]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/ia64/kernel/perfmon.c
[IA64] resolve name clash by renaming is_available_memory()
[net-next-2.6.git] / arch / ia64 / kernel / perfmon.c
CommitLineData
1da177e4
LT
1/*
2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
4 *
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
7 *
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
10 *
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
13 *
a1ecf7f6 14 * Copyright (C) 1999-2005 Hewlett Packard Co
1da177e4
LT
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
17 *
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
20 */
21
1da177e4
LT
22#include <linux/module.h>
23#include <linux/kernel.h>
24#include <linux/sched.h>
25#include <linux/interrupt.h>
26#include <linux/smp_lock.h>
27#include <linux/proc_fs.h>
28#include <linux/seq_file.h>
29#include <linux/init.h>
30#include <linux/vmalloc.h>
31#include <linux/mm.h>
32#include <linux/sysctl.h>
33#include <linux/list.h>
34#include <linux/file.h>
35#include <linux/poll.h>
36#include <linux/vfs.h>
a3bc0dbc 37#include <linux/smp.h>
1da177e4
LT
38#include <linux/pagemap.h>
39#include <linux/mount.h>
1da177e4 40#include <linux/bitops.h>
a9415644 41#include <linux/capability.h>
badf1662 42#include <linux/rcupdate.h>
60f1c444 43#include <linux/completion.h>
1da177e4
LT
44
45#include <asm/errno.h>
46#include <asm/intrinsics.h>
47#include <asm/page.h>
48#include <asm/perfmon.h>
49#include <asm/processor.h>
50#include <asm/signal.h>
51#include <asm/system.h>
52#include <asm/uaccess.h>
53#include <asm/delay.h>
54
55#ifdef CONFIG_PERFMON
56/*
57 * perfmon context state
58 */
59#define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
60#define PFM_CTX_LOADED 2 /* context is loaded onto a task */
61#define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
62#define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
63
64#define PFM_INVALID_ACTIVATION (~0UL)
65
35589a8f
KA
66#define PFM_NUM_PMC_REGS 64 /* PMC save area for ctxsw */
67#define PFM_NUM_PMD_REGS 64 /* PMD save area for ctxsw */
68
1da177e4
LT
69/*
70 * depth of message queue
71 */
72#define PFM_MAX_MSGS 32
73#define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
74
75/*
76 * type of a PMU register (bitmask).
77 * bitmask structure:
78 * bit0 : register implemented
79 * bit1 : end marker
80 * bit2-3 : reserved
81 * bit4 : pmc has pmc.pm
82 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
83 * bit6-7 : register type
84 * bit8-31: reserved
85 */
86#define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
87#define PFM_REG_IMPL 0x1 /* register implemented */
88#define PFM_REG_END 0x2 /* end marker */
89#define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
90#define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
91#define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
92#define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
93#define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
94
95#define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
96#define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
97
98#define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
99
100/* i assumed unsigned */
101#define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
102#define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
103
104/* XXX: these assume that register i is implemented */
105#define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
106#define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
107#define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
108#define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
109
110#define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
111#define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
112#define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
113#define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
114
115#define PFM_NUM_IBRS IA64_NUM_DBG_REGS
116#define PFM_NUM_DBRS IA64_NUM_DBG_REGS
117
118#define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
119#define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
120#define PFM_CTX_TASK(h) (h)->ctx_task
121
122#define PMU_PMC_OI 5 /* position of pmc.oi bit */
123
124/* XXX: does not support more than 64 PMDs */
125#define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
126#define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
127
128#define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
129
130#define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
131#define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
132#define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
133#define PFM_CODE_RR 0 /* requesting code range restriction */
134#define PFM_DATA_RR 1 /* requestion data range restriction */
135
136#define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
137#define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
138#define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
139
140#define RDEP(x) (1UL<<(x))
141
142/*
143 * context protection macros
144 * in SMP:
145 * - we need to protect against CPU concurrency (spin_lock)
146 * - we need to protect against PMU overflow interrupts (local_irq_disable)
147 * in UP:
148 * - we need to protect against PMU overflow interrupts (local_irq_disable)
149 *
150 * spin_lock_irqsave()/spin_lock_irqrestore():
151 * in SMP: local_irq_disable + spin_lock
152 * in UP : local_irq_disable
153 *
154 * spin_lock()/spin_lock():
155 * in UP : removed automatically
156 * in SMP: protect against context accesses from other CPU. interrupts
157 * are not masked. This is useful for the PMU interrupt handler
158 * because we know we will not get PMU concurrency in that code.
159 */
160#define PROTECT_CTX(c, f) \
161 do { \
162 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, current->pid)); \
163 spin_lock_irqsave(&(c)->ctx_lock, f); \
164 DPRINT(("spinlocked ctx %p by [%d]\n", c, current->pid)); \
165 } while(0)
166
167#define UNPROTECT_CTX(c, f) \
168 do { \
169 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, current->pid)); \
170 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
171 } while(0)
172
173#define PROTECT_CTX_NOPRINT(c, f) \
174 do { \
175 spin_lock_irqsave(&(c)->ctx_lock, f); \
176 } while(0)
177
178
179#define UNPROTECT_CTX_NOPRINT(c, f) \
180 do { \
181 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
182 } while(0)
183
184
185#define PROTECT_CTX_NOIRQ(c) \
186 do { \
187 spin_lock(&(c)->ctx_lock); \
188 } while(0)
189
190#define UNPROTECT_CTX_NOIRQ(c) \
191 do { \
192 spin_unlock(&(c)->ctx_lock); \
193 } while(0)
194
195
196#ifdef CONFIG_SMP
197
198#define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
199#define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
200#define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
201
202#else /* !CONFIG_SMP */
203#define SET_ACTIVATION(t) do {} while(0)
204#define GET_ACTIVATION(t) do {} while(0)
205#define INC_ACTIVATION(t) do {} while(0)
206#endif /* CONFIG_SMP */
207
208#define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
209#define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
210#define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
211
212#define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
213#define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
214
215#define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
216
217/*
218 * cmp0 must be the value of pmc0
219 */
220#define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
221
222#define PFMFS_MAGIC 0xa0b4d889
223
224/*
225 * debugging
226 */
227#define PFM_DEBUGGING 1
228#ifdef PFM_DEBUGGING
229#define DPRINT(a) \
230 do { \
231 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
232 } while (0)
233
234#define DPRINT_ovfl(a) \
235 do { \
236 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
237 } while (0)
238#endif
239
240/*
241 * 64-bit software counter structure
242 *
243 * the next_reset_type is applied to the next call to pfm_reset_regs()
244 */
245typedef struct {
246 unsigned long val; /* virtual 64bit counter value */
247 unsigned long lval; /* last reset value */
248 unsigned long long_reset; /* reset value on sampling overflow */
249 unsigned long short_reset; /* reset value on overflow */
250 unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
251 unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
252 unsigned long seed; /* seed for random-number generator */
253 unsigned long mask; /* mask for random-number generator */
254 unsigned int flags; /* notify/do not notify */
255 unsigned long eventid; /* overflow event identifier */
256} pfm_counter_t;
257
258/*
259 * context flags
260 */
261typedef struct {
262 unsigned int block:1; /* when 1, task will blocked on user notifications */
263 unsigned int system:1; /* do system wide monitoring */
264 unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
265 unsigned int is_sampling:1; /* true if using a custom format */
266 unsigned int excl_idle:1; /* exclude idle task in system wide session */
267 unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
268 unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
269 unsigned int no_msg:1; /* no message sent on overflow */
270 unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
271 unsigned int reserved:22;
272} pfm_context_flags_t;
273
274#define PFM_TRAP_REASON_NONE 0x0 /* default value */
275#define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
276#define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
277
278
279/*
280 * perfmon context: encapsulates all the state of a monitoring session
281 */
282
283typedef struct pfm_context {
284 spinlock_t ctx_lock; /* context protection */
285
286 pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
287 unsigned int ctx_state; /* state: active/inactive (no bitfield) */
288
289 struct task_struct *ctx_task; /* task to which context is attached */
290
291 unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
292
60f1c444 293 struct completion ctx_restart_done; /* use for blocking notification mode */
1da177e4
LT
294
295 unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
296 unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
297 unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
298
299 unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
300 unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
301 unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
302
35589a8f 303 unsigned long ctx_pmcs[PFM_NUM_PMC_REGS]; /* saved copies of PMC values */
1da177e4
LT
304
305 unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
306 unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
307 unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
308 unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
309
35589a8f
KA
310 pfm_counter_t ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
311
312 unsigned long th_pmcs[PFM_NUM_PMC_REGS]; /* PMC thread save state */
313 unsigned long th_pmds[PFM_NUM_PMD_REGS]; /* PMD thread save state */
1da177e4
LT
314
315 u64 ctx_saved_psr_up; /* only contains psr.up value */
316
317 unsigned long ctx_last_activation; /* context last activation number for last_cpu */
318 unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
319 unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
320
321 int ctx_fd; /* file descriptor used my this context */
322 pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
323
324 pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
325 void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
326 unsigned long ctx_smpl_size; /* size of sampling buffer */
327 void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
328
329 wait_queue_head_t ctx_msgq_wait;
330 pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
331 int ctx_msgq_head;
332 int ctx_msgq_tail;
333 struct fasync_struct *ctx_async_queue;
334
335 wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
336} pfm_context_t;
337
338/*
339 * magic number used to verify that structure is really
340 * a perfmon context
341 */
342#define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
343
344#define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
345
346#ifdef CONFIG_SMP
347#define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
348#define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
349#else
350#define SET_LAST_CPU(ctx, v) do {} while(0)
351#define GET_LAST_CPU(ctx) do {} while(0)
352#endif
353
354
355#define ctx_fl_block ctx_flags.block
356#define ctx_fl_system ctx_flags.system
357#define ctx_fl_using_dbreg ctx_flags.using_dbreg
358#define ctx_fl_is_sampling ctx_flags.is_sampling
359#define ctx_fl_excl_idle ctx_flags.excl_idle
360#define ctx_fl_going_zombie ctx_flags.going_zombie
361#define ctx_fl_trap_reason ctx_flags.trap_reason
362#define ctx_fl_no_msg ctx_flags.no_msg
363#define ctx_fl_can_restart ctx_flags.can_restart
364
365#define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
366#define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
367
368/*
369 * global information about all sessions
370 * mostly used to synchronize between system wide and per-process
371 */
372typedef struct {
373 spinlock_t pfs_lock; /* lock the structure */
374
375 unsigned int pfs_task_sessions; /* number of per task sessions */
376 unsigned int pfs_sys_sessions; /* number of per system wide sessions */
377 unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
378 unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
379 struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
380} pfm_session_t;
381
382/*
383 * information about a PMC or PMD.
384 * dep_pmd[]: a bitmask of dependent PMD registers
385 * dep_pmc[]: a bitmask of dependent PMC registers
386 */
387typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
388typedef struct {
389 unsigned int type;
390 int pm_pos;
391 unsigned long default_value; /* power-on default value */
392 unsigned long reserved_mask; /* bitmask of reserved bits */
393 pfm_reg_check_t read_check;
394 pfm_reg_check_t write_check;
395 unsigned long dep_pmd[4];
396 unsigned long dep_pmc[4];
397} pfm_reg_desc_t;
398
399/* assume cnum is a valid monitor */
400#define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
401
402/*
403 * This structure is initialized at boot time and contains
404 * a description of the PMU main characteristics.
405 *
406 * If the probe function is defined, detection is based
407 * on its return value:
408 * - 0 means recognized PMU
409 * - anything else means not supported
410 * When the probe function is not defined, then the pmu_family field
411 * is used and it must match the host CPU family such that:
412 * - cpu->family & config->pmu_family != 0
413 */
414typedef struct {
415 unsigned long ovfl_val; /* overflow value for counters */
416
417 pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
418 pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
419
420 unsigned int num_pmcs; /* number of PMCS: computed at init time */
421 unsigned int num_pmds; /* number of PMDS: computed at init time */
422 unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
423 unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
424
425 char *pmu_name; /* PMU family name */
426 unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
427 unsigned int flags; /* pmu specific flags */
428 unsigned int num_ibrs; /* number of IBRS: computed at init time */
429 unsigned int num_dbrs; /* number of DBRS: computed at init time */
430 unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
431 int (*probe)(void); /* customized probe routine */
432 unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
433} pmu_config_t;
434/*
435 * PMU specific flags
436 */
437#define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
438
439/*
440 * debug register related type definitions
441 */
442typedef struct {
443 unsigned long ibr_mask:56;
444 unsigned long ibr_plm:4;
445 unsigned long ibr_ig:3;
446 unsigned long ibr_x:1;
447} ibr_mask_reg_t;
448
449typedef struct {
450 unsigned long dbr_mask:56;
451 unsigned long dbr_plm:4;
452 unsigned long dbr_ig:2;
453 unsigned long dbr_w:1;
454 unsigned long dbr_r:1;
455} dbr_mask_reg_t;
456
457typedef union {
458 unsigned long val;
459 ibr_mask_reg_t ibr;
460 dbr_mask_reg_t dbr;
461} dbreg_t;
462
463
464/*
465 * perfmon command descriptions
466 */
467typedef struct {
468 int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
469 char *cmd_name;
470 int cmd_flags;
471 unsigned int cmd_narg;
472 size_t cmd_argsize;
473 int (*cmd_getsize)(void *arg, size_t *sz);
474} pfm_cmd_desc_t;
475
476#define PFM_CMD_FD 0x01 /* command requires a file descriptor */
477#define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
478#define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
479#define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
480
481
482#define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
483#define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
484#define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
485#define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
486#define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
487
488#define PFM_CMD_ARG_MANY -1 /* cannot be zero */
489
1da177e4
LT
490typedef struct {
491 unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
492 unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
493 unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
494 unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
495 unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
496 unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
497 unsigned long pfm_smpl_handler_calls;
498 unsigned long pfm_smpl_handler_cycles;
499 char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
500} pfm_stats_t;
501
502/*
503 * perfmon internal variables
504 */
505static pfm_stats_t pfm_stats[NR_CPUS];
506static pfm_session_t pfm_sessions; /* global sessions information */
507
a9f6a0dd 508static DEFINE_SPINLOCK(pfm_alt_install_check);
a1ecf7f6
TL
509static pfm_intr_handler_desc_t *pfm_alt_intr_handler;
510
1da177e4
LT
511static struct proc_dir_entry *perfmon_dir;
512static pfm_uuid_t pfm_null_uuid = {0,};
513
514static spinlock_t pfm_buffer_fmt_lock;
515static LIST_HEAD(pfm_buffer_fmt_list);
516
517static pmu_config_t *pmu_conf;
518
519/* sysctl() controls */
4944930a
SE
520pfm_sysctl_t pfm_sysctl;
521EXPORT_SYMBOL(pfm_sysctl);
1da177e4
LT
522
523static ctl_table pfm_ctl_table[]={
524 {1, "debug", &pfm_sysctl.debug, sizeof(int), 0666, NULL, &proc_dointvec, NULL,},
525 {2, "debug_ovfl", &pfm_sysctl.debug_ovfl, sizeof(int), 0666, NULL, &proc_dointvec, NULL,},
526 {3, "fastctxsw", &pfm_sysctl.fastctxsw, sizeof(int), 0600, NULL, &proc_dointvec, NULL,},
527 {4, "expert_mode", &pfm_sysctl.expert_mode, sizeof(int), 0600, NULL, &proc_dointvec, NULL,},
528 { 0, },
529};
530static ctl_table pfm_sysctl_dir[] = {
531 {1, "perfmon", NULL, 0, 0755, pfm_ctl_table, },
532 {0,},
533};
534static ctl_table pfm_sysctl_root[] = {
535 {1, "kernel", NULL, 0, 0755, pfm_sysctl_dir, },
536 {0,},
537};
538static struct ctl_table_header *pfm_sysctl_header;
539
540static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
1da177e4
LT
541
542#define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
543#define pfm_get_cpu_data(a,b) per_cpu(a, b)
544
545static inline void
546pfm_put_task(struct task_struct *task)
547{
548 if (task != current) put_task_struct(task);
549}
550
551static inline void
552pfm_set_task_notify(struct task_struct *task)
553{
554 struct thread_info *info;
555
556 info = (struct thread_info *) ((char *) task + IA64_TASK_SIZE);
557 set_bit(TIF_NOTIFY_RESUME, &info->flags);
558}
559
560static inline void
561pfm_clear_task_notify(void)
562{
563 clear_thread_flag(TIF_NOTIFY_RESUME);
564}
565
566static inline void
567pfm_reserve_page(unsigned long a)
568{
569 SetPageReserved(vmalloc_to_page((void *)a));
570}
571static inline void
572pfm_unreserve_page(unsigned long a)
573{
574 ClearPageReserved(vmalloc_to_page((void*)a));
575}
576
577static inline unsigned long
578pfm_protect_ctx_ctxsw(pfm_context_t *x)
579{
580 spin_lock(&(x)->ctx_lock);
581 return 0UL;
582}
583
24b8e0cc 584static inline void
1da177e4
LT
585pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
586{
587 spin_unlock(&(x)->ctx_lock);
588}
589
590static inline unsigned int
591pfm_do_munmap(struct mm_struct *mm, unsigned long addr, size_t len, int acct)
592{
593 return do_munmap(mm, addr, len);
594}
595
596static inline unsigned long
597pfm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, unsigned long exec)
598{
599 return get_unmapped_area(file, addr, len, pgoff, flags);
600}
601
602
454e2398
DH
603static int
604pfmfs_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data,
605 struct vfsmount *mnt)
1da177e4 606{
454e2398 607 return get_sb_pseudo(fs_type, "pfm:", NULL, PFMFS_MAGIC, mnt);
1da177e4
LT
608}
609
610static struct file_system_type pfm_fs_type = {
611 .name = "pfmfs",
612 .get_sb = pfmfs_get_sb,
613 .kill_sb = kill_anon_super,
614};
615
616DEFINE_PER_CPU(unsigned long, pfm_syst_info);
617DEFINE_PER_CPU(struct task_struct *, pmu_owner);
618DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
619DEFINE_PER_CPU(unsigned long, pmu_activation_number);
fffcc150 620EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
1da177e4
LT
621
622
623/* forward declaration */
624static struct file_operations pfm_file_ops;
625
626/*
627 * forward declarations
628 */
629#ifndef CONFIG_SMP
630static void pfm_lazy_save_regs (struct task_struct *ta);
631#endif
632
633void dump_pmu_state(const char *);
634static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
635
636#include "perfmon_itanium.h"
637#include "perfmon_mckinley.h"
9179cb65 638#include "perfmon_montecito.h"
1da177e4
LT
639#include "perfmon_generic.h"
640
641static pmu_config_t *pmu_confs[]={
9179cb65 642 &pmu_conf_mont,
1da177e4
LT
643 &pmu_conf_mck,
644 &pmu_conf_ita,
645 &pmu_conf_gen, /* must be last */
646 NULL
647};
648
649
650static int pfm_end_notify_user(pfm_context_t *ctx);
651
652static inline void
653pfm_clear_psr_pp(void)
654{
655 ia64_rsm(IA64_PSR_PP);
656 ia64_srlz_i();
657}
658
659static inline void
660pfm_set_psr_pp(void)
661{
662 ia64_ssm(IA64_PSR_PP);
663 ia64_srlz_i();
664}
665
666static inline void
667pfm_clear_psr_up(void)
668{
669 ia64_rsm(IA64_PSR_UP);
670 ia64_srlz_i();
671}
672
673static inline void
674pfm_set_psr_up(void)
675{
676 ia64_ssm(IA64_PSR_UP);
677 ia64_srlz_i();
678}
679
680static inline unsigned long
681pfm_get_psr(void)
682{
683 unsigned long tmp;
684 tmp = ia64_getreg(_IA64_REG_PSR);
685 ia64_srlz_i();
686 return tmp;
687}
688
689static inline void
690pfm_set_psr_l(unsigned long val)
691{
692 ia64_setreg(_IA64_REG_PSR_L, val);
693 ia64_srlz_i();
694}
695
696static inline void
697pfm_freeze_pmu(void)
698{
699 ia64_set_pmc(0,1UL);
700 ia64_srlz_d();
701}
702
703static inline void
704pfm_unfreeze_pmu(void)
705{
706 ia64_set_pmc(0,0UL);
707 ia64_srlz_d();
708}
709
710static inline void
711pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
712{
713 int i;
714
715 for (i=0; i < nibrs; i++) {
716 ia64_set_ibr(i, ibrs[i]);
717 ia64_dv_serialize_instruction();
718 }
719 ia64_srlz_i();
720}
721
722static inline void
723pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
724{
725 int i;
726
727 for (i=0; i < ndbrs; i++) {
728 ia64_set_dbr(i, dbrs[i]);
729 ia64_dv_serialize_data();
730 }
731 ia64_srlz_d();
732}
733
734/*
735 * PMD[i] must be a counter. no check is made
736 */
737static inline unsigned long
738pfm_read_soft_counter(pfm_context_t *ctx, int i)
739{
740 return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
741}
742
743/*
744 * PMD[i] must be a counter. no check is made
745 */
746static inline void
747pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
748{
749 unsigned long ovfl_val = pmu_conf->ovfl_val;
750
751 ctx->ctx_pmds[i].val = val & ~ovfl_val;
752 /*
753 * writing to unimplemented part is ignore, so we do not need to
754 * mask off top part
755 */
756 ia64_set_pmd(i, val & ovfl_val);
757}
758
759static pfm_msg_t *
760pfm_get_new_msg(pfm_context_t *ctx)
761{
762 int idx, next;
763
764 next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
765
766 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
767 if (next == ctx->ctx_msgq_head) return NULL;
768
769 idx = ctx->ctx_msgq_tail;
770 ctx->ctx_msgq_tail = next;
771
772 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
773
774 return ctx->ctx_msgq+idx;
775}
776
777static pfm_msg_t *
778pfm_get_next_msg(pfm_context_t *ctx)
779{
780 pfm_msg_t *msg;
781
782 DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
783
784 if (PFM_CTXQ_EMPTY(ctx)) return NULL;
785
786 /*
787 * get oldest message
788 */
789 msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
790
791 /*
792 * and move forward
793 */
794 ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
795
796 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
797
798 return msg;
799}
800
801static void
802pfm_reset_msgq(pfm_context_t *ctx)
803{
804 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
805 DPRINT(("ctx=%p msgq reset\n", ctx));
806}
807
808static void *
809pfm_rvmalloc(unsigned long size)
810{
811 void *mem;
812 unsigned long addr;
813
814 size = PAGE_ALIGN(size);
815 mem = vmalloc(size);
816 if (mem) {
817 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
818 memset(mem, 0, size);
819 addr = (unsigned long)mem;
820 while (size > 0) {
821 pfm_reserve_page(addr);
822 addr+=PAGE_SIZE;
823 size-=PAGE_SIZE;
824 }
825 }
826 return mem;
827}
828
829static void
830pfm_rvfree(void *mem, unsigned long size)
831{
832 unsigned long addr;
833
834 if (mem) {
835 DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
836 addr = (unsigned long) mem;
837 while ((long) size > 0) {
838 pfm_unreserve_page(addr);
839 addr+=PAGE_SIZE;
840 size-=PAGE_SIZE;
841 }
842 vfree(mem);
843 }
844 return;
845}
846
847static pfm_context_t *
848pfm_context_alloc(void)
849{
850 pfm_context_t *ctx;
851
852 /*
853 * allocate context descriptor
854 * must be able to free with interrupts disabled
855 */
856 ctx = kmalloc(sizeof(pfm_context_t), GFP_KERNEL);
857 if (ctx) {
858 memset(ctx, 0, sizeof(pfm_context_t));
859 DPRINT(("alloc ctx @%p\n", ctx));
860 }
861 return ctx;
862}
863
864static void
865pfm_context_free(pfm_context_t *ctx)
866{
867 if (ctx) {
868 DPRINT(("free ctx @%p\n", ctx));
869 kfree(ctx);
870 }
871}
872
873static void
874pfm_mask_monitoring(struct task_struct *task)
875{
876 pfm_context_t *ctx = PFM_GET_CTX(task);
1da177e4
LT
877 unsigned long mask, val, ovfl_mask;
878 int i;
879
880 DPRINT_ovfl(("masking monitoring for [%d]\n", task->pid));
881
882 ovfl_mask = pmu_conf->ovfl_val;
883 /*
884 * monitoring can only be masked as a result of a valid
885 * counter overflow. In UP, it means that the PMU still
886 * has an owner. Note that the owner can be different
887 * from the current task. However the PMU state belongs
888 * to the owner.
889 * In SMP, a valid overflow only happens when task is
890 * current. Therefore if we come here, we know that
891 * the PMU state belongs to the current task, therefore
892 * we can access the live registers.
893 *
894 * So in both cases, the live register contains the owner's
895 * state. We can ONLY touch the PMU registers and NOT the PSR.
896 *
35589a8f 897 * As a consequence to this call, the ctx->th_pmds[] array
1da177e4
LT
898 * contains stale information which must be ignored
899 * when context is reloaded AND monitoring is active (see
900 * pfm_restart).
901 */
902 mask = ctx->ctx_used_pmds[0];
903 for (i = 0; mask; i++, mask>>=1) {
904 /* skip non used pmds */
905 if ((mask & 0x1) == 0) continue;
906 val = ia64_get_pmd(i);
907
908 if (PMD_IS_COUNTING(i)) {
909 /*
910 * we rebuild the full 64 bit value of the counter
911 */
912 ctx->ctx_pmds[i].val += (val & ovfl_mask);
913 } else {
914 ctx->ctx_pmds[i].val = val;
915 }
916 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
917 i,
918 ctx->ctx_pmds[i].val,
919 val & ovfl_mask));
920 }
921 /*
922 * mask monitoring by setting the privilege level to 0
923 * we cannot use psr.pp/psr.up for this, it is controlled by
924 * the user
925 *
926 * if task is current, modify actual registers, otherwise modify
927 * thread save state, i.e., what will be restored in pfm_load_regs()
928 */
929 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
930 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
931 if ((mask & 0x1) == 0UL) continue;
35589a8f
KA
932 ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
933 ctx->th_pmcs[i] &= ~0xfUL;
934 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1da177e4
LT
935 }
936 /*
937 * make all of this visible
938 */
939 ia64_srlz_d();
940}
941
942/*
943 * must always be done with task == current
944 *
945 * context must be in MASKED state when calling
946 */
947static void
948pfm_restore_monitoring(struct task_struct *task)
949{
950 pfm_context_t *ctx = PFM_GET_CTX(task);
1da177e4
LT
951 unsigned long mask, ovfl_mask;
952 unsigned long psr, val;
953 int i, is_system;
954
955 is_system = ctx->ctx_fl_system;
956 ovfl_mask = pmu_conf->ovfl_val;
957
958 if (task != current) {
959 printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task->pid, current->pid);
960 return;
961 }
962 if (ctx->ctx_state != PFM_CTX_MASKED) {
963 printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
964 task->pid, current->pid, ctx->ctx_state);
965 return;
966 }
967 psr = pfm_get_psr();
968 /*
969 * monitoring is masked via the PMC.
970 * As we restore their value, we do not want each counter to
971 * restart right away. We stop monitoring using the PSR,
972 * restore the PMC (and PMD) and then re-establish the psr
973 * as it was. Note that there can be no pending overflow at
974 * this point, because monitoring was MASKED.
975 *
976 * system-wide session are pinned and self-monitoring
977 */
978 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
979 /* disable dcr pp */
980 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
981 pfm_clear_psr_pp();
982 } else {
983 pfm_clear_psr_up();
984 }
985 /*
986 * first, we restore the PMD
987 */
988 mask = ctx->ctx_used_pmds[0];
989 for (i = 0; mask; i++, mask>>=1) {
990 /* skip non used pmds */
991 if ((mask & 0x1) == 0) continue;
992
993 if (PMD_IS_COUNTING(i)) {
994 /*
995 * we split the 64bit value according to
996 * counter width
997 */
998 val = ctx->ctx_pmds[i].val & ovfl_mask;
999 ctx->ctx_pmds[i].val &= ~ovfl_mask;
1000 } else {
1001 val = ctx->ctx_pmds[i].val;
1002 }
1003 ia64_set_pmd(i, val);
1004
1005 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1006 i,
1007 ctx->ctx_pmds[i].val,
1008 val));
1009 }
1010 /*
1011 * restore the PMCs
1012 */
1013 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1014 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1015 if ((mask & 0x1) == 0UL) continue;
35589a8f
KA
1016 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1017 ia64_set_pmc(i, ctx->th_pmcs[i]);
1018 DPRINT(("[%d] pmc[%d]=0x%lx\n", task->pid, i, ctx->th_pmcs[i]));
1da177e4
LT
1019 }
1020 ia64_srlz_d();
1021
1022 /*
1023 * must restore DBR/IBR because could be modified while masked
1024 * XXX: need to optimize
1025 */
1026 if (ctx->ctx_fl_using_dbreg) {
1027 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1028 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1029 }
1030
1031 /*
1032 * now restore PSR
1033 */
1034 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1035 /* enable dcr pp */
1036 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1037 ia64_srlz_i();
1038 }
1039 pfm_set_psr_l(psr);
1040}
1041
1042static inline void
1043pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1044{
1045 int i;
1046
1047 ia64_srlz_d();
1048
1049 for (i=0; mask; i++, mask>>=1) {
1050 if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1051 }
1052}
1053
1054/*
1055 * reload from thread state (used for ctxw only)
1056 */
1057static inline void
1058pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1059{
1060 int i;
1061 unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1062
1063 for (i=0; mask; i++, mask>>=1) {
1064 if ((mask & 0x1) == 0) continue;
1065 val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1066 ia64_set_pmd(i, val);
1067 }
1068 ia64_srlz_d();
1069}
1070
1071/*
1072 * propagate PMD from context to thread-state
1073 */
1074static inline void
1075pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1076{
1da177e4
LT
1077 unsigned long ovfl_val = pmu_conf->ovfl_val;
1078 unsigned long mask = ctx->ctx_all_pmds[0];
1079 unsigned long val;
1080 int i;
1081
1082 DPRINT(("mask=0x%lx\n", mask));
1083
1084 for (i=0; mask; i++, mask>>=1) {
1085
1086 val = ctx->ctx_pmds[i].val;
1087
1088 /*
1089 * We break up the 64 bit value into 2 pieces
1090 * the lower bits go to the machine state in the
1091 * thread (will be reloaded on ctxsw in).
1092 * The upper part stays in the soft-counter.
1093 */
1094 if (PMD_IS_COUNTING(i)) {
1095 ctx->ctx_pmds[i].val = val & ~ovfl_val;
1096 val &= ovfl_val;
1097 }
35589a8f 1098 ctx->th_pmds[i] = val;
1da177e4
LT
1099
1100 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1101 i,
35589a8f 1102 ctx->th_pmds[i],
1da177e4
LT
1103 ctx->ctx_pmds[i].val));
1104 }
1105}
1106
1107/*
1108 * propagate PMC from context to thread-state
1109 */
1110static inline void
1111pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1112{
1da177e4
LT
1113 unsigned long mask = ctx->ctx_all_pmcs[0];
1114 int i;
1115
1116 DPRINT(("mask=0x%lx\n", mask));
1117
1118 for (i=0; mask; i++, mask>>=1) {
1119 /* masking 0 with ovfl_val yields 0 */
35589a8f
KA
1120 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1121 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1da177e4
LT
1122 }
1123}
1124
1125
1126
1127static inline void
1128pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1129{
1130 int i;
1131
1132 for (i=0; mask; i++, mask>>=1) {
1133 if ((mask & 0x1) == 0) continue;
1134 ia64_set_pmc(i, pmcs[i]);
1135 }
1136 ia64_srlz_d();
1137}
1138
1139static inline int
1140pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1141{
1142 return memcmp(a, b, sizeof(pfm_uuid_t));
1143}
1144
1145static inline int
1146pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1147{
1148 int ret = 0;
1149 if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1150 return ret;
1151}
1152
1153static inline int
1154pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1155{
1156 int ret = 0;
1157 if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1158 return ret;
1159}
1160
1161
1162static inline int
1163pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1164 int cpu, void *arg)
1165{
1166 int ret = 0;
1167 if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1168 return ret;
1169}
1170
1171static inline int
1172pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1173 int cpu, void *arg)
1174{
1175 int ret = 0;
1176 if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1177 return ret;
1178}
1179
1180static inline int
1181pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1182{
1183 int ret = 0;
1184 if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1185 return ret;
1186}
1187
1188static inline int
1189pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1190{
1191 int ret = 0;
1192 if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1193 return ret;
1194}
1195
1196static pfm_buffer_fmt_t *
1197__pfm_find_buffer_fmt(pfm_uuid_t uuid)
1198{
1199 struct list_head * pos;
1200 pfm_buffer_fmt_t * entry;
1201
1202 list_for_each(pos, &pfm_buffer_fmt_list) {
1203 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1204 if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1205 return entry;
1206 }
1207 return NULL;
1208}
1209
1210/*
1211 * find a buffer format based on its uuid
1212 */
1213static pfm_buffer_fmt_t *
1214pfm_find_buffer_fmt(pfm_uuid_t uuid)
1215{
1216 pfm_buffer_fmt_t * fmt;
1217 spin_lock(&pfm_buffer_fmt_lock);
1218 fmt = __pfm_find_buffer_fmt(uuid);
1219 spin_unlock(&pfm_buffer_fmt_lock);
1220 return fmt;
1221}
1222
1223int
1224pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1225{
1226 int ret = 0;
1227
1228 /* some sanity checks */
1229 if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1230
1231 /* we need at least a handler */
1232 if (fmt->fmt_handler == NULL) return -EINVAL;
1233
1234 /*
1235 * XXX: need check validity of fmt_arg_size
1236 */
1237
1238 spin_lock(&pfm_buffer_fmt_lock);
1239
1240 if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1241 printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1242 ret = -EBUSY;
1243 goto out;
1244 }
1245 list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1246 printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1247
1248out:
1249 spin_unlock(&pfm_buffer_fmt_lock);
1250 return ret;
1251}
1252EXPORT_SYMBOL(pfm_register_buffer_fmt);
1253
1254int
1255pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1256{
1257 pfm_buffer_fmt_t *fmt;
1258 int ret = 0;
1259
1260 spin_lock(&pfm_buffer_fmt_lock);
1261
1262 fmt = __pfm_find_buffer_fmt(uuid);
1263 if (!fmt) {
1264 printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1265 ret = -EINVAL;
1266 goto out;
1267 }
1268 list_del_init(&fmt->fmt_list);
1269 printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1270
1271out:
1272 spin_unlock(&pfm_buffer_fmt_lock);
1273 return ret;
1274
1275}
1276EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1277
8df5a500
SE
1278extern void update_pal_halt_status(int);
1279
1da177e4
LT
1280static int
1281pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1282{
1283 unsigned long flags;
1284 /*
1285 * validy checks on cpu_mask have been done upstream
1286 */
1287 LOCK_PFS(flags);
1288
1289 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1290 pfm_sessions.pfs_sys_sessions,
1291 pfm_sessions.pfs_task_sessions,
1292 pfm_sessions.pfs_sys_use_dbregs,
1293 is_syswide,
1294 cpu));
1295
1296 if (is_syswide) {
1297 /*
1298 * cannot mix system wide and per-task sessions
1299 */
1300 if (pfm_sessions.pfs_task_sessions > 0UL) {
1301 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1302 pfm_sessions.pfs_task_sessions));
1303 goto abort;
1304 }
1305
1306 if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1307
1308 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1309
1310 pfm_sessions.pfs_sys_session[cpu] = task;
1311
1312 pfm_sessions.pfs_sys_sessions++ ;
1313
1314 } else {
1315 if (pfm_sessions.pfs_sys_sessions) goto abort;
1316 pfm_sessions.pfs_task_sessions++;
1317 }
1318
1319 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1320 pfm_sessions.pfs_sys_sessions,
1321 pfm_sessions.pfs_task_sessions,
1322 pfm_sessions.pfs_sys_use_dbregs,
1323 is_syswide,
1324 cpu));
1325
8df5a500
SE
1326 /*
1327 * disable default_idle() to go to PAL_HALT
1328 */
1329 update_pal_halt_status(0);
1330
1da177e4
LT
1331 UNLOCK_PFS(flags);
1332
1333 return 0;
1334
1335error_conflict:
1336 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1337 pfm_sessions.pfs_sys_session[cpu]->pid,
a1ecf7f6 1338 cpu));
1da177e4
LT
1339abort:
1340 UNLOCK_PFS(flags);
1341
1342 return -EBUSY;
1343
1344}
1345
1346static int
1347pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1348{
1349 unsigned long flags;
1350 /*
1351 * validy checks on cpu_mask have been done upstream
1352 */
1353 LOCK_PFS(flags);
1354
1355 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1356 pfm_sessions.pfs_sys_sessions,
1357 pfm_sessions.pfs_task_sessions,
1358 pfm_sessions.pfs_sys_use_dbregs,
1359 is_syswide,
1360 cpu));
1361
1362
1363 if (is_syswide) {
1364 pfm_sessions.pfs_sys_session[cpu] = NULL;
1365 /*
1366 * would not work with perfmon+more than one bit in cpu_mask
1367 */
1368 if (ctx && ctx->ctx_fl_using_dbreg) {
1369 if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1370 printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1371 } else {
1372 pfm_sessions.pfs_sys_use_dbregs--;
1373 }
1374 }
1375 pfm_sessions.pfs_sys_sessions--;
1376 } else {
1377 pfm_sessions.pfs_task_sessions--;
1378 }
1379 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1380 pfm_sessions.pfs_sys_sessions,
1381 pfm_sessions.pfs_task_sessions,
1382 pfm_sessions.pfs_sys_use_dbregs,
1383 is_syswide,
1384 cpu));
1385
8df5a500
SE
1386 /*
1387 * if possible, enable default_idle() to go into PAL_HALT
1388 */
1389 if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0)
1390 update_pal_halt_status(1);
1391
1da177e4
LT
1392 UNLOCK_PFS(flags);
1393
1394 return 0;
1395}
1396
1397/*
1398 * removes virtual mapping of the sampling buffer.
