfmon_irqaction = {
6437 .handler = pfm_interrupt_handler,
6438 .flags = SA_INTERRUPT,
6439 .name = "perfmon"
6440};
6441
a1ecf7f6
TL
6442static void
6443pfm_alt_save_pmu_state(void *data)
6444{
6445 struct pt_regs *regs;
6446
6447 regs = ia64_task_regs(current);
6448
6449 DPRINT(("called\n"));
6450
6451 /*
6452 * should not be necessary but
6453 * let's take not risk
6454 */
6455 pfm_clear_psr_up();
6456 pfm_clear_psr_pp();
6457 ia64_psr(regs)->pp = 0;
6458
6459 /*
6460 * This call is required
6461 * May cause a spurious interrupt on some processors
6462 */
6463 pfm_freeze_pmu();
6464
6465 ia64_srlz_d();
6466}
6467
6468void
6469pfm_alt_restore_pmu_state(void *data)
6470{
6471 struct pt_regs *regs;
6472
6473 regs = ia64_task_regs(current);
6474
6475 DPRINT(("called\n"));
6476
6477 /*
6478 * put PMU back in state expected
6479 * by perfmon
6480 */
6481 pfm_clear_psr_up();
6482 pfm_clear_psr_pp();
6483 ia64_psr(regs)->pp = 0;
6484
6485 /*
6486 * perfmon runs with PMU unfrozen at all times
6487 */
6488 pfm_unfreeze_pmu();
6489
6490 ia64_srlz_d();
6491}
6492
6493int
6494pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6495{
6496 int ret, i;
6497 int reserve_cpu;
6498
6499 /* some sanity checks */
6500 if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6501
6502 /* do the easy test first */
6503 if (pfm_alt_intr_handler) return -EBUSY;
6504
6505 /* one at a time in the install or remove, just fail the others */
6506 if (!spin_trylock(&pfm_alt_install_check)) {
6507 return -EBUSY;
6508 }
6509
6510 /* reserve our session */
6511 for_each_online_cpu(reserve_cpu) {
6512 ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6513 if (ret) goto cleanup_reserve;
6514 }
6515
6516 /* save the current system wide pmu states */
6517 ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 0, 1);
6518 if (ret) {
6519 DPRINT(("on_each_cpu() failed: %d\n", ret));
6520 goto cleanup_reserve;
6521 }
6522
6523 /* officially change to the alternate interrupt handler */
6524 pfm_alt_intr_handler = hdl;
6525
6526 spin_unlock(&pfm_alt_install_check);
6527
6528 return 0;
6529
6530cleanup_reserve:
6531 for_each_online_cpu(i) {
6532 /* don't unreserve more than we reserved */
6533 if (i >= reserve_cpu) break;
6534
6535 pfm_unreserve_session(NULL, 1, i);
6536 }
6537
6538 spin_unlock(&pfm_alt_install_check);
6539
6540 return ret;
6541}
6542EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6543
6544int
6545pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6546{
6547 int i;
6548 int ret;
6549
6550 if (hdl == NULL) return -EINVAL;
6551
6552 /* cannot remove someone else's handler! */
6553 if (pfm_alt_intr_handler != hdl) return -EINVAL;
6554
6555 /* one at a time in the install or remove, just fail the others */
6556 if (!spin_trylock(&pfm_alt_install_check)) {
6557 return -EBUSY;
6558 }
6559
6560 pfm_alt_intr_handler = NULL;
6561
6562 ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 0, 1);
6563 if (ret) {
6564 DPRINT(("on_each_cpu() failed: %d\n", ret));
6565 }
6566
6567 for_each_online_cpu(i) {
6568 pfm_unreserve_session(NULL, 1, i);
6569 }
6570
6571 spin_unlock(&pfm_alt_install_check);
6572
6573 return 0;
6574}
6575EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6576
1da177e4
LT
6577/*
6578 * perfmon initialization routine, called from the initcall() table
6579 */
6580static int init_pfm_fs(void);
6581
6582static int __init
6583pfm_probe_pmu(void)
6584{
6585 pmu_config_t **p;
6586 int family;
6587
6588 family = local_cpu_data->family;
6589 p = pmu_confs;
6590
6591 while(*p) {
6592 if ((*p)->probe) {
6593 if ((*p)->probe() == 0) goto found;
6594 } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6595 goto found;
6596 }
6597 p++;
6598 }
6599 return -1;
6600found:
6601 pmu_conf = *p;
6602 return 0;
6603}
6604
6605static struct file_operations pfm_proc_fops = {
6606 .open = pfm_proc_open,
6607 .read = seq_read,
6608 .llseek = seq_lseek,
6609 .release = seq_release,
6610};
6611
6612int __init
6613pfm_init(void)
6614{
6615 unsigned int n, n_counters, i;
6616
6617 printk("perfmon: version %u.%u IRQ %u\n",
6618 PFM_VERSION_MAJ,
6619 PFM_VERSION_MIN,
6620 IA64_PERFMON_VECTOR);
6621
6622 if (pfm_probe_pmu()) {
6623 printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6624 local_cpu_data->family);
6625 return -ENODEV;
6626 }
6627
6628 /*
6629 * compute the number of implemented PMD/PMC from the
6630 * description tables
6631 */
6632 n = 0;
6633 for (i=0; PMC_IS_LAST(i) == 0; i++) {
6634 if (PMC_IS_IMPL(i) == 0) continue;
6635 pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6636 n++;
6637 }
6638 pmu_conf->num_pmcs = n;
6639
6640 n = 0; n_counters = 0;
6641 for (i=0; PMD_IS_LAST(i) == 0; i++) {
6642 if (PMD_IS_IMPL(i) == 0) continue;
6643 pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6644 n++;
6645 if (PMD_IS_COUNTING(i)) n_counters++;
6646 }
6647 pmu_conf->num_pmds = n;
6648 pmu_conf->num_counters = n_counters;