1399 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1400 * a PROTECT_CTX() section.
1401 */
1402static int
1403pfm_remove_smpl_mapping(struct task_struct *task, void *vaddr, unsigned long size)
1404{
1405 int r;
1406
1407 /* sanity checks */
1408 if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1409 printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task->pid, task->mm);
1410 return -EINVAL;
1411 }
1412
1413 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1414
1415 /*
1416 * does the actual unmapping
1417 */
1418 down_write(&task->mm->mmap_sem);
1419
1420 DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr, size));
1421
1422 r = pfm_do_munmap(task->mm, (unsigned long)vaddr, size, 0);
1423
1424 up_write(&task->mm->mmap_sem);
1425 if (r !=0) {
1426 printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task->pid, vaddr, size);
1427 }
1428
1429 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1430
1431 return 0;
1432}
1433
1434/*
1435 * free actual physical storage used by sampling buffer
1436 */
1437#if 0
1438static int
1439pfm_free_smpl_buffer(pfm_context_t *ctx)
1440{
1441 pfm_buffer_fmt_t *fmt;
1442
1443 if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1444
1445 /*
1446 * we won't use the buffer format anymore
1447 */
1448 fmt = ctx->ctx_buf_fmt;
1449
1450 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1451 ctx->ctx_smpl_hdr,
1452 ctx->ctx_smpl_size,
1453 ctx->ctx_smpl_vaddr));
1454
1455 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1456
1457 /*
1458 * free the buffer
1459 */
1460 pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1461
1462 ctx->ctx_smpl_hdr = NULL;
1463 ctx->ctx_smpl_size = 0UL;
1464
1465 return 0;
1466
1467invalid_free:
1468 printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", current->pid);
1469 return -EINVAL;
1470}
1471#endif
1472
1473static inline void
1474pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1475{
1476 if (fmt == NULL) return;
1477
1478 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1479
1480}
1481
1482/*
1483 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1484 * no real gain from having the whole whorehouse mounted. So we don't need
1485 * any operations on the root directory. However, we need a non-trivial
1486 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1487 */
1488static struct vfsmount *pfmfs_mnt;
1489
1490static int __init
1491init_pfm_fs(void)
1492{
1493 int err = register_filesystem(&pfm_fs_type);
1494 if (!err) {
1495 pfmfs_mnt = kern_mount(&pfm_fs_type);
1496 err = PTR_ERR(pfmfs_mnt);
1497 if (IS_ERR(pfmfs_mnt))
1498 unregister_filesystem(&pfm_fs_type);
1499 else
1500 err = 0;
1501 }
1502 return err;
1503}
1504
1505static void __exit
1506exit_pfm_fs(void)
1507{
1508 unregister_filesystem(&pfm_fs_type);
1509 mntput(pfmfs_mnt);
1510}
1511
1512static ssize_t
1513pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1514{
1515 pfm_context_t *ctx;
1516 pfm_msg_t *msg;
1517 ssize_t ret;
1518 unsigned long flags;
1519 DECLARE_WAITQUEUE(wait, current);
1520 if (PFM_IS_FILE(filp) == 0) {
1521 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
1522 return -EINVAL;
1523 }
1524
1525 ctx = (pfm_context_t *)filp->private_data;
1526 if (ctx == NULL) {
1527 printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", current->pid);
1528 return -EINVAL;
1529 }
1530
1531 /*
1532 * check even when there is no message
1533 */
1534 if (size < sizeof(pfm_msg_t)) {
1535 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1536 return -EINVAL;
1537 }
1538
1539 PROTECT_CTX(ctx, flags);
1540
1541 /*
1542 * put ourselves on the wait queue
1543 */
1544 add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1545
1546
1547 for(;;) {
1548 /*
1549 * check wait queue
1550 */
1551
1552 set_current_state(TASK_INTERRUPTIBLE);
1553
1554 DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1555
1556 ret = 0;
1557 if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1558
1559 UNPROTECT_CTX(ctx, flags);
1560
1561 /*
1562 * check non-blocking read
1563 */
1564 ret = -EAGAIN;
1565 if(filp->f_flags & O_NONBLOCK) break;
1566
1567 /*
1568 * check pending signals
1569 */
1570 if(signal_pending(current)) {
1571 ret = -EINTR;
1572 break;
1573 }
1574 /*
1575 * no message, so wait
1576 */
1577 schedule();
1578
1579 PROTECT_CTX(ctx, flags);
1580 }
1581 DPRINT(("[%d] back to running ret=%ld\n", current->pid, ret));
1582 set_current_state(TASK_RUNNING);
1583 remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1584
1585 if (ret < 0) goto abort;
1586
1587 ret = -EINVAL;
1588 msg = pfm_get_next_msg(ctx);
1589 if (msg == NULL) {
1590 printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, current->pid);
1591 goto abort_locked;
1592 }
1593
4944930a 1594 DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1da177e4
LT
1595
1596 ret = -EFAULT;
1597 if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1598
1599abort_locked:
1600 UNPROTECT_CTX(ctx, flags);
1601abort:
1602 return ret;
1603}
1604
1605static ssize_t
1606pfm_write(struct file *file, const char __user *ubuf,
1607 size_t size, loff_t *ppos)
1608{
1609 DPRINT(("pfm_write called\n"));
1610 return -EINVAL;
1611}
1612
1613static unsigned int
1614pfm_poll(struct file *filp, poll_table * wait)
1615{
1616 pfm_context_t *ctx;
1617 unsigned long flags;
1618 unsigned int mask = 0;
1619
1620 if (PFM_IS_FILE(filp) == 0) {
1621 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
1622 return 0;
1623 }
1624
1625 ctx = (pfm_context_t *)filp->private_data;
1626 if (ctx == NULL) {
1627 printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", current->pid);
1628 return 0;
1629 }
1630
1631
1632 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1633
1634 poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1635
1636 PROTECT_CTX(ctx, flags);
1637
1638 if (PFM_CTXQ_EMPTY(ctx) == 0)
1639 mask = POLLIN | POLLRDNORM;
1640
1641 UNPROTECT_CTX(ctx, flags);
1642
1643 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1644
1645 return mask;
1646}
1647
1648static int
1649pfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
1650{
1651 DPRINT(("pfm_ioctl called\n"));
1652 return -EINVAL;
1653}
1654
1655/*
1656 * interrupt cannot be masked when coming here
1657 */
1658static inline int
1659pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1660{
1661 int ret;
1662
1663 ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1664
1665 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1666 current->pid,
1667 fd,
1668 on,
1669 ctx->ctx_async_queue, ret));
1670
1671 return ret;
1672}
1673
1674static int
1675pfm_fasync(int fd, struct file *filp, int on)
1676{
1677 pfm_context_t *ctx;
1678 int ret;
1679
1680 if (PFM_IS_FILE(filp) == 0) {
1681 printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", current->pid);
1682 return -EBADF;
1683 }
1684
1685 ctx = (pfm_context_t *)filp->private_data;
1686 if (ctx == NULL) {
1687 printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", current->pid);
1688 return -EBADF;
1689 }
1690 /*
1691 * we cannot mask interrupts during this call because this may
1692 * may go to sleep if memory is not readily avalaible.
1693 *
1694 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1695 * done in caller. Serialization of this function is ensured by caller.
1696 */
1697 ret = pfm_do_fasync(fd, filp, ctx, on);
1698
1699
1700 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1701 fd,
1702 on,
1703 ctx->ctx_async_queue, ret));
1704
1705 return ret;
1706}
1707
1708#ifdef CONFIG_SMP
1709/*
1710 * this function is exclusively called from pfm_close().
1711 * The context is not protected at that time, nor are interrupts
1712 * on the remote CPU. That's necessary to avoid deadlocks.
1713 */
1714static void
1715pfm_syswide_force_stop(void *info)
1716{
1717 pfm_context_t *ctx = (pfm_context_t *)info;
6450578f 1718 struct pt_regs *regs = task_pt_regs(current);
1da177e4
LT
1719 struct task_struct *owner;
1720 unsigned long flags;
1721 int ret;
1722
1723 if (ctx->ctx_cpu != smp_processor_id()) {
1724 printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1725 ctx->ctx_cpu,
1726 smp_processor_id());
1727 return;
1728 }
1729 owner = GET_PMU_OWNER();
1730 if (owner != ctx->ctx_task) {
1731 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1732 smp_processor_id(),
1733 owner->pid, ctx->ctx_task->pid);
1734 return;
1735 }
1736 if (GET_PMU_CTX() != ctx) {
1737 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1738 smp_processor_id(),
1739 GET_PMU_CTX(), ctx);
1740 return;
1741 }
1742
1743 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), ctx->ctx_task->pid));
1744 /*
1745 * the context is already protected in pfm_close(), we simply
1746 * need to mask interrupts to avoid a PMU interrupt race on
1747 * this CPU
1748 */
1749 local_irq_save(flags);
1750
1751 ret = pfm_context_unload(ctx, NULL, 0, regs);
1752 if (ret) {
1753 DPRINT(("context_unload returned %d\n", ret));
1754 }
1755
1756 /*
1757 * unmask interrupts, PMU interrupts are now spurious here
1758 */
1759 local_irq_restore(flags);
1760}
1761
1762static void
1763pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1764{
1765 int ret;
1766
1767 DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1768 ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 0, 1);
1769 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1770}
1771#endif /* CONFIG_SMP */
1772
1773/*
1774 * called for each close(). Partially free resources.
1775 * When caller is self-monitoring, the context is unloaded.
1776 */
1777static int
75e1fcc0 1778pfm_flush(struct file *filp, fl_owner_t id)
1da177e4
LT
1779{
1780 pfm_context_t *ctx;
1781 struct task_struct *task;
1782 struct pt_regs *regs;
1783 unsigned long flags;
1784 unsigned long smpl_buf_size = 0UL;
1785 void *smpl_buf_vaddr = NULL;
1786 int state, is_system;
1787
1788 if (PFM_IS_FILE(filp) == 0) {
1789 DPRINT(("bad magic for\n"));
1790 return -EBADF;
1791 }
1792
1793 ctx = (pfm_context_t *)filp->private_data;
1794 if (ctx == NULL) {
1795 printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", current->pid);
1796 return -EBADF;
1797 }
1798
1799 /*
1800 * remove our file from the async queue, if we use this mode.
1801 * This can be done without the context being protected. We come
1802 * here when the context has become unreacheable by other tasks.
1803 *
1804 * We may still have active monitoring at this point and we may
1805 * end up in pfm_overflow_handler(). However, fasync_helper()
1806 * operates with interrupts disabled and it cleans up the
1807 * queue. If the PMU handler is called prior to entering
1808 * fasync_helper() then it will send a signal. If it is
1809 * invoked after, it will find an empty queue and no
1810 * signal will be sent. In both case, we are safe
1811 */
1812 if (filp->f_flags & FASYNC) {
1813 DPRINT(("cleaning up async_queue=%p\n", ctx->ctx_async_queue));
1814 pfm_do_fasync (-1, filp, ctx, 0);
1815 }
1816
1817 PROTECT_CTX(ctx, flags);
1818
1819 state = ctx->ctx_state;
1820 is_system = ctx->ctx_fl_system;
1821
1822 task = PFM_CTX_TASK(ctx);
6450578f 1823 regs = task_pt_regs(task);
1da177e4
LT
1824
1825 DPRINT(("ctx_state=%d is_current=%d\n",
1826 state,
1827 task == current ? 1 : 0));
1828
1829 /*
1830 * if state == UNLOADED, then task is NULL
1831 */
1832
1833 /*
1834 * we must stop and unload because we are losing access to the context.
1835 */
1836 if (task == current) {
1837#ifdef CONFIG_SMP
1838 /*
1839 * the task IS the owner but it migrated to another CPU: that's bad
1840 * but we must handle this cleanly. Unfortunately, the kernel does
1841 * not provide a mechanism to block migration (while the context is loaded).
1842 *
1843 * We need to release the resource on the ORIGINAL cpu.
1844 */
1845 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1846
1847 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1848 /*
1849 * keep context protected but unmask interrupt for IPI
1850 */
1851 local_irq_restore(flags);
1852
1853 pfm_syswide_cleanup_other_cpu(ctx);
1854
1855 /*
1856 * restore interrupt masking
1857 */
1858 local_irq_save(flags);
1859
1860 /*
1861 * context is unloaded at this point
1862 */
1863 } else
1864#endif /* CONFIG_SMP */
1865 {
1866
1867 DPRINT(("forcing unload\n"));
1868 /*
1869 * stop and unload, returning with state UNLOADED
1870 * and session unreserved.
1871 */
1872 pfm_context_unload(ctx, NULL, 0, regs);
1873
1874 DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1875 }
1876 }
1877
1878 /*
1879 * remove virtual mapping, if any, for the calling task.
1880 * cannot reset ctx field until last user is calling close().
1881 *
1882 * ctx_smpl_vaddr must never be cleared because it is needed
1883 * by every task with access to the context
1884 *
1885 * When called from do_exit(), the mm context is gone already, therefore
1886 * mm is NULL, i.e., the VMA is already gone and we do not have to
1887 * do anything here
1888 */
1889 if (ctx->ctx_smpl_vaddr && current->mm) {
1890 smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1891 smpl_buf_size = ctx->ctx_smpl_size;
1892 }
1893
1894 UNPROTECT_CTX(ctx, flags);
1895
1896 /*
1897 * if there was a mapping, then we systematically remove it
1898 * at this point. Cannot be done inside critical section
1899 * because some VM function reenables interrupts.
1900 *
1901 */
1902 if (smpl_buf_vaddr) pfm_remove_smpl_mapping(current, smpl_buf_vaddr, smpl_buf_size);
1903
1904 return 0;
1905}
1906/*
1907 * called either on explicit close() or from exit_files().
1908 * Only the LAST user of the file gets to this point, i.e., it is
1909 * called only ONCE.
1910 *
1911 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1912 * (fput()),i.e, last task to access the file. Nobody else can access the
1913 * file at this point.
1914 *
1915 * When called from exit_files(), the VMA has been freed because exit_mm()
1916 * is executed before exit_files().
1917 *
1918 * When called from exit_files(), the current task is not yet ZOMBIE but we
1919 * flush the PMU state to the context.
1920 */
1921static int
1922pfm_close(struct inode *inode, struct file *filp)
1923{
1924 pfm_context_t *ctx;
1925 struct task_struct *task;
1926 struct pt_regs *regs;
1927 DECLARE_WAITQUEUE(wait, current);
1928 unsigned long flags;
1929 unsigned long smpl_buf_size = 0UL;
1930 void *smpl_buf_addr = NULL;
1931 int free_possible = 1;
1932 int state, is_system;
1933
1934 DPRINT(("pfm_close called private=%p\n", filp->private_data));
1935
1936 if (PFM_IS_FILE(filp) == 0) {
1937 DPRINT(("bad magic\n"));
1938 return -EBADF;
1939 }
1940
1941 ctx = (pfm_context_t *)filp->private_data;
1942 if (ctx == NULL) {
1943 printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", current->pid);
1944 return -EBADF;
1945 }
1946
1947 PROTECT_CTX(ctx, flags);
1948
1949 state = ctx->ctx_state;
1950 is_system = ctx->ctx_fl_system;
1951
1952 task = PFM_CTX_TASK(ctx);
6450578f 1953 regs = task_pt_regs(task);
1da177e4
LT
1954
1955 DPRINT(("ctx_state=%d is_current=%d\n",
1956 state,
1957 task == current ? 1 : 0));
1958
1959 /*
1960 * if task == current, then pfm_flush() unloaded the context
1961 */
1962 if (state == PFM_CTX_UNLOADED) goto doit;
1963
1964 /*
1965 * context is loaded/masked and task != current, we need to
1966 * either force an unload or go zombie
1967 */
1968
1969 /*
1970 * The task is currently blocked or will block after an overflow.
1971 * we must force it to wakeup to get out of the
1972 * MASKED state and transition to the unloaded state by itself.
1973 *
1974 * This situation is only possible for per-task mode
1975 */
1976 if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
1977
1978 /*
1979 * set a "partial" zombie state to be checked
1980 * upon return from down() in pfm_handle_work().
1981 *
1982 * We cannot use the ZOMBIE state, because it is checked
1983 * by pfm_load_regs() which is called upon wakeup from down().
1984 * In such case, it would free the context and then we would
1985 * return to pfm_handle_work() which would access the
1986 * stale context. Instead, we set a flag invisible to pfm_load_regs()
1987 * but visible to pfm_handle_work().
1988 *
1989 * For some window of time, we have a zombie context with
1990 * ctx_state = MASKED and not ZOMBIE
1991 */
1992 ctx->ctx_fl_going_zombie = 1;
1993
1994 /*
1995 * force task to wake up from MASKED state
1996 */
60f1c444 1997 complete(&ctx->ctx_restart_done);
1da177e4
LT
1998
1999 DPRINT(("waking up ctx_state=%d\n", state));
2000
2001 /*
2002 * put ourself to sleep waiting for the other
2003 * task to report completion
2004 *
2005 * the context is protected by mutex, therefore there
2006 * is no risk of being notified of completion before
2007 * begin actually on the waitq.
2008 */
2009 set_current_state(TASK_INTERRUPTIBLE);
2010 add_wait_queue(&ctx->ctx_zombieq, &wait);
2011
2012 UNPROTECT_CTX(ctx, flags);
2013
2014 /*
2015 * XXX: check for signals :
2016 * - ok for explicit close
2017 * - not ok when coming from exit_files()
2018 */
2019 schedule();
2020
2021
2022 PROTECT_CTX(ctx, flags);
2023
2024
2025 remove_wait_queue(&ctx->ctx_zombieq, &wait);
2026 set_current_state(TASK_RUNNING);
2027
2028 /*
2029 * context is unloaded at this point
2030 */
2031 DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2032 }
2033 else if (task != current) {
2034#ifdef CONFIG_SMP
2035 /*
2036 * switch context to zombie state
2037 */
2038 ctx->ctx_state = PFM_CTX_ZOMBIE;
2039
2040 DPRINT(("zombie ctx for [%d]\n", task->pid));
2041 /*
2042 * cannot free the context on the spot. deferred until
2043 * the task notices the ZOMBIE state
2044 */
2045 free_possible = 0;
2046#else
2047 pfm_context_unload(ctx, NULL, 0, regs);
2048#endif
2049 }
2050
2051doit:
2052 /* reload state, may have changed during opening of critical section */
2053 state = ctx->ctx_state;
2054
2055 /*
2056 * the context is still attached to a task (possibly current)
2057 * we cannot destroy it right now
2058 */
2059
2060 /*
2061 * we must free the sampling buffer right here because
2062 * we cannot rely on it being cleaned up later by the
2063 * monitored task. It is not possible to free vmalloc'ed
2064 * memory in pfm_load_regs(). Instead, we remove the buffer
2065 * now. should there be subsequent PMU overflow originally
2066 * meant for sampling, the will be converted to spurious
2067 * and that's fine because the monitoring tools is gone anyway.
2068 */
2069 if (ctx->ctx_smpl_hdr) {
2070 smpl_buf_addr = ctx->ctx_smpl_hdr;
2071 smpl_buf_size = ctx->ctx_smpl_size;
2072 /* no more sampling */
2073 ctx->ctx_smpl_hdr = NULL;
2074 ctx->ctx_fl_is_sampling = 0;
2075 }
2076
2077 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2078 state,
2079 free_possible,
2080 smpl_buf_addr,
2081 smpl_buf_size));
2082
2083 if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2084
2085 /*
2086 * UNLOADED that the session has already been unreserved.
2087 */
2088 if (state == PFM_CTX_ZOMBIE) {
2089 pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2090 }
2091
2092 /*
2093 * disconnect file descriptor from context must be done
2094 * before we unlock.
2095 */
2096 filp->private_data = NULL;
2097
2098 /*
2099 * if we free on the spot, the context is now completely unreacheable
2100 * from the callers side. The monitored task side is also cut, so we
2101 * can freely cut.
2102 *
2103 * If we have a deferred free, only the caller side is disconnected.
2104 */
2105 UNPROTECT_CTX(ctx, flags);
2106
2107 /*
2108 * All memory free operations (especially for vmalloc'ed memory)
2109 * MUST be done with interrupts ENABLED.
2110 */
2111 if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2112
2113 /*
2114 * return the memory used by the context
2115 */
2116 if (free_possible) pfm_context_free(ctx);
2117
2118 return 0;
2119}
2120
2121static int
2122pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2123{
2124 DPRINT(("pfm_no_open called\n"));
2125 return -ENXIO;
2126}
2127
2128
2129
2130static struct file_operations pfm_file_ops = {
2131 .llseek = no_llseek,
2132 .read = pfm_read,
2133 .write = pfm_write,
2134 .poll = pfm_poll,
2135 .ioctl = pfm_ioctl,
2136 .open = pfm_no_open, /* special open code to disallow open via /proc */
2137 .fasync = pfm_fasync,
2138 .release = pfm_close,
2139 .flush = pfm_flush
2140};
2141
2142static int
2143pfmfs_delete_dentry(struct dentry *dentry)
2144{
2145 return 1;
2146}
2147
2148static struct dentry_operations pfmfs_dentry_operations = {
2149 .d_delete = pfmfs_delete_dentry,
2150};
2151
2152
2153static int
2154pfm_alloc_fd(struct file **cfile)
2155{
2156 int fd, ret = 0;
2157 struct file *file = NULL;
2158 struct inode * inode;
2159 char name[32];
2160 struct qstr this;
2161
2162 fd = get_unused_fd();
2163 if (fd < 0) return -ENFILE;
2164
2165 ret = -ENFILE;
2166
2167 file = get_empty_filp();
2168 if (!file) goto out;
2169
2170 /*
2171 * allocate a new inode
2172 */
2173 inode = new_inode(pfmfs_mnt->mnt_sb);
2174 if (!inode) goto out;
2175
2176 DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2177
2178 inode->i_mode = S_IFCHR|S_IRUGO;
2179 inode->i_uid = current->fsuid;
2180 inode->i_gid = current->fsgid;
2181
2182 sprintf(name, "[%lu]", inode->i_ino);
2183 this.name = name;
2184 this.len = strlen(name);
2185 this.hash = inode->i_ino;
2186
2187 ret = -ENOMEM;
2188
2189 /*
2190 * allocate a new dcache entry
2191 */
2192 file->f_dentry = d_alloc(pfmfs_mnt->mnt_sb->s_root, &this);
2193 if (!file->f_dentry) goto out;
2194
2195 file->f_dentry->d_op = &pfmfs_dentry_operations;
2196
2197 d_add(file->f_dentry, inode);
2198 file->f_vfsmnt = mntget(pfmfs_mnt);
2199 file->f_mapping = inode->i_mapping;
2200
2201 file->f_op = &pfm_file_ops;
2202 file->f_mode = FMODE_READ;
2203 file->f_flags = O_RDONLY;
2204 file->f_pos = 0;
2205
2206 /*
2207 * may have to delay until context is attached?
2208 */
2209 fd_install(fd, file);
2210
2211 /*
2212 * the file structure we will use
2213 */
2214 *cfile = file;
2215
2216 return fd;
2217out:
2218 if (file) put_filp(file);
2219 put_unused_fd(fd);
2220 return ret;
2221}
2222
2223static void
2224pfm_free_fd(int fd, struct file *file)
2225{
2226 struct files_struct *files = current->files;
4fb3a538 2227 struct fdtable *fdt;
1da177e4
LT
2228
2229 /*
2230 * there ie no fd_uninstall(), so we do it here
2231 */
2232 spin_lock(&files->file_lock);
4fb3a538 2233 fdt = files_fdtable(files);
badf1662 2234 rcu_assign_pointer(fdt->fd[fd], NULL);
1da177e4
LT
2235 spin_unlock(&files->file_lock);
2236
badf1662
DS
2237 if (file)
2238 put_filp(file);
1da177e4
LT
2239 put_unused_fd(fd);
2240}
2241
2242static int
2243pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2244{
2245 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2246
2247 while (size > 0) {
2248 unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2249
2250
2251 if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2252 return -ENOMEM;
2253
2254 addr += PAGE_SIZE;
2255 buf += PAGE_SIZE;
2256 size -= PAGE_SIZE;
2257 }
2258 return 0;
2259}
2260
2261/*
2262 * allocate a sampling buffer and remaps it into the user address space of the task
2263 */
2264static int
2265pfm_smpl_buffer_alloc(struct task_struct *task, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2266{
2267 struct mm_struct *mm = task->mm;
2268 struct vm_area_struct *vma = NULL;
2269 unsigned long size;
2270 void *smpl_buf;
2271
2272
2273 /*
2274 * the fixed header + requested size and align to page boundary
2275 */
2276 size = PAGE_ALIGN(rsize);
2277
2278 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2279
2280 /*
2281 * check requested size to avoid Denial-of-service attacks
2282 * XXX: may have to refine this test
2283 * Check against address space limit.
2284 *
2285 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2286 * return -ENOMEM;
2287 */
2288 if (size > task->signal->rlim[RLIMIT_MEMLOCK].rlim_cur)
2289 return -ENOMEM;
2290
2291 /*
2292 * We do the easy to undo allocations first.
2293 *
2294 * pfm_rvmalloc(), clears the buffer, so there is no leak
2295 */
2296 smpl_buf = pfm_rvmalloc(size);
2297 if (smpl_buf == NULL) {
2298 DPRINT(("Can't allocate sampling buffer\n"));
2299 return -ENOMEM;
2300 }
2301
2302 DPRINT(("smpl_buf @%p\n", smpl_buf));
2303
2304 /* allocate vma */
2305 vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
2306 if (!vma) {
2307 DPRINT(("Cannot allocate vma\n"));
2308 goto error_kmem;
2309 }
2310 memset(vma, 0, sizeof(*vma));
2311
2312 /*
2313 * partially initialize the vma for the sampling buffer
2314 */
2315 vma->vm_mm = mm;
2316 vma->vm_flags = VM_READ| VM_MAYREAD |VM_RESERVED;
2317 vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
2318
2319 /*
2320 * Now we have everything we need and we can initialize
2321 * and connect all the data structures
2322 */
2323
2324 ctx->ctx_smpl_hdr = smpl_buf;
2325 ctx->ctx_smpl_size = size; /* aligned size */
2326
2327 /*
2328 * Let's do the difficult operations next.
2329 *
2330 * now we atomically find some area in the address space and
2331 * remap the buffer in it.
2332 */
2333 down_write(&task->mm->mmap_sem);
2334
2335 /* find some free area in address space, must have mmap sem held */
2336 vma->vm_start = pfm_get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS, 0);
2337 if (vma->vm_start == 0UL) {
2338 DPRINT(("Cannot find unmapped area for size %ld\n", size));
2339 up_write(&task->mm->mmap_sem);
2340 goto error;
2341 }
2342 vma->vm_end = vma->vm_start + size;
2343 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2344
2345 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2346
2347 /* can only be applied to current task, need to have the mm semaphore held when called */
2348 if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2349 DPRINT(("Can't remap buffer\n"));
2350 up_write(&task->mm->mmap_sem);
2351 goto error;
2352 }
2353
2354 /*
2355 * now insert the vma in the vm list for the process, must be
2356 * done with mmap lock held
2357 */
2358 insert_vm_struct(mm, vma);
2359
2360 mm->total_vm += size >> PAGE_SHIFT;
ab50b8ed
HD
2361 vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2362 vma_pages(vma));
1da177e4
LT
2363 up_write(&task->mm->mmap_sem);
2364
2365 /*
2366 * keep track of user level virtual address
2367 */
2368 ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2369 *(unsigned long *)user_vaddr = vma->vm_start;
2370
2371 return 0;
2372
2373error:
2374 kmem_cache_free(vm_area_cachep, vma);
2375error_kmem:
2376 pfm_rvfree(smpl_buf, size);
2377
2378 return -ENOMEM;
2379}
2380
2381/*
2382 * XXX: do something better here
2383 */
2384static int
2385pfm_bad_permissions(struct task_struct *task)
2386{
2387 /* inspired by ptrace_attach() */
2388 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2389 current->uid,
2390 current->gid,
2391 task->euid,
2392 task->suid,
2393 task->uid,
2394 task->egid,
2395 task->sgid));
2396
2397 return ((current->uid != task->euid)
2398 || (current->uid != task->suid)
2399 || (current->uid != task->uid)
2400 || (current->gid != task->egid)
2401 || (current->gid != task->sgid)
2402 || (current->gid != task->gid)) && !capable(CAP_SYS_PTRACE);
2403}
2404
2405static int
2406pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2407{
2408 int ctx_flags;
2409
2410 /* valid signal */
2411
2412 ctx_flags = pfx->ctx_flags;
2413
2414 if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2415
2416 /*
2417 * cannot block in this mode
2418 */
2419 if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2420 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2421 return -EINVAL;
2422 }
2423 } else {
2424 }
2425 /* probably more to add here */
2426
2427 return 0;
2428}
2429
2430static int
2431pfm_setup_buffer_fmt(struct task_struct *task, pfm_context_t *ctx, unsigned int ctx_flags,
2432 unsigned int cpu, pfarg_context_t *arg)
2433{
2434 pfm_buffer_fmt_t *fmt = NULL;
2435 unsigned long size = 0UL;
2436 void *uaddr = NULL;
2437 void *fmt_arg = NULL;
2438 int ret = 0;
2439#define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2440
2441 /* invoke and lock buffer format, if found */
2442 fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2443 if (fmt == NULL) {
2444 DPRINT(("[%d] cannot find buffer format\n", task->pid));
2445 return -EINVAL;
2446 }
2447
2448 /*
2449 * buffer argument MUST be contiguous to pfarg_context_t
2450 */
2451 if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2452
2453 ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2454
2455 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task->pid, ctx_flags, cpu, fmt_arg, ret));
2456
2457 if (ret) goto error;
2458
2459 /* link buffer format and context */
2460 ctx->ctx_buf_fmt = fmt;
2461
2462 /*
2463 * check if buffer format wants to use perfmon buffer allocation/mapping service
2464 */
2465 ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2466 if (ret) goto error;
2467
2468 if (size) {
2469 /*
2470 * buffer is always remapped into the caller's address space
2471 */
2472 ret = pfm_smpl_buffer_alloc(current, ctx, size, &uaddr);
2473 if (ret) goto error;
2474
2475 /* keep track of user address of buffer */
2476 arg->ctx_smpl_vaddr = uaddr;
2477 }
2478 ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2479
2480error:
2481 return ret;
2482}
2483
2484static void
2485pfm_reset_pmu_state(pfm_context_t *ctx)
2486{
2487 int i;
2488
2489 /*
2490 * install reset values for PMC.
2491 */
2492 for (i=1; PMC_IS_LAST(i) == 0; i++) {
2493 if (PMC_IS_IMPL(i) == 0) continue;
2494 ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2495 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2496 }
2497 /*
2498 * PMD registers are set to 0UL when the context in memset()
2499 */
2500
2501 /*
2502 * On context switched restore, we must restore ALL pmc and ALL pmd even
2503 * when they are not actively used by the task. In UP, the incoming process
2504 * may otherwise pick up left over PMC, PMD state from the previous process.
2505 * As opposed to PMD, stale PMC can cause harm to the incoming
2506 * process because they may change what is being measured.
2507 * Therefore, we must systematically reinstall the entire
2508 * PMC state. In SMP, the same thing is possible on the
2509 * same CPU but also on between 2 CPUs.
2510 *
2511 * The problem with PMD is information leaking especially
2512 * to user level when psr.sp=0
2513 *
2514 * There is unfortunately no easy way to avoid this problem
2515 * on either UP or SMP. This definitively slows down the
2516 * pfm_load_regs() function.
2517 */
2518
2519 /*
2520 * bitmask of all PMCs accessible to this context
2521 *
2522 * PMC0 is treated differently.
2523 */
2524 ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2525
2526 /*
2527 * bitmask of all PMDs that are accesible to this context
2528 */
2529 ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2530
2531 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2532
2533 /*
2534 * useful in case of re-enable after disable
2535 */
2536 ctx->ctx_used_ibrs[0] = 0UL;
2537 ctx->ctx_used_dbrs[0] = 0UL;
2538}
2539
2540static int
2541pfm_ctx_getsize(void *arg, size_t *sz)
2542{
2543 pfarg_context_t *req = (pfarg_context_t *)arg;
2544 pfm_buffer_fmt_t *fmt;
2545
2546 *sz = 0;
2547
2548 if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2549
2550 fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2551 if (fmt == NULL) {
2552 DPRINT(("cannot find buffer format\n"));
2553 return -EINVAL;
2554 }
2555 /* get just enough to copy in user parameters */
2556 *sz = fmt->fmt_arg_size;
2557 DPRINT(("arg_size=%lu\n", *sz));
2558
2559 return 0;
2560}
2561
2562
2563
2564/*
2565 * cannot attach if :
2566 * - kernel task
2567 * - task not owned by caller
2568 * - task incompatible with context mode
2569 */
2570static int
2571pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2572{
2573 /*
2574 * no kernel task or task not owner by caller
2575 */
2576 if (task->mm == NULL) {
2577 DPRINT(("task [%d] has not memory context (kernel thread)\n", task->pid));
2578 return -EPERM;
2579 }
2580 if (pfm_bad_permissions(task)) {
2581 DPRINT(("no permission to attach to [%d]\n", task->pid));
2582 return -EPERM;
2583 }
2584 /*
2585 * cannot block in self-monitoring mode
2586 */
2587 if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2588 DPRINT(("cannot load a blocking context on self for [%d]\n", task->pid));
2589 return -EINVAL;
2590 }
2591
2592 if (task->exit_state == EXIT_ZOMBIE) {
2593 DPRINT(("cannot attach to zombie task [%d]\n", task->pid));
2594 return -EBUSY;
2595 }
2596
2597 /*
2598 * always ok for self
2599 */
2600 if (task == current) return 0;
2601
2602 if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
2603 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task->pid, task->state));
2604 return -EBUSY;
2605 }
2606 /*
2607 * make sure the task is off any CPU
2608 */
2609 wait_task_inactive(task);
2610
2611 /* more to come... */
2612
2613 return 0;
2614}
2615
2616static int
2617pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2618{
2619 struct task_struct *p = current;
2620 int ret;
2621
2622 /* XXX: need to add more checks here */
2623 if (pid < 2) return -EPERM;
2624
2625 if (pid != current->pid) {
2626
2627 read_lock(&tasklist_lock);
2628
2629 p = find_task_by_pid(pid);
2630
2631 /* make sure task cannot go away while we operate on it */
2632 if (p) get_task_struct(p);
2633
2634 read_unlock(&tasklist_lock);
2635
2636 if (p == NULL) return -ESRCH;
2637 }
2638
2639 ret = pfm_task_incompatible(ctx, p);
2640 if (ret == 0) {
2641 *task = p;
2642 } else if (p != current) {
2643 pfm_put_task(p);
2644 }
2645 return ret;
2646}
2647
2648
2649
2650static int
2651pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2652{
2653 pfarg_context_t *req = (pfarg_context_t *)arg;
2654 struct file *filp;
2655 int ctx_flags;
2656 int ret;
2657
2658 /* let's check the arguments first */
2659 ret = pfarg_is_sane(current, req);
2660 if (ret < 0) return ret;
2661
2662 ctx_flags = req->ctx_flags;
2663
2664 ret = -ENOMEM;
2665
2666 ctx = pfm_context_alloc();
2667 if (!ctx) goto error;
2668
2669 ret = pfm_alloc_fd(&filp);
2670 if (ret < 0) goto error_file;
2671
2672 req->ctx_fd = ctx->ctx_fd = ret;
2673
2674 /*
2675 * attach context to file
2676 */
2677 filp->private_data = ctx;
2678
2679 /*
2680 * does the user want to sample?