6649
6650 /*
6651 * sanity checks on the number of debug registers
6652 */
6653 if (pmu_conf->use_rr_dbregs) {
6654 if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6655 printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6656 pmu_conf = NULL;
6657 return -1;
6658 }
6659 if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6660 printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6661 pmu_conf = NULL;
6662 return -1;
6663 }
6664 }
6665
6666 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6667 pmu_conf->pmu_name,
6668 pmu_conf->num_pmcs,
6669 pmu_conf->num_pmds,
6670 pmu_conf->num_counters,
6671 ffz(pmu_conf->ovfl_val));
6672
6673 /* sanity check */
6674 if (pmu_conf->num_pmds >= IA64_NUM_PMD_REGS || pmu_conf->num_pmcs >= IA64_NUM_PMC_REGS) {
6675 printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6676 pmu_conf = NULL;
6677 return -1;
6678 }
6679
6680 /*
6681 * create /proc/perfmon (mostly for debugging purposes)
6682 */
6683 perfmon_dir = create_proc_entry("perfmon", S_IRUGO, NULL);
6684 if (perfmon_dir == NULL) {
6685 printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6686 pmu_conf = NULL;
6687 return -1;
6688 }
6689 /*
6690 * install customized file operations for /proc/perfmon entry
6691 */
6692 perfmon_dir->proc_fops = &pfm_proc_fops;
6693
6694 /*
6695 * create /proc/sys/kernel/perfmon (for debugging purposes)
6696 */
6697 pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root, 0);
6698
6699 /*
6700 * initialize all our spinlocks
6701 */
6702 spin_lock_init(&pfm_sessions.pfs_lock);
6703 spin_lock_init(&pfm_buffer_fmt_lock);
6704
6705 init_pfm_fs();
6706
6707 for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6708
6709 return 0;
6710}
6711
6712__initcall(pfm_init);
6713
6714/*
6715 * this function is called before pfm_init()
6716 */
6717void
6718pfm_init_percpu (void)
6719{
6720 /*
6721 * make sure no measurement is active
6722 * (may inherit programmed PMCs from EFI).
6723 */
6724 pfm_clear_psr_pp();
6725 pfm_clear_psr_up();
6726
6727 /*
6728 * we run with the PMU not frozen at all times
6729 */
6730 pfm_unfreeze_pmu();
6731
6732 if (smp_processor_id() == 0)
6733 register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6734
6735 ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6736 ia64_srlz_d();
6737}
6738
6739/*
6740 * used for debug purposes only
6741 */
6742void
6743dump_pmu_state(const char *from)
6744{
6745 struct task_struct *task;
6746 struct thread_struct *t;
6747 struct pt_regs *regs;
6748 pfm_context_t *ctx;
6749 unsigned long psr, dcr, info, flags;
6750 int i, this_cpu;
6751
6752 local_irq_save(flags);
6753
6754 this_cpu = smp_processor_id();
6755 regs = ia64_task_regs(current);
6756 info = PFM_CPUINFO_GET();
6757 dcr = ia64_getreg(_IA64_REG_CR_DCR);
6758
6759 if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6760 local_irq_restore(flags);
6761 return;
6762 }
6763
6764 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6765 this_cpu,
6766 from,
6767 current->pid,
6768 regs->cr_iip,
6769 current->comm);
6770
6771 task = GET_PMU_OWNER();
6772 ctx = GET_PMU_CTX();
6773
6774 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task->pid : -1, ctx);
6775
6776 psr = pfm_get_psr();
6777
6778 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6779 this_cpu,
6780 ia64_get_pmc(0),
6781 psr & IA64_PSR_PP ? 1 : 0,
6782 psr & IA64_PSR_UP ? 1 : 0,
6783 dcr & IA64_DCR_PP ? 1 : 0,
6784 info,
6785 ia64_psr(regs)->up,
6786 ia64_psr(regs)->pp);
6787
6788 ia64_psr(regs)->up = 0;
6789 ia64_psr(regs)->pp = 0;
6790
6791 t = &current->thread;
6792
6793 for (i=1; PMC_IS_LAST(i) == 0; i++) {
6794 if (PMC_IS_IMPL(i) == 0) continue;
6795 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, t->pmcs[i]);
6796 }
6797
6798 for (i=1; PMD_IS_LAST(i) == 0; i++) {
6799 if (PMD_IS_IMPL(i) == 0) continue;
6800 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, t->pmds[i]);
6801 }
6802
6803 if (ctx) {
6804 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6805 this_cpu,
6806 ctx->ctx_state,
6807 ctx->ctx_smpl_vaddr,
6808 ctx->ctx_smpl_hdr,
6809 ctx->ctx_msgq_head,
6810 ctx->ctx_msgq_tail,
6811 ctx->ctx_saved_psr_up);
6812 }
6813 local_irq_restore(flags);
6814}
6815
6816/*
6817 * called from process.c:copy_thread(). task is new child.
6818 */
6819void
6820pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6821{
6822 struct thread_struct *thread;
6823
6824 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task->pid));
6825
6826 thread = &task->thread;
6827
6828 /*
6829 * cut links inherited from parent (current)
6830 */
6831 thread->pfm_context = NULL;
6832
6833 PFM_SET_WORK_PENDING(task, 0);
6834
6835 /*
6836 * the psr bits are already set properly in copy_threads()
6837 */
6838}
6839#else /* !CONFIG_PERFMON */
6840asmlinkage long
6841sys_perfmonctl (int fd, int cmd, void *arg, int count)
6842{
6843 return -ENOSYS;
6844}
6845#endif /* CONFIG_PERFMON */