2681 */
2682 if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2683 ret = pfm_setup_buffer_fmt(current, ctx, ctx_flags, 0, req);
2684 if (ret) goto buffer_error;
2685 }
2686
2687 /*
2688 * init context protection lock
2689 */
2690 spin_lock_init(&ctx->ctx_lock);
2691
2692 /*
2693 * context is unloaded
2694 */
2695 ctx->ctx_state = PFM_CTX_UNLOADED;
2696
2697 /*
2698 * initialization of context's flags
2699 */
2700 ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
2701 ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
2702 ctx->ctx_fl_is_sampling = ctx->ctx_buf_fmt ? 1 : 0; /* assume record() is defined */
2703 ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
2704 /*
2705 * will move to set properties
2706 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
2707 */
2708
2709 /*
2710 * init restart semaphore to locked
2711 */
60f1c444 2712 init_completion(&ctx->ctx_restart_done);
1da177e4
LT
2713
2714 /*
2715 * activation is used in SMP only
2716 */
2717 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
2718 SET_LAST_CPU(ctx, -1);
2719
2720 /*
2721 * initialize notification message queue
2722 */
2723 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
2724 init_waitqueue_head(&ctx->ctx_msgq_wait);
2725 init_waitqueue_head(&ctx->ctx_zombieq);
2726
2727 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d \n",
2728 ctx,
2729 ctx_flags,
2730 ctx->ctx_fl_system,
2731 ctx->ctx_fl_block,
2732 ctx->ctx_fl_excl_idle,
2733 ctx->ctx_fl_no_msg,
2734 ctx->ctx_fd));
2735
2736 /*
2737 * initialize soft PMU state
2738 */
2739 pfm_reset_pmu_state(ctx);
2740
2741 return 0;
2742
2743buffer_error:
2744 pfm_free_fd(ctx->ctx_fd, filp);
2745
2746 if (ctx->ctx_buf_fmt) {
2747 pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2748 }
2749error_file:
2750 pfm_context_free(ctx);
2751
2752error:
2753 return ret;
2754}
2755
2756static inline unsigned long
2757pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2758{
2759 unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2760 unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2761 extern unsigned long carta_random32 (unsigned long seed);
2762
2763 if (reg->flags & PFM_REGFL_RANDOM) {
2764 new_seed = carta_random32(old_seed);
2765 val -= (old_seed & mask); /* counter values are negative numbers! */
2766 if ((mask >> 32) != 0)
2767 /* construct a full 64-bit random value: */
2768 new_seed |= carta_random32(old_seed >> 32) << 32;
2769 reg->seed = new_seed;
2770 }
2771 reg->lval = val;
2772 return val;
2773}
2774
2775static void
2776pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2777{
2778 unsigned long mask = ovfl_regs[0];
2779 unsigned long reset_others = 0UL;
2780 unsigned long val;
2781 int i;
2782
2783 /*
2784 * now restore reset value on sampling overflowed counters
2785 */
2786 mask >>= PMU_FIRST_COUNTER;
2787 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2788
2789 if ((mask & 0x1UL) == 0UL) continue;
2790
2791 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2792 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2793
2794 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2795 }
2796
2797 /*
2798 * Now take care of resetting the other registers
2799 */
2800 for(i = 0; reset_others; i++, reset_others >>= 1) {
2801
2802 if ((reset_others & 0x1) == 0) continue;
2803
2804 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2805
2806 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2807 is_long_reset ? "long" : "short", i, val));
2808 }
2809}
2810
2811static void
2812pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2813{
2814 unsigned long mask = ovfl_regs[0];
2815 unsigned long reset_others = 0UL;
2816 unsigned long val;
2817 int i;
2818
2819 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2820
2821 if (ctx->ctx_state == PFM_CTX_MASKED) {
2822 pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2823 return;
2824 }
2825
2826 /*
2827 * now restore reset value on sampling overflowed counters
2828 */
2829 mask >>= PMU_FIRST_COUNTER;
2830 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2831
2832 if ((mask & 0x1UL) == 0UL) continue;
2833
2834 val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2835 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2836
2837 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2838
2839 pfm_write_soft_counter(ctx, i, val);
2840 }
2841
2842 /*
2843 * Now take care of resetting the other registers
2844 */
2845 for(i = 0; reset_others; i++, reset_others >>= 1) {
2846
2847 if ((reset_others & 0x1) == 0) continue;
2848
2849 val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2850
2851 if (PMD_IS_COUNTING(i)) {
2852 pfm_write_soft_counter(ctx, i, val);
2853 } else {
2854 ia64_set_pmd(i, val);
2855 }
2856 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2857 is_long_reset ? "long" : "short", i, val));
2858 }
2859 ia64_srlz_d();
2860}
2861
2862static int
2863pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2864{
1da177e4
LT
2865 struct task_struct *task;
2866 pfarg_reg_t *req = (pfarg_reg_t *)arg;
2867 unsigned long value, pmc_pm;
2868 unsigned long smpl_pmds, reset_pmds, impl_pmds;
2869 unsigned int cnum, reg_flags, flags, pmc_type;
2870 int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2871 int is_monitor, is_counting, state;
2872 int ret = -EINVAL;
2873 pfm_reg_check_t wr_func;
2874#define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2875
2876 state = ctx->ctx_state;
2877 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2878 is_system = ctx->ctx_fl_system;
2879 task = ctx->ctx_task;
2880 impl_pmds = pmu_conf->impl_pmds[0];
2881
2882 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2883
2884 if (is_loaded) {
1da177e4
LT
2885 /*
2886 * In system wide and when the context is loaded, access can only happen
2887 * when the caller is running on the CPU being monitored by the session.
2888 * It does not have to be the owner (ctx_task) of the context per se.
2889 */
2890 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2891 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2892 return -EBUSY;
2893 }
2894 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2895 }
2896 expert_mode = pfm_sysctl.expert_mode;
2897
2898 for (i = 0; i < count; i++, req++) {
2899
2900 cnum = req->reg_num;
2901 reg_flags = req->reg_flags;
2902 value = req->reg_value;
2903 smpl_pmds = req->reg_smpl_pmds[0];
2904 reset_pmds = req->reg_reset_pmds[0];
2905 flags = 0;
2906
2907
2908 if (cnum >= PMU_MAX_PMCS) {
2909 DPRINT(("pmc%u is invalid\n", cnum));
2910 goto error;
2911 }
2912
2913 pmc_type = pmu_conf->pmc_desc[cnum].type;
2914 pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2915 is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2916 is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2917
2918 /*
2919 * we reject all non implemented PMC as well
2920 * as attempts to modify PMC[0-3] which are used
2921 * as status registers by the PMU
2922 */
2923 if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2924 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2925 goto error;
2926 }
2927 wr_func = pmu_conf->pmc_desc[cnum].write_check;
2928 /*
2929 * If the PMC is a monitor, then if the value is not the default:
2930 * - system-wide session: PMCx.pm=1 (privileged monitor)
2931 * - per-task : PMCx.pm=0 (user monitor)
2932 */
2933 if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2934 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2935 cnum,
2936 pmc_pm,
2937 is_system));
2938 goto error;
2939 }
2940
2941 if (is_counting) {
2942 /*
2943 * enforce generation of overflow interrupt. Necessary on all
2944 * CPUs.
2945 */
2946 value |= 1 << PMU_PMC_OI;
2947
2948 if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2949 flags |= PFM_REGFL_OVFL_NOTIFY;
2950 }
2951
2952 if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2953
2954 /* verify validity of smpl_pmds */
2955 if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2956 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2957 goto error;
2958 }
2959
2960 /* verify validity of reset_pmds */
2961 if ((reset_pmds & impl_pmds) != reset_pmds) {
2962 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2963 goto error;
2964 }
2965 } else {
2966 if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2967 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2968 goto error;
2969 }
2970 /* eventid on non-counting monitors are ignored */
2971 }
2972
2973 /*
2974 * execute write checker, if any
2975 */
2976 if (likely(expert_mode == 0 && wr_func)) {
2977 ret = (*wr_func)(task, ctx, cnum, &value, regs);
2978 if (ret) goto error;
2979 ret = -EINVAL;
2980 }
2981
2982 /*
2983 * no error on this register
2984 */
2985 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2986
2987 /*
2988 * Now we commit the changes to the software state
2989 */
2990
2991 /*
2992 * update overflow information
2993 */
2994 if (is_counting) {
2995 /*
2996 * full flag update each time a register is programmed
2997 */
2998 ctx->ctx_pmds[cnum].flags = flags;
2999
3000 ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
3001 ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
3002 ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
3003
3004 /*
3005 * Mark all PMDS to be accessed as used.
3006 *
3007 * We do not keep track of PMC because we have to
3008 * systematically restore ALL of them.
3009 *
3010 * We do not update the used_monitors mask, because
3011 * if we have not programmed them, then will be in
3012 * a quiescent state, therefore we will not need to
3013 * mask/restore then when context is MASKED.
3014 */
3015 CTX_USED_PMD(ctx, reset_pmds);
3016 CTX_USED_PMD(ctx, smpl_pmds);
3017 /*
3018 * make sure we do not try to reset on
3019 * restart because we have established new values
3020 */
3021 if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3022 }
3023 /*
3024 * Needed in case the user does not initialize the equivalent
3025 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3026 * possible leak here.
3027 */
3028 CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
3029
3030 /*
3031 * keep track of the monitor PMC that we are using.
3032 * we save the value of the pmc in ctx_pmcs[] and if
3033 * the monitoring is not stopped for the context we also
3034 * place it in the saved state area so that it will be
3035 * picked up later by the context switch code.
3036 *
3037 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3038 *
35589a8f 3039 * The value in th_pmcs[] may be modified on overflow, i.e., when
1da177e4
LT
3040 * monitoring needs to be stopped.
3041 */
3042 if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3043
3044 /*
3045 * update context state
3046 */
3047 ctx->ctx_pmcs[cnum] = value;
3048
3049 if (is_loaded) {
3050 /*
3051 * write thread state
3052 */
35589a8f 3053 if (is_system == 0) ctx->th_pmcs[cnum] = value;
1da177e4
LT
3054
3055 /*
3056 * write hardware register if we can
3057 */
3058 if (can_access_pmu) {
3059 ia64_set_pmc(cnum, value);
3060 }
3061#ifdef CONFIG_SMP
3062 else {
3063 /*
3064 * per-task SMP only here
3065 *
3066 * we are guaranteed that the task is not running on the other CPU,
3067 * we indicate that this PMD will need to be reloaded if the task
3068 * is rescheduled on the CPU it ran last on.
3069 */
3070 ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3071 }
3072#endif
3073 }
3074
3075 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3076 cnum,
3077 value,
3078 is_loaded,
3079 can_access_pmu,
3080 flags,
3081 ctx->ctx_all_pmcs[0],
3082 ctx->ctx_used_pmds[0],
3083 ctx->ctx_pmds[cnum].eventid,
3084 smpl_pmds,
3085 reset_pmds,
3086 ctx->ctx_reload_pmcs[0],
3087 ctx->ctx_used_monitors[0],
3088 ctx->ctx_ovfl_regs[0]));
3089 }
3090
3091 /*
3092 * make sure the changes are visible
3093 */
3094 if (can_access_pmu) ia64_srlz_d();
3095
3096 return 0;
3097error:
3098 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3099 return ret;
3100}
3101
3102static int
3103pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3104{
1da177e4
LT
3105 struct task_struct *task;
3106 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3107 unsigned long value, hw_value, ovfl_mask;
3108 unsigned int cnum;
3109 int i, can_access_pmu = 0, state;
3110 int is_counting, is_loaded, is_system, expert_mode;
3111 int ret = -EINVAL;
3112 pfm_reg_check_t wr_func;
3113
3114
3115 state = ctx->ctx_state;
3116 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3117 is_system = ctx->ctx_fl_system;
3118 ovfl_mask = pmu_conf->ovfl_val;
3119 task = ctx->ctx_task;
3120
3121 if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3122
3123 /*
3124 * on both UP and SMP, we can only write to the PMC when the task is
3125 * the owner of the local PMU.
3126 */
3127 if (likely(is_loaded)) {
1da177e4
LT
3128 /*
3129 * In system wide and when the context is loaded, access can only happen
3130 * when the caller is running on the CPU being monitored by the session.
3131 * It does not have to be the owner (ctx_task) of the context per se.
3132 */
3133 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3134 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3135 return -EBUSY;
3136 }
3137 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3138 }
3139 expert_mode = pfm_sysctl.expert_mode;
3140
3141 for (i = 0; i < count; i++, req++) {
3142
3143 cnum = req->reg_num;
3144 value = req->reg_value;
3145
3146 if (!PMD_IS_IMPL(cnum)) {
3147 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3148 goto abort_mission;
3149 }
3150 is_counting = PMD_IS_COUNTING(cnum);
3151 wr_func = pmu_conf->pmd_desc[cnum].write_check;
3152
3153 /*
3154 * execute write checker, if any
3155 */
3156 if (unlikely(expert_mode == 0 && wr_func)) {
3157 unsigned long v = value;
3158
3159 ret = (*wr_func)(task, ctx, cnum, &v, regs);
3160 if (ret) goto abort_mission;
3161
3162 value = v;
3163 ret = -EINVAL;
3164 }
3165
3166 /*
3167 * no error on this register
3168 */
3169 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3170
3171 /*
3172 * now commit changes to software state
3173 */
3174 hw_value = value;
3175
3176 /*
3177 * update virtualized (64bits) counter
3178 */
3179 if (is_counting) {
3180 /*
3181 * write context state
3182 */
3183 ctx->ctx_pmds[cnum].lval = value;
3184
3185 /*
3186 * when context is load we use the split value
3187 */
3188 if (is_loaded) {
3189 hw_value = value & ovfl_mask;
3190 value = value & ~ovfl_mask;
3191 }
3192 }
3193 /*
3194 * update reset values (not just for counters)
3195 */
3196 ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
3197 ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3198
3199 /*
3200 * update randomization parameters (not just for counters)
3201 */
3202 ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3203 ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3204
3205 /*
3206 * update context value
3207 */
3208 ctx->ctx_pmds[cnum].val = value;
3209
3210 /*
3211 * Keep track of what we use
3212 *
3213 * We do not keep track of PMC because we have to
3214 * systematically restore ALL of them.
3215 */
3216 CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3217
3218 /*
3219 * mark this PMD register used as well
3220 */
3221 CTX_USED_PMD(ctx, RDEP(cnum));
3222
3223 /*
3224 * make sure we do not try to reset on
3225 * restart because we have established new values
3226 */
3227 if (is_counting && state == PFM_CTX_MASKED) {
3228 ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3229 }
3230
3231 if (is_loaded) {
3232 /*
3233 * write thread state
3234 */
35589a8f 3235 if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
1da177e4
LT
3236
3237 /*
3238 * write hardware register if we can
3239 */
3240 if (can_access_pmu) {
3241 ia64_set_pmd(cnum, hw_value);
3242 } else {
3243#ifdef CONFIG_SMP
3244 /*
3245 * we are guaranteed that the task is not running on the other CPU,
3246 * we indicate that this PMD will need to be reloaded if the task
3247 * is rescheduled on the CPU it ran last on.
3248 */
3249 ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3250#endif
3251 }
3252 }
3253
3254 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3255 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3256 cnum,
3257 value,
3258 is_loaded,
3259 can_access_pmu,
3260 hw_value,
3261 ctx->ctx_pmds[cnum].val,
3262 ctx->ctx_pmds[cnum].short_reset,
3263 ctx->ctx_pmds[cnum].long_reset,
3264 PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3265 ctx->ctx_pmds[cnum].seed,
3266 ctx->ctx_pmds[cnum].mask,
3267 ctx->ctx_used_pmds[0],
3268 ctx->ctx_pmds[cnum].reset_pmds[0],
3269 ctx->ctx_reload_pmds[0],
3270 ctx->ctx_all_pmds[0],
3271 ctx->ctx_ovfl_regs[0]));
3272 }
3273
3274 /*
3275 * make changes visible
3276 */
3277 if (can_access_pmu) ia64_srlz_d();
3278
3279 return 0;
3280
3281abort_mission:
3282 /*
3283 * for now, we have only one possibility for error
3284 */
3285 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3286 return ret;
3287}
3288
3289/*
3290 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3291 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3292 * interrupt is delivered during the call, it will be kept pending until we leave, making
3293 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3294 * guaranteed to return consistent data to the user, it may simply be old. It is not
3295 * trivial to treat the overflow while inside the call because you may end up in
3296 * some module sampling buffer code causing deadlocks.
3297 */
3298static int
3299pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3300{
1da177e4
LT
3301 struct task_struct *task;
3302 unsigned long val = 0UL, lval, ovfl_mask, sval;
3303 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3304 unsigned int cnum, reg_flags = 0;
3305 int i, can_access_pmu = 0, state;
3306 int is_loaded, is_system, is_counting, expert_mode;
3307 int ret = -EINVAL;
3308 pfm_reg_check_t rd_func;
3309
3310 /*
3311 * access is possible when loaded only for
3312 * self-monitoring tasks or in UP mode
3313 */
3314
3315 state = ctx->ctx_state;
3316 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3317 is_system = ctx->ctx_fl_system;
3318 ovfl_mask = pmu_conf->ovfl_val;
3319 task = ctx->ctx_task;
3320
3321 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3322
3323 if (likely(is_loaded)) {
1da177e4
LT
3324 /*
3325 * In system wide and when the context is loaded, access can only happen
3326 * when the caller is running on the CPU being monitored by the session.
3327 * It does not have to be the owner (ctx_task) of the context per se.
3328 */
3329 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3330 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3331 return -EBUSY;
3332 }
3333 /*
3334 * this can be true when not self-monitoring only in UP
3335 */
3336 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3337
3338 if (can_access_pmu) ia64_srlz_d();
3339 }
3340 expert_mode = pfm_sysctl.expert_mode;
3341
3342 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3343 is_loaded,
3344 can_access_pmu,
3345 state));
3346
3347 /*
3348 * on both UP and SMP, we can only read the PMD from the hardware register when
3349 * the task is the owner of the local PMU.
3350 */
3351
3352 for (i = 0; i < count; i++, req++) {
3353
3354 cnum = req->reg_num;
3355 reg_flags = req->reg_flags;
3356
3357 if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3358 /*
3359 * we can only read the register that we use. That includes
3360 * the one we explicitely initialize AND the one we want included
3361 * in the sampling buffer (smpl_regs).
3362 *
3363 * Having this restriction allows optimization in the ctxsw routine
3364 * without compromising security (leaks)
3365 */
3366 if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3367
3368 sval = ctx->ctx_pmds[cnum].val;
3369 lval = ctx->ctx_pmds[cnum].lval;
3370 is_counting = PMD_IS_COUNTING(cnum);
3371
3372 /*
3373 * If the task is not the current one, then we check if the
3374 * PMU state is still in the local live register due to lazy ctxsw.
3375 * If true, then we read directly from the registers.
3376 */
3377 if (can_access_pmu){
3378 val = ia64_get_pmd(cnum);
3379 } else {
3380 /*
3381 * context has been saved
3382 * if context is zombie, then task does not exist anymore.
3383 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3384 */
35589a8f 3385 val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
1da177e4
LT
3386 }
3387 rd_func = pmu_conf->pmd_desc[cnum].read_check;
3388
3389 if (is_counting) {
3390 /*
3391 * XXX: need to check for overflow when loaded
3392 */
3393 val &= ovfl_mask;
3394 val += sval;
3395 }
3396
3397 /*
3398 * execute read checker, if any
3399 */
3400 if (unlikely(expert_mode == 0 && rd_func)) {
3401 unsigned long v = val;
3402 ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3403 if (ret) goto error;
3404 val = v;
3405 ret = -EINVAL;
3406 }
3407
3408 PFM_REG_RETFLAG_SET(reg_flags, 0);
3409
3410 DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3411
3412 /*
3413 * update register return value, abort all if problem during copy.
3414 * we only modify the reg_flags field. no check mode is fine because
3415 * access has been verified upfront in sys_perfmonctl().
3416 */
3417 req->reg_value = val;
3418 req->reg_flags = reg_flags;
3419 req->reg_last_reset_val = lval;
3420 }
3421
3422 return 0;
3423
3424error:
3425 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3426 return ret;
3427}
3428
3429int
3430pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3431{
3432 pfm_context_t *ctx;
3433
3434 if (req == NULL) return -EINVAL;
3435
3436 ctx = GET_PMU_CTX();
3437
3438 if (ctx == NULL) return -EINVAL;
3439
3440 /*
3441 * for now limit to current task, which is enough when calling
3442 * from overflow handler
3443 */
3444 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3445
3446 return pfm_write_pmcs(ctx, req, nreq, regs);
3447}
3448EXPORT_SYMBOL(pfm_mod_write_pmcs);
3449
3450int
3451pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3452{
3453 pfm_context_t *ctx;
3454
3455 if (req == NULL) return -EINVAL;
3456
3457 ctx = GET_PMU_CTX();
3458
3459 if (ctx == NULL) return -EINVAL;
3460
3461 /*
3462 * for now limit to current task, which is enough when calling
3463 * from overflow handler
3464 */
3465 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3466
3467 return pfm_read_pmds(ctx, req, nreq, regs);
3468}
3469EXPORT_SYMBOL(pfm_mod_read_pmds);
3470
3471/*
3472 * Only call this function when a process it trying to
3473 * write the debug registers (reading is always allowed)
3474 */
3475int
3476pfm_use_debug_registers(struct task_struct *task)
3477{
3478 pfm_context_t *ctx = task->thread.pfm_context;
3479 unsigned long flags;
3480 int ret = 0;
3481
3482 if (pmu_conf->use_rr_dbregs == 0) return 0;
3483
3484 DPRINT(("called for [%d]\n", task->pid));
3485
3486 /*
3487 * do it only once
3488 */
3489 if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3490
3491 /*
3492 * Even on SMP, we do not need to use an atomic here because
3493 * the only way in is via ptrace() and this is possible only when the
3494 * process is stopped. Even in the case where the ctxsw out is not totally
3495 * completed by the time we come here, there is no way the 'stopped' process
3496 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3497 * So this is always safe.
3498 */
3499 if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3500
3501 LOCK_PFS(flags);
3502
3503 /*
3504 * We cannot allow setting breakpoints when system wide monitoring
3505 * sessions are using the debug registers.
3506 */
3507 if (pfm_sessions.pfs_sys_use_dbregs> 0)
3508 ret = -1;
3509 else
3510 pfm_sessions.pfs_ptrace_use_dbregs++;
3511
3512 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3513 pfm_sessions.pfs_ptrace_use_dbregs,
3514 pfm_sessions.pfs_sys_use_dbregs,
3515 task->pid, ret));
3516
3517 UNLOCK_PFS(flags);
3518
3519 return ret;
3520}
3521
3522/*
3523 * This function is called for every task that exits with the
3524 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3525 * able to use the debug registers for debugging purposes via
3526 * ptrace(). Therefore we know it was not using them for
3527 * perfmormance monitoring, so we only decrement the number
3528 * of "ptraced" debug register users to keep the count up to date
3529 */
3530int
3531pfm_release_debug_registers(struct task_struct *task)
3532{
3533 unsigned long flags;
3534 int ret;
3535
3536 if (pmu_conf->use_rr_dbregs == 0) return 0;
3537
3538 LOCK_PFS(flags);
3539 if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3540 printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task->pid);
3541 ret = -1;
3542 } else {
3543 pfm_sessions.pfs_ptrace_use_dbregs--;
3544 ret = 0;
3545 }
3546 UNLOCK_PFS(flags);
3547
3548 return ret;
3549}
3550
3551static int
3552pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3553{
3554 struct task_struct *task;
3555 pfm_buffer_fmt_t *fmt;
3556 pfm_ovfl_ctrl_t rst_ctrl;
3557 int state, is_system;
3558 int ret = 0;
3559
3560 state = ctx->ctx_state;
3561 fmt = ctx->ctx_buf_fmt;
3562 is_system = ctx->ctx_fl_system;
3563 task = PFM_CTX_TASK(ctx);
3564
3565 switch(state) {
3566 case PFM_CTX_MASKED:
3567 break;
3568 case PFM_CTX_LOADED:
3569 if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3570 /* fall through */
3571 case PFM_CTX_UNLOADED:
3572 case PFM_CTX_ZOMBIE:
3573 DPRINT(("invalid state=%d\n", state));
3574 return -EBUSY;
3575 default:
3576 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3577 return -EINVAL;
3578 }
3579
3580 /*
3581 * In system wide and when the context is loaded, access can only happen
3582 * when the caller is running on the CPU being monitored by the session.
3583 * It does not have to be the owner (ctx_task) of the context per se.
3584 */
3585 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3586 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3587 return -EBUSY;
3588 }
3589
3590 /* sanity check */
3591 if (unlikely(task == NULL)) {
3592 printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", current->pid);
3593 return -EINVAL;
3594 }
3595
3596 if (task == current || is_system) {
3597
3598 fmt = ctx->ctx_buf_fmt;
3599
3600 DPRINT(("restarting self %d ovfl=0x%lx\n",
3601 task->pid,
3602 ctx->ctx_ovfl_regs[0]));
3603
3604 if (CTX_HAS_SMPL(ctx)) {
3605
3606 prefetch(ctx->ctx_smpl_hdr);
3607
3608 rst_ctrl.bits.mask_monitoring = 0;
3609 rst_ctrl.bits.reset_ovfl_pmds = 0;
3610
3611 if (state == PFM_CTX_LOADED)
3612 ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3613 else
3614 ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3615 } else {
3616 rst_ctrl.bits.mask_monitoring = 0;
3617 rst_ctrl.bits.reset_ovfl_pmds = 1;
3618 }
3619
3620 if (ret == 0) {
3621 if (rst_ctrl.bits.reset_ovfl_pmds)
3622 pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3623
3624 if (rst_ctrl.bits.mask_monitoring == 0) {
3625 DPRINT(("resuming monitoring for [%d]\n", task->pid));
3626
3627 if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3628 } else {
3629 DPRINT(("keeping monitoring stopped for [%d]\n", task->pid));
3630
3631 // cannot use pfm_stop_monitoring(task, regs);
3632 }
3633 }
3634 /*
3635 * clear overflowed PMD mask to remove any stale information
3636 */
3637 ctx->ctx_ovfl_regs[0] = 0UL;
3638
3639 /*
3640 * back to LOADED state
3641 */
3642 ctx->ctx_state = PFM_CTX_LOADED;
3643
3644 /*
3645 * XXX: not really useful for self monitoring
3646 */
3647 ctx->ctx_fl_can_restart = 0;
3648
3649 return 0;
3650 }
3651
3652 /*
3653 * restart another task
3654 */
3655
3656 /*
3657 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3658 * one is seen by the task.
3659 */
3660 if (state == PFM_CTX_MASKED) {
3661 if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3662 /*
3663 * will prevent subsequent restart before this one is
3664 * seen by other task
3665 */
3666 ctx->ctx_fl_can_restart = 0;
3667 }
3668
3669 /*
3670 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3671 * the task is blocked or on its way to block. That's the normal
3672 * restart path. If the monitoring is not masked, then the task
3673 * can be actively monitoring and we cannot directly intervene.
3674 * Therefore we use the trap mechanism to catch the task and
3675 * force it to reset the buffer/reset PMDs.
3676 *
3677 * if non-blocking, then we ensure that the task will go into
3678 * pfm_handle_work() before returning to user mode.
3679 *
3680 * We cannot explicitely reset another task, it MUST always
3681 * be done by the task itself. This works for system wide because
3682 * the tool that is controlling the session is logically doing
3683 * "self-monitoring".
3684 */
3685 if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3686 DPRINT(("unblocking [%d] \n", task->pid));
60f1c444 3687 complete(&ctx->ctx_restart_done);
1da177e4
LT
3688 } else {
3689 DPRINT(("[%d] armed exit trap\n", task->pid));
3690
3691 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3692
3693 PFM_SET_WORK_PENDING(task, 1);
3694
3695 pfm_set_task_notify(task);
3696
3697 /*
3698 * XXX: send reschedule if task runs on another CPU
3699 */
3700 }
3701 return 0;
3702}
3703
3704static int
3705pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3706{
3707 unsigned int m = *(unsigned int *)arg;
3708
3709 pfm_sysctl.debug = m == 0 ? 0 : 1;
3710
1da177e4
LT
3711 printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3712
3713 if (m == 0) {
3714 memset(pfm_stats, 0, sizeof(pfm_stats));
3715 for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3716 }
3717 return 0;
3718}
3719
3720/*
3721 * arg can be NULL and count can be zero for this function
3722 */
3723static int
3724pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3725{
3726 struct thread_struct *thread = NULL;
3727 struct task_struct *task;
3728 pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3729 unsigned long flags;
3730 dbreg_t dbreg;
3731 unsigned int rnum;
3732 int first_time;
3733 int ret = 0, state;
3734 int i, can_access_pmu = 0;
3735 int is_system, is_loaded;
3736
3737 if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3738
3739 state = ctx->ctx_state;
3740 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3741 is_system = ctx->ctx_fl_system;
3742 task = ctx->ctx_task;
3743
3744 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3745
3746 /*
3747 * on both UP and SMP, we can only write to the PMC when the task is
3748 * the owner of the local PMU.
3749 */
3750 if (is_loaded) {
3751 thread = &task->thread;
3752 /*
3753 * In system wide and when the context is loaded, access can only happen
3754 * when the caller is running on the CPU being monitored by the session.
3755 * It does not have to be the owner (ctx_task) of the context per se.
3756 */
3757 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3758 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3759 return -EBUSY;
3760 }
3761 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3762 }
3763
3764 /*
3765 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3766 * ensuring that no real breakpoint can be installed via this call.
3767 *
3768 * IMPORTANT: regs can be NULL in this function
3769 */
3770
3771 first_time = ctx->ctx_fl_using_dbreg == 0;
3772
3773 /*
3774 * don't bother if we are loaded and task is being debugged
3775 */
3776 if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3777 DPRINT(("debug registers already in use for [%d]\n", task->pid));
3778 return -EBUSY;
3779 }
3780
3781 /*
3782 * check for debug registers in system wide mode
3783 *
3784 * If though a check is done in pfm_context_load(),
3785 * we must repeat it here, in case the registers are
3786 * written after the context is loaded
3787 */
3788 if (is_loaded) {
3789 LOCK_PFS(flags);
3790
3791 if (first_time && is_system) {
3792 if (pfm_sessions.pfs_ptrace_use_dbregs)
3793 ret = -EBUSY;
3794 else
3795 pfm_sessions.pfs_sys_use_dbregs++;
3796 }
3797 UNLOCK_PFS(flags);
3798 }
3799
3800 if (ret != 0) return ret;
3801
3802 /*
3803 * mark ourself as user of the debug registers for
3804 * perfmon purposes.
3805 */
3806 ctx->ctx_fl_using_dbreg = 1;
3807
3808 /*
3809 * clear hardware registers to make sure we don't
3810 * pick up stale state.
3811 *
3812 * for a system wide session, we do not use
3813 * thread.dbr, thread.ibr because this process
3814 * never leaves the current CPU and the state
3815 * is shared by all processes running on it
3816 */
3817 if (first_time && can_access_pmu) {
3818 DPRINT(("[%d] clearing ibrs, dbrs\n", task->pid));
3819 for (i=0; i < pmu_conf->num_ibrs; i++) {
3820 ia64_set_ibr(i, 0UL);
3821 ia64_dv_serialize_instruction();
3822 }
3823 ia64_srlz_i();
3824 for (i=0; i < pmu_conf->num_dbrs; i++) {
3825 ia64_set_dbr(i, 0UL);
3826 ia64_dv_serialize_data();
3827 }
3828 ia64_srlz_d();
3829 }
3830
3831 /*
3832 * Now install the values into the registers
3833 */
3834 for (i = 0; i < count; i++, req++) {
3835
3836 rnum = req->dbreg_num;
3837 dbreg.val = req->dbreg_value;
3838
3839 ret = -EINVAL;
3840
3841 if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3842 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3843 rnum, dbreg.val, mode, i, count));
3844
3845 goto abort_mission;
3846 }
3847
3848 /*
3849 * make sure we do not install enabled breakpoint
3850 */
3851 if (rnum & 0x1) {
3852 if (mode == PFM_CODE_RR)
3853 dbreg.ibr.ibr_x = 0;
3854 else
3855 dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3856 }
3857
3858 PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3859
3860 /*
3861 * Debug registers, just like PMC, can only be modified
3862 * by a kernel call. Moreover, perfmon() access to those
3863 * registers are centralized in this routine. The hardware
3864 * does not modify the value of these registers, therefore,
3865 * if we save them as they are written, we can avoid having
3866 * to save them on context switch out. This is made possible
3867 * by the fact that when perfmon uses debug registers, ptrace()
3868 * won't be able to modify them concurrently.
3869 */
3870 if (mode == PFM_CODE_RR) {
3871 CTX_USED_IBR(ctx, rnum);
3872
3873 if (can_access_pmu) {
3874 ia64_set_ibr(rnum, dbreg.val);
3875 ia64_dv_serialize_instruction();
3876 }
3877
3878 ctx->ctx_ibrs[rnum] = dbreg.val;
3879
3880 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3881 rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3882 } else {
3883 CTX_USED_DBR(ctx, rnum);
3884
3885 if (can_access_pmu) {
3886 ia64_set_dbr(rnum, dbreg.val);
3887 ia64_dv_serialize_data();
3888 }
3889 ctx->ctx_dbrs[rnum] = dbreg.val;
3890
3891 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3892 rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3893 }
3894 }
3895
3896 return 0;
3897
3898abort_mission:
3899 /*
3900 * in case it was our first attempt, we undo the global modifications
3901 */
3902 if (first_time) {
3903 LOCK_PFS(flags);
3904 if (ctx->ctx_fl_system) {
3905 pfm_sessions.pfs_sys_use_dbregs--;
3906 }
3907 UNLOCK_PFS(flags);
3908 ctx->ctx_fl_using_dbreg = 0;
3909 }
3910 /*
3911 * install error return flag
3912 */
3913 PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3914
3915 return ret;
3916}
3917
3918static int
3919pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3920{
3921 return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3922}
3923
3924static int
3925pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3926{
3927 return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3928}
3929
3930int
3931pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3932{
3933 pfm_context_t *ctx;
3934
3935 if (req == NULL) return -EINVAL;
3936
3937 ctx = GET_PMU_CTX();
3938
3939 if (ctx == NULL) return -EINVAL;
3940
3941 /*
3942 * for now limit to current task, which is enough when calling
3943 * from overflow handler
3944 */
3945 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3946
3947 return pfm_write_ibrs(ctx, req, nreq, regs);
3948}
3949EXPORT_SYMBOL(pfm_mod_write_ibrs);
3950
3951int
3952pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3953{
3954 pfm_context_t *ctx;
3955
3956 if (req == NULL) return -EINVAL;
3957
3958 ctx = GET_PMU_CTX();
3959
3960 if (ctx == NULL) return -EINVAL;
3961
3962 /*
3963 * for now limit to current task, which is enough when calling
3964 * from overflow handler
3965 */
3966 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3967
3968 return pfm_write_dbrs(ctx, req, nreq, regs);
3969}
3970EXPORT_SYMBOL(pfm_mod_write_dbrs);
3971
3972
3973static int
3974pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3975{
3976 pfarg_features_t *req = (pfarg_features_t *)arg;
3977
3978 req->ft_version = PFM_VERSION;
3979 return 0;
3980}
3981
3982static int
3983pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3984{
3985 struct pt_regs *tregs;
3986 struct task_struct *task = PFM_CTX_TASK(ctx);
3987 int state, is_system;
3988
3989 state = ctx->ctx_state;
3990 is_system = ctx->ctx_fl_system;
3991
3992 /*
3993 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3994 */
3995 if (state == PFM_CTX_UNLOADED) return -EINVAL;
3996
3997 /*
3998 * In system wide and when the context is loaded, access can only happen
3999 * when the caller is running on the CPU being monitored by the session.
4000 * It does not have to be the owner (ctx_task) of the context per se.
4001 */
4002 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4003 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4004 return -EBUSY;
4005 }
4006 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
4007 PFM_CTX_TASK(ctx)->pid,
4008 state,
4009 is_system));
4010 /*
4011 * in system mode, we need to update the PMU directly
4012 * and the user level state of the caller, which may not
4013 * necessarily be the creator of the context.
4014 */
4015 if (is_system) {
4016 /*
4017 * Update local PMU first
4018 *
4019 * disable dcr pp
4020 */
4021 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
4022 ia64_srlz_i();
4023
4024 /*
4025 * update local cpuinfo
4026 */
4027 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4028
4029 /*
4030 * stop monitoring, does srlz.i
4031 */
4032 pfm_clear_psr_pp();
4033
4034 /*
4035 * stop monitoring in the caller
4036 */
4037 ia64_psr(regs)->pp = 0;
4038
4039 return 0;
4040 }
4041 /*
4042 * per-task mode
4043 */
4044
4045 if (task == current) {
4046 /* stop monitoring at kernel level */
4047 pfm_clear_psr_up();
4048
4049 /*
4050 * stop monitoring at the user level
4051 */
4052 ia64_psr(regs)->up = 0;
4053 } else {
6450578f 4054 tregs = task_pt_regs(task);
1da177e4
LT
4055
4056 /*
4057 * stop monitoring at the user level
4058 */
4059 ia64_psr(tregs)->up = 0;
4060
4061 /*
4062 * monitoring disabled in kernel at next reschedule
4063 */
4064 ctx->ctx_saved_psr_up = 0;
4065 DPRINT(("task=[%d]\n", task->pid));
4066 }
4067 return 0;
4068}
4069
4070
4071static int
4072pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4073{
4074 struct pt_regs *tregs;
4075 int state, is_system;
4076
4077 state = ctx->ctx_state;
4078 is_system = ctx->ctx_fl_system;
4079
4080 if (state != PFM_CTX_LOADED) return -EINVAL;
4081
4082 /*
4083 * In system wide and when the context is loaded, access can only happen
4084 * when the caller is running on the CPU being monitored by the session.
4085 * It does not have to be the owner (ctx_task) of the context per se.
4086 */
4087 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4088 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4089 return -EBUSY;
4090 }
4091
4092 /*
4093 * in system mode, we need to update the PMU directly
4094 * and the user level state of the caller, which may not
4095 * necessarily be the creator of the context.
4096 */
4097 if (is_system) {
4098
4099 /*
4100 * set user level psr.pp for the caller
4101 */
4102 ia64_psr(regs)->pp = 1;
4103
4104 /*
4105 * now update the local PMU and cpuinfo
4106 */
4107 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4108
4109 /*
4110 * start monitoring at kernel level
4111 */
4112 pfm_set_psr_pp();
4113
4114 /* enable dcr pp */
4115 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4116 ia64_srlz_i();
4117
4118 return 0;
4119 }
4120
4121 /*
4122 * per-process mode
4123 */
4124
4125 if (ctx->ctx_task == current) {
4126
4127 /* start monitoring at kernel level */
4128 pfm_set_psr_up();
4129
4130 /*
4131 * activate monitoring at user level
4132 */
4133 ia64_psr(regs)->up = 1;
4134
4135 } else {
6450578f 4136 tregs = task_pt_regs(ctx->ctx_task);
1da177e4
LT
4137
4138 /*
4139 * start monitoring at the kernel level the next
4140 * time the task is scheduled
4141 */
4142 ctx->ctx_saved_psr_up = IA64_PSR_UP;
4143
4144 /*
4145 * activate monitoring at user level
4146 */
4147 ia64_psr(tregs)->up = 1;
4148 }
4149 return 0;
4150}
4151
4152static int
4153pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4154{
4155 pfarg_reg_t *req = (pfarg_reg_t *)arg;
4156 unsigned int cnum;
4157 int i;
4158 int ret = -EINVAL;
4159
4160 for (i = 0; i < count; i++, req++) {
4161
4162 cnum = req->reg_num;
4163
4164 if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4165
4166 req->reg_value = PMC_DFL_VAL(cnum);
4167
4168 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4169
4170 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4171 }
4172 return 0;
4173
4174abort_mission:
4175 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4176 return ret;
4177}
4178
4179static int
4180pfm_check_task_exist(pfm_context_t *ctx)
4181{
4182 struct task_struct *g, *t;
4183 int ret = -ESRCH;
4184
4185 read_lock(&tasklist_lock);
4186
4187 do_each_thread (g, t) {
4188 if (t->thread.pfm_context == ctx) {
4189 ret = 0;
4190 break;
4191 }
4192 } while_each_thread (g, t);
4193
4194 read_unlock(&tasklist_lock);
4195
4196 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4197
4198 return ret;
4199}
4200
4201static int
4202pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4203{
4204 struct task_struct *task;
4205 struct thread_struct *thread;
4206 struct pfm_context_t *old;
4207 unsigned long flags;
4208#ifndef CONFIG_SMP
4209 struct task_struct *owner_task = NULL;
4210#endif
4211 pfarg_load_t *req = (pfarg_load_t *)arg;
4212 unsigned long *pmcs_source, *pmds_source;
4213 int the_cpu;
4214 int ret = 0;
4215 int state, is_system, set_dbregs = 0;
4216
4217 state = ctx->ctx_state;
4218 is_system = ctx->ctx_fl_system;
4219 /*
4220 * can only load from unloaded or terminated state
4221 */
4222 if (state != PFM_CTX_UNLOADED) {
4223 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4224 req->load_pid,
4225 ctx->ctx_state));
a5a70b75 4226 return -EBUSY;
1da177e4
LT
4227 }
4228
4229 DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4230
4231 if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4232 DPRINT(("cannot use blocking mode on self\n"));
4233 return -EINVAL;
4234 }
4235
4236 ret = pfm_get_task(ctx, req->load_pid, &task);
4237 if (ret) {
4238 DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4239 return ret;
4240 }
4241
4242 ret = -EINVAL;
4243
4244 /*
4245 * system wide is self monitoring only
4246 */
4247 if (is_system && task != current) {
4248 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4249 req->load_pid));
4250 goto error;
4251 }
4252
4253 thread = &task->thread;
4254
4255 ret = 0;
4256 /*
4257 * cannot load a context which is using range restrictions,
4258 * into a task that is being debugged.
4259 */
4260 if (ctx->ctx_fl_using_dbreg) {
4261 if (thread->flags & IA64_THREAD_DBG_VALID) {
4262 ret = -EBUSY;
4263 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4264 goto error;
4265 }
4266 LOCK_PFS(flags);
4267
4268 if (is_system) {
4269 if (pfm_sessions.pfs_ptrace_use_dbregs) {
4270 DPRINT(("cannot load [%d] dbregs in use\n", task->pid));
4271 ret = -EBUSY;
4272 } else {
4273 pfm_sessions.pfs_sys_use_dbregs++;
4274 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task->pid, pfm_sessions.pfs_sys_use_dbregs));
4275 set_dbregs = 1;
4276 }
4277 }
4278
4279 UNLOCK_PFS(flags);
4280
4281 if (ret) goto error;
4282 }
4283
4284 /*
4285 * SMP system-wide monitoring implies self-monitoring.
4286 *
4287 * The programming model expects the task to
4288 * be pinned on a CPU throughout the session.
4289 * Here we take note of the current CPU at the
4290 * time the context is loaded. No call from
4291 * another CPU will be allowed.
4292 *
4293 * The pinning via shed_setaffinity()
4294 * must be done by the calling task prior
4295 * to this call.
4296 *
4297 * systemwide: keep track of CPU this session is supposed to run on
4298 */
4299 the_cpu = ctx->ctx_cpu = smp_processor_id();
4300
4301 ret = -EBUSY;
4302 /*
4303 * now reserve the session
4304 */
4305 ret = pfm_reserve_session(current, is_system, the_cpu);
4306 if (ret) goto error;
4307
4308 /*
4309 * task is necessarily stopped at this point.
4310 *
4311 * If the previous context was zombie, then it got removed in
4312 * pfm_save_regs(). Therefore we should not see it here.
4313 * If we see a context, then this is an active context
4314 *
4315 * XXX: needs to be atomic
4316 */
4317 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4318 thread->pfm_context, ctx));
4319
6bf11e8c 4320 ret = -EBUSY;
1da177e4
LT
4321 old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4322 if (old != NULL) {
4323 DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4324 goto error_unres;
4325 }
4326
4327 pfm_reset_msgq(ctx);
4328
4329 ctx->ctx_state = PFM_CTX_LOADED;
4330
4331 /*
4332 * link context to task
4333 */
4334 ctx->ctx_task = task;
4335
4336 if (is_system) {
4337 /*
4338 * we load as stopped
4339 */
4340 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4341 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4342
4343 if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4344 } else {
4345 thread->flags |= IA64_THREAD_PM_VALID;
4346 }
4347
4348 /*
4349 * propagate into thread-state
4350 */
4351 pfm_copy_pmds(task, ctx);
4352 pfm_copy_pmcs(task, ctx);
4353
35589a8f
KA
4354 pmcs_source = ctx->th_pmcs;
4355 pmds_source = ctx->th_pmds;
1da177e4
LT
4356
4357 /*
4358 * always the case for system-wide
4359 */
4360 if (task == current) {
4361
4362 if (is_system == 0) {
4363
4364 /* allow user level control */
4365 ia64_psr(regs)->sp = 0;
4366 DPRINT(("clearing psr.sp for [%d]\n", task->pid));
4367
4368 SET_LAST_CPU(ctx, smp_processor_id());
4369 INC_ACTIVATION();
4370 SET_ACTIVATION(ctx);
4371#ifndef CONFIG_SMP
4372 /*
4373 * push the other task out, if any
4374 */
4375 owner_task = GET_PMU_OWNER();
4376 if (owner_task) pfm_lazy_save_regs(owner_task);
4377#endif
4378 }
4379 /*
4380 * load all PMD from ctx to PMU (as opposed to thread state)
4381 * restore all PMC from ctx to PMU
4382 */
4383 pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4384 pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4385
4386 ctx->ctx_reload_pmcs[0] = 0UL;
4387 ctx->ctx_reload_pmds[0] = 0UL;
4388
4389 /*
4390 * guaranteed safe by earlier check against DBG_VALID
4391 */
4392 if (ctx->ctx_fl_using_dbreg) {
4393 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4394 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4395 }
4396 /*
4397 * set new ownership
4398 */
4399 SET_PMU_OWNER(task, ctx);
4400
4401 DPRINT(("context loaded on PMU for [%d]\n", task->pid));
4402 } else {
4403 /*
4404 * when not current, task MUST be stopped, so this is safe
4405 */
6450578f 4406 regs = task_pt_regs(task);
1da177e4
LT
4407
4408 /* force a full reload */
4409 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4410 SET_LAST_CPU(ctx, -1);
4411
4412 /* initial saved psr (stopped) */
4413 ctx->ctx_saved_psr_up = 0UL;
4414 ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4415 }
4416
4417 ret = 0;
4418
4419error_unres:
4420 if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4421error:
4422 /*
4423 * we must undo the dbregs setting (for system-wide)
4424 */
4425 if (ret && set_dbregs) {
4426 LOCK_PFS(flags);
4427 pfm_sessions.pfs_sys_use_dbregs--;
4428 UNLOCK_PFS(flags);
4429 }
4430 /*
4431 * release task, there is now a link with the context
4432 */
4433 if (is_system == 0 && task != current) {
4434 pfm_put_task(task);
4435
4436 if (ret == 0) {
4437 ret = pfm_check_task_exist(ctx);
4438 if (ret) {
4439 ctx->ctx_state = PFM_CTX_UNLOADED;
4440 ctx->ctx_task = NULL;
4441 }
4442 }
4443 }
4444 return ret;
4445}
4446
4447/*
4448 * in this function, we do not need to increase the use count
4449 * for the task via get_task_struct(), because we hold the
4450 * context lock. If the task were to disappear while having
4451 * a context attached, it would go through pfm_exit_thread()
4452 * which also grabs the context lock and would therefore be blocked
4453 * until we are here.
4454 */
4455static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4456
4457static int
4458pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4459{
4460 struct task_struct *task = PFM_CTX_TASK(ctx);
4461 struct pt_regs *tregs;
4462 int prev_state, is_system;
4463 int ret;
4464
4465 DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task->pid : -1));
4466
4467 prev_state = ctx->ctx_state;
4468 is_system = ctx->ctx_fl_system;
4469
4470 /*
4471 * unload only when necessary
4472 */
4473 if (prev_state == PFM_CTX_UNLOADED) {
4474 DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4475 return 0;
4476 }
4477
4478 /*
4479 * clear psr and dcr bits
4480 */
4481 ret = pfm_stop(ctx, NULL, 0, regs);
4482 if (ret) return ret;
4483
4484 ctx->ctx_state = PFM_CTX_UNLOADED;
4485
4486 /*
4487 * in system mode, we need to update the PMU directly
4488 * and the user level state of the caller, which may not
4489 * necessarily be the creator of the context.
4490 */
4491 if (is_system) {
4492
4493 /*
4494 * Update cpuinfo
4495 *
4496 * local PMU is taken care of in pfm_stop()
4497 */
4498 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4499 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4500
4501 /*
4502 * save PMDs in context
4503 * release ownership
4504 */
4505 pfm_flush_pmds(current, ctx);
4506
4507 /*
4508 * at this point we are done with the PMU
4509 * so we can unreserve the resource.
4510 */
4511 if (prev_state != PFM_CTX_ZOMBIE)
4512 pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4513
4514 /*
4515 * disconnect context from task
4516 */
4517 task->thread.pfm_context = NULL;
4518 /*
4519 * disconnect task from context
4520 */
4521 ctx->ctx_task = NULL;
4522
4523 /*
4524 * There is nothing more to cleanup here.
4525 */
4526 return 0;
4527 }
4528
4529 /*
4530 * per-task mode
4531 */
6450578f 4532 tregs = task == current ? regs : task_pt_regs(task);
1da177e4
LT
4533
4534 if (task == current) {
4535 /*
4536 * cancel user level control
4537 */
4538 ia64_psr(regs)->sp = 1;
4539
4540 DPRINT(("setting psr.sp for [%d]\n", task->pid));
4541 }
4542 /*
4543 * save PMDs to context
4544 * release ownership
4545 */
4546 pfm_flush_pmds(task, ctx);
4547
4548 /*
4549 * at this point we are done with the PMU
4550 * so we can unreserve the resource.
4551 *
4552 * when state was ZOMBIE, we have already unreserved.
4553 */
4554 if (prev_state != PFM_CTX_ZOMBIE)
4555 pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4556
4557 /*
4558 * reset activation counter and psr
4559 */
4560 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4561 SET_LAST_CPU(ctx, -1);
4562
4563 /*
4564 * PMU state will not be restored
4565 */
4566 task->thread.flags &= ~IA64_THREAD_PM_VALID;
4567
4568 /*
4569 * break links between context and task
4570 */
4571 task->thread.pfm_context = NULL;
4572 ctx->ctx_task = NULL;
4573
4574 PFM_SET_WORK_PENDING(task, 0);
4575
4576 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
4577 ctx->ctx_fl_can_restart = 0;
4578 ctx->ctx_fl_going_zombie = 0;
4579
4580 DPRINT(("disconnected [%d] from context\n", task->pid));
4581
4582 return 0;
4583}
4584
4585
4586/*
4587 * called only from exit_thread(): task == current
4588 * we come here only if current has a context attached (loaded or masked)
4589 */
4590void
4591pfm_exit_thread(struct task_struct *task)
4592{
4593 pfm_context_t *ctx;
4594 unsigned long flags;
6450578f 4595 struct pt_regs *regs = task_pt_regs(task);
1da177e4
LT
4596 int ret, state;
4597 int free_ok = 0;
4598
4599 ctx = PFM_GET_CTX(task);
4600
4601 PROTECT_CTX(ctx, flags);
4602
4603 DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task->pid));
4604
4605 state = ctx->ctx_state;
4606 switch(state) {
4607 case PFM_CTX_UNLOADED:
4608 /*
4609 * only comes to thios function if pfm_context is not NULL, i.e., cannot
4610 * be in unloaded state
4611 */
4612 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task->pid);
4613 break;
4614 case PFM_CTX_LOADED:
4615 case PFM_CTX_MASKED:
4616 ret = pfm_context_unload(ctx, NULL, 0, regs);
4617 if (ret) {
4618 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
4619 }
4620 DPRINT(("ctx unloaded for current state was %d\n", state));
4621
4622 pfm_end_notify_user(ctx);
4623 break;
4624 case PFM_CTX_ZOMBIE:
4625 ret = pfm_context_unload(ctx, NULL, 0, regs);
4626 if (ret) {
4627 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
4628 }
4629 free_ok = 1;
4630 break;
4631 default:
4632 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task->pid, state);
4633 break;
4634 }
4635 UNPROTECT_CTX(ctx, flags);
4636
4637 { u64 psr = pfm_get_psr();
4638 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4639 BUG_ON(GET_PMU_OWNER());
4640 BUG_ON(ia64_psr(regs)->up);
4641 BUG_ON(ia64_psr(regs)->pp);
4642 }
4643
4644 /*
4645 * All memory free operations (especially for vmalloc'ed memory)
4646 * MUST be done with interrupts ENABLED.
4647 */
4648 if (free_ok) pfm_context_free(ctx);
4649}
4650
4651/*
4652 * functions MUST be listed in the increasing order of their index (see permfon.h)
4653 */
4654#define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4655#define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4656#define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4657#define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4658#define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4659
4660static pfm_cmd_desc_t pfm_cmd_tab[]={
4661/* 0 */PFM_CMD_NONE,
4662/* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4663/* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4664/* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4665/* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4666/* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4667/* 6 */PFM_CMD_NONE,
4668/* 7 */PFM_CMD_NONE,
4669/* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4670/* 9 */PFM_CMD_NONE,
4671/* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4672/* 11 */PFM_CMD_NONE,
4673/* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4674/* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4675/* 14 */PFM_CMD_NONE,
4676/* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4677/* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4678/* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4679/* 18 */PFM_CMD_NONE,
4680/* 19 */PFM_CMD_NONE,
4681/* 20 */PFM_CMD_NONE,
4682/* 21 */PFM_CMD_NONE,
4683/* 22 */PFM_CMD_NONE,
4684/* 23 */PFM_CMD_NONE,
4685/* 24 */PFM_CMD_NONE,
4686/* 25 */PFM_CMD_NONE,
4687/* 26 */PFM_CMD_NONE,
4688/* 27 */PFM_CMD_NONE,
4689/* 28 */PFM_CMD_NONE,
4690/* 29 */PFM_CMD_NONE,
4691/* 30 */PFM_CMD_NONE,
4692/* 31 */PFM_CMD_NONE,
4693/* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4694/* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4695};
4696#define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4697
4698static int
4699pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4700{
4701 struct task_struct *task;
4702 int state, old_state;
4703
4704recheck:
4705 state = ctx->ctx_state;
4706 task = ctx->ctx_task;
4707
4708 if (task == NULL) {
4709 DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4710 return 0;
4711 }
4712
4713 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4714 ctx->ctx_fd,
4715 state,
4716 task->pid,
4717 task->state, PFM_CMD_STOPPED(cmd)));
4718
4719 /*
4720 * self-monitoring always ok.
4721 *
4722 * for system-wide the caller can either be the creator of the
4723 * context (to one to which the context is attached to) OR
4724 * a task running on the same CPU as the session.
4725 */
4726 if (task == current || ctx->ctx_fl_system) return 0;
4727
4728 /*
a5a70b75 4729 * we are monitoring another thread
1da177e4 4730 */
a5a70b75 4731 switch(state) {
4732 case PFM_CTX_UNLOADED:
4733 /*
4734 * if context is UNLOADED we are safe to go
4735 */
4736 return 0;
4737 case PFM_CTX_ZOMBIE:
4738 /*
4739 * no command can operate on a zombie context
4740 */
4741 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4742 return -EINVAL;
4743 case PFM_CTX_MASKED:
4744 /*
4745 * PMU state has been saved to software even though
4746 * the thread may still be running.
4747 */
4748 if (cmd != PFM_UNLOAD_CONTEXT) return 0;
1da177e4
LT
4749 }
4750
4751 /*
4752 * context is LOADED or MASKED. Some commands may need to have
4753 * the task stopped.
4754 *
4755 * We could lift this restriction for UP but it would mean that
4756 * the user has no guarantee the task would not run between
4757 * two successive calls to perfmonctl(). That's probably OK.
4758 * If this user wants to ensure the task does not run, then
4759 * the task must be stopped.
4760 */
4761 if (PFM_CMD_STOPPED(cmd)) {
4762 if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
4763 DPRINT(("[%d] task not in stopped state\n", task->pid));
4764 return -EBUSY;
4765 }
4766 /*
4767 * task is now stopped, wait for ctxsw out
4768 *
4769 * This is an interesting point in the code.
4770 * We need to unprotect the context because
4771 * the pfm_save_regs() routines needs to grab
4772 * the same lock. There are danger in doing
4773 * this because it leaves a window open for
4774 * another task to get access to the context
4775 * and possibly change its state. The one thing
4776 * that is not possible is for the context to disappear
4777 * because we are protected by the VFS layer, i.e.,
4778 * get_fd()/put_fd().
4779 */
4780 old_state = state;
4781
4782 UNPROTECT_CTX(ctx, flags);
4783
4784 wait_task_inactive(task);
4785
4786 PROTECT_CTX(ctx, flags);
4787
4788 /*
4789 * we must recheck to verify if state has changed
4790 */
4791 if (ctx->ctx_state != old_state) {
4792 DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4793 goto recheck;
4794 }
4795 }
4796 return 0;
4797}
4798
4799/*
4800 * system-call entry point (must return long)
4801 */
4802asmlinkage long
4803sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4804{
4805 struct file *file = NULL;
4806 pfm_context_t *ctx = NULL;
4807 unsigned long flags = 0UL;
4808 void *args_k = NULL;
4809 long ret; /* will expand int return types */
4810 size_t base_sz, sz, xtra_sz = 0;
4811 int narg, completed_args = 0, call_made = 0, cmd_flags;
4812 int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4813 int (*getsize)(void *arg, size_t *sz);
4814#define PFM_MAX_ARGSIZE 4096
4815
4816 /*
4817 * reject any call if perfmon was disabled at initialization
4818 */
4819 if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4820
4821 if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4822 DPRINT(("invalid cmd=%d\n", cmd));
4823 return -EINVAL;
4824 }
4825
4826 func = pfm_cmd_tab[cmd].cmd_func;
4827 narg = pfm_cmd_tab[cmd].cmd_narg;
4828 base_sz = pfm_cmd_tab[cmd].cmd_argsize;
4829 getsize = pfm_cmd_tab[cmd].cmd_getsize;
4830 cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4831
4832 if (unlikely(func == NULL)) {
4833 DPRINT(("invalid cmd=%d\n", cmd));
4834 return -EINVAL;
4835 }
4836
4837 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4838 PFM_CMD_NAME(cmd),
4839 cmd,
4840 narg,
4841 base_sz,
4842 count));
4843
4844 /*
4845 * check if number of arguments matches what the command expects
4846 */
4847 if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4848 return -EINVAL;
4849
4850restart_args:
4851 sz = xtra_sz + base_sz*count;
4852 /*
4853 * limit abuse to min page size
4854 */
4855 if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4856 printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", current->pid, sz);
4857 return -E2BIG;
4858 }
4859
4860 /*
4861 * allocate default-sized argument buffer
4862 */
4863 if (likely(count && args_k == NULL)) {
4864 args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4865 if (args_k == NULL) return -ENOMEM;
4866 }
4867
4868 ret = -EFAULT;
4869
4870 /*
4871 * copy arguments
4872 *
4873 * assume sz = 0 for command without parameters
4874 */
4875 if (sz && copy_from_user(args_k, arg, sz)) {
4876 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4877 goto error_args;
4878 }
4879
4880 /*
4881 * check if command supports extra parameters
4882 */
4883 if (completed_args == 0 && getsize) {
4884 /*
4885 * get extra parameters size (based on main argument)
4886 */
4887 ret = (*getsize)(args_k, &xtra_sz);
4888 if (ret) goto error_args;
4889
4890 completed_args = 1;
4891
4892 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4893
4894 /* retry if necessary */
4895 if (likely(xtra_sz)) goto restart_args;
4896 }
4897
4898 if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4899
4900 ret = -EBADF;
4901
4902 file = fget(fd);
4903 if (unlikely(file == NULL)) {
4904 DPRINT(("invalid fd %d\n", fd));
4905 goto error_args;
4906 }
4907 if (unlikely(PFM_IS_FILE(file) == 0)) {
4908 DPRINT(("fd %d not related to perfmon\n", fd));
4909 goto error_args;
4910 }
4911
4912 ctx = (pfm_context_t *)file->private_data;
4913 if (unlikely(ctx == NULL)) {
4914 DPRINT(("no context for fd %d\n", fd));
4915 goto error_args;
4916 }
4917 prefetch(&ctx->ctx_state);
4918
4919 PROTECT_CTX(ctx, flags);
4920
4921 /*
4922 * check task is stopped
4923 */
4924 ret = pfm_check_task_state(ctx, cmd, flags);
4925 if (unlikely(ret)) goto abort_locked;
4926
4927skip_fd:
6450578f 4928 ret = (*func)(ctx, args_k, count, task_pt_regs(current));
1da177e4
LT
4929
4930 call_made = 1;
4931
4932abort_locked:
4933 if (likely(ctx)) {
4934 DPRINT(("context unlocked\n"));
4935 UNPROTECT_CTX(ctx, flags);
1da177e4
LT
4936 }
4937
4938 /* copy argument back to user, if needed */
4939 if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4940
4941error_args:
b8444d00
SE
4942 if (file)
4943 fput(file);
4944
b2325fe1 4945 kfree(args_k);
1da177e4
LT
4946
4947 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4948
4949 return ret;
4950}
4951
4952static void
4953pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4954{
4955 pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4956 pfm_ovfl_ctrl_t rst_ctrl;
4957 int state;
4958 int ret = 0;
4959
4960 state = ctx->ctx_state;
4961 /*
4962 * Unlock sampling buffer and reset index atomically
4963 * XXX: not really needed when blocking
4964 */
4965 if (CTX_HAS_SMPL(ctx)) {
4966
4967 rst_ctrl.bits.mask_monitoring = 0;
4968 rst_ctrl.bits.reset_ovfl_pmds = 0;
4969
4970 if (state == PFM_CTX_LOADED)
4971 ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4972 else
4973 ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4974 } else {
4975 rst_ctrl.bits.mask_monitoring = 0;
4976 rst_ctrl.bits.reset_ovfl_pmds = 1;
4977 }
4978
4979 if (ret == 0) {
4980 if (rst_ctrl.bits.reset_ovfl_pmds) {
4981 pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4982 }
4983 if (rst_ctrl.bits.mask_monitoring == 0) {
4984 DPRINT(("resuming monitoring\n"));
4985 if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4986 } else {
4987 DPRINT(("stopping monitoring\n"));
4988 //pfm_stop_monitoring(current, regs);
4989 }
4990 ctx->ctx_state = PFM_CTX_LOADED;
4991 }
4992}
4993
4994/*
4995 * context MUST BE LOCKED when calling
4996 * can only be called for current
4997 */
4998static void
4999pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
5000{
5001 int ret;
5002
5003 DPRINT(("entering for [%d]\n", current->pid));
5004
5005 ret = pfm_context_unload(ctx, NULL, 0, regs);
5006 if (ret) {
5007 printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", current->pid, ret);
5008 }
5009
5010 /*
5011 * and wakeup controlling task, indicating we are now disconnected
5012 */
5013 wake_up_interruptible(&ctx->ctx_zombieq);
5014
5015 /*
5016 * given that context is still locked, the controlling
5017 * task will only get access when we return from
5018 * pfm_handle_work().
5019 */
5020}
5021
5022static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
4944930a
SE
5023 /*
5024 * pfm_handle_work() can be called with interrupts enabled
5025 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5026 * call may sleep, therefore we must re-enable interrupts
5027 * to avoid deadlocks. It is safe to do so because this function
5028 * is called ONLY when returning to user level (PUStk=1), in which case
5029 * there is no risk of kernel stack overflow due to deep
5030 * interrupt nesting.
5031 */
1da177e4
LT
5032void
5033pfm_handle_work(void)
5034{
5035 pfm_context_t *ctx;
5036 struct pt_regs *regs;
4944930a 5037 unsigned long flags, dummy_flags;
1da177e4
LT
5038 unsigned long ovfl_regs;
5039 unsigned int reason;
5040 int ret;
5041
5042 ctx = PFM_GET_CTX(current);
5043 if (ctx == NULL) {
5044 printk(KERN_ERR "perfmon: [%d] has no PFM context\n", current->pid);
5045 return;
5046 }
5047
5048 PROTECT_CTX(ctx, flags);
5049
5050 PFM_SET_WORK_PENDING(current, 0);
5051
5052 pfm_clear_task_notify();
5053
6450578f 5054 regs = task_pt_regs(current);
1da177e4
LT
5055
5056 /*
5057 * extract reason for being here and clear
5058 */
5059 reason = ctx->ctx_fl_trap_reason;
5060 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5061 ovfl_regs = ctx->ctx_ovfl_regs[0];
5062
5063 DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5064
5065 /*
5066 * must be done before we check for simple-reset mode
5067 */
5068 if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE) goto do_zombie;
5069
5070
5071 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5072 if (reason == PFM_TRAP_REASON_RESET) goto skip_blocking;
5073
4944930a
SE
5074 /*
5075 * restore interrupt mask to what it was on entry.
5076 * Could be enabled/diasbled.
5077 */
1da177e4
LT
5078 UNPROTECT_CTX(ctx, flags);
5079
4944930a
SE
5080 /*
5081 * force interrupt enable because of down_interruptible()
5082 */
1da177e4
LT
5083 local_irq_enable();
5084
5085 DPRINT(("before block sleeping\n"));
5086
5087 /*
5088 * may go through without blocking on SMP systems
5089 * if restart has been received already by the time we call down()
5090 */
60f1c444 5091 ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
1da177e4
LT
5092
5093 DPRINT(("after block sleeping ret=%d\n", ret));
5094
5095 /*
4944930a
SE
5096 * lock context and mask interrupts again
5097 * We save flags into a dummy because we may have
5098 * altered interrupts mask compared to entry in this
5099 * function.
1da177e4 5100 */
4944930a 5101 PROTECT_CTX(ctx, dummy_flags);
1da177e4
LT
5102
5103 /*
5104 * we need to read the ovfl_regs only after wake-up
5105 * because we may have had pfm_write_pmds() in between
5106 * and that can changed PMD values and therefore
5107 * ovfl_regs is reset for these new PMD values.
5108 */
5109 ovfl_regs = ctx->ctx_ovfl_regs[0];
5110
5111 if (ctx->ctx_fl_going_zombie) {
5112do_zombie:
5113 DPRINT(("context is zombie, bailing out\n"));
5114 pfm_context_force_terminate(ctx, regs);
5115 goto nothing_to_do;
5116 }
5117 /*
5118 * in case of interruption of down() we don't restart anything
5119 */
5120 if (ret < 0) goto nothing_to_do;
5121
5122skip_blocking:
5123 pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5124 ctx->ctx_ovfl_regs[0] = 0UL;
5125
5126nothing_to_do:
4944930a
SE
5127 /*
5128 * restore flags as they were upon entry
5129 */
1da177e4
LT
5130 UNPROTECT_CTX(ctx, flags);
5131}
5132
5133static int
5134pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5135{
5136 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5137 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5138 return 0;
5139 }
5140
5141 DPRINT(("waking up somebody\n"));
5142
5143 if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5144
5145 /*
5146 * safe, we are not in intr handler, nor in ctxsw when
5147 * we come here
5148 */
5149 kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5150
5151 return 0;
5152}
5153
5154static int
5155pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5156{
5157 pfm_msg_t *msg = NULL;
5158
5159 if (ctx->ctx_fl_no_msg == 0) {
5160 msg = pfm_get_new_msg(ctx);
5161 if (msg == NULL) {
5162 printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5163 return -1;
5164 }
5165
5166 msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL;
5167 msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd;
5168 msg->pfm_ovfl_msg.msg_active_set = 0;
5169 msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5170 msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5171 msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5172 msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5173 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5174 }
5175
5176 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5177 msg,
5178 ctx->ctx_fl_no_msg,
5179 ctx->ctx_fd,
5180 ovfl_pmds));
5181
5182 return pfm_notify_user(ctx, msg);
5183}
5184
5185static int
5186pfm_end_notify_user(pfm_context_t *ctx)
5187{
5188 pfm_msg_t *msg;
5189
5190 msg = pfm_get_new_msg(ctx);
5191 if (msg == NULL) {
5192 printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5193 return -1;
5194 }
5195 /* no leak */
5196 memset(msg, 0, sizeof(*msg));
5197
5198 msg->pfm_end_msg.msg_type = PFM_MSG_END;
5199 msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd;
5200 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5201
5202 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5203 msg,
5204 ctx->ctx_fl_no_msg,
5205 ctx->ctx_fd));
5206
5207 return pfm_notify_user(ctx, msg);
5208}
5209
5210/*
5211 * main overflow processing routine.
5212 * it can be called from the interrupt path or explicitely during the context switch code
5213 */
5214static void
5215pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx, u64 pmc0, struct pt_regs *regs)
5216{
5217 pfm_ovfl_arg_t *ovfl_arg;
5218 unsigned long mask;
5219 unsigned long old_val, ovfl_val, new_val;
5220 unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5221 unsigned long tstamp;
5222 pfm_ovfl_ctrl_t ovfl_ctrl;
5223 unsigned int i, has_smpl;
5224 int must_notify = 0;
5225
5226 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5227
5228 /*
5229 * sanity test. Should never happen
5230 */
5231 if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5232
5233 tstamp = ia64_get_itc();
5234 mask = pmc0 >> PMU_FIRST_COUNTER;
5235 ovfl_val = pmu_conf->ovfl_val;
5236 has_smpl = CTX_HAS_SMPL(ctx);
5237
5238 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5239 "used_pmds=0x%lx\n",
5240 pmc0,
5241 task ? task->pid: -1,
5242 (regs ? regs->cr_iip : 0),
5243 CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5244 ctx->ctx_used_pmds[0]));
5245
5246
5247 /*
5248 * first we update the virtual counters
5249 * assume there was a prior ia64_srlz_d() issued
5250 */
5251 for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5252
5253 /* skip pmd which did not overflow */
5254 if ((mask & 0x1) == 0) continue;
5255
5256 /*
5257 * Note that the pmd is not necessarily 0 at this point as qualified events
5258 * may have happened before the PMU was frozen. The residual count is not
5259 * taken into consideration here but will be with any read of the pmd via
5260 * pfm_read_pmds().
5261 */
5262 old_val = new_val = ctx->ctx_pmds[i].val;
5263 new_val += 1 + ovfl_val;
5264 ctx->ctx_pmds[i].val = new_val;
5265
5266 /*
5267 * check for overflow condition
5268 */
5269 if (likely(old_val > new_val)) {
5270 ovfl_pmds |= 1UL << i;
5271 if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5272 }
5273
5274 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5275 i,
5276 new_val,
5277 old_val,
5278 ia64_get_pmd(i) & ovfl_val,
5279 ovfl_pmds,
5280 ovfl_notify));
5281 }
5282
5283 /*
5284 * there was no 64-bit overflow, nothing else to do
5285 */
5286 if (ovfl_pmds == 0UL) return;
5287
5288 /*
5289 * reset all control bits
5290 */
5291 ovfl_ctrl.val = 0;
5292 reset_pmds = 0UL;
5293
5294 /*
5295 * if a sampling format module exists, then we "cache" the overflow by
5296 * calling the module's handler() routine.
5297 */
5298 if (has_smpl) {
5299 unsigned long start_cycles, end_cycles;
5300 unsigned long pmd_mask;
5301 int j, k, ret = 0;
5302 int this_cpu = smp_processor_id();
5303
5304 pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5305 ovfl_arg = &ctx->ctx_ovfl_arg;
5306
5307 prefetch(ctx->ctx_smpl_hdr);
5308
5309 for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5310
5311 mask = 1UL << i;
5312
5313 if ((pmd_mask & 0x1) == 0) continue;
5314
5315 ovfl_arg->ovfl_pmd = (unsigned char )i;
5316 ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0;
5317 ovfl_arg->active_set = 0;
5318 ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5319 ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5320
5321 ovfl_arg->pmd_value = ctx->ctx_pmds[i].val;
5322 ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5323 ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid;
5324
5325 /*
5326 * copy values of pmds of interest. Sampling format may copy them
5327 * into sampling buffer.
5328 */
5329 if (smpl_pmds) {
5330 for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5331 if ((smpl_pmds & 0x1) == 0) continue;
5332 ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5333 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5334 }
5335 }
5336
5337 pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5338
5339 start_cycles = ia64_get_itc();
5340
5341 /*
5342 * call custom buffer format record (handler) routine
5343 */
5344 ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5345
5346 end_cycles = ia64_get_itc();
5347
5348 /*
5349 * For those controls, we take the union because they have
5350 * an all or nothing behavior.
5351 */
5352 ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5353 ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task;
5354 ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5355 /*
5356 * build the bitmask of pmds to reset now
5357 */
5358 if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5359
5360 pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5361 }
5362 /*
5363 * when the module cannot handle the rest of the overflows, we abort right here
5364 */
5365 if (ret && pmd_mask) {
5366 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5367 pmd_mask<<PMU_FIRST_COUNTER));
5368 }
5369 /*
5370 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5371 */
5372 ovfl_pmds &= ~reset_pmds;
5373 } else {
5374 /*
5375 * when no sampling module is used, then the default
5376 * is to notify on overflow if requested by user
5377 */
5378 ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0;
5379 ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0;
5380 ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5381 ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5382 /*
5383 * if needed, we reset all overflowed pmds
5384 */
5385 if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5386 }
5387
5388 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5389
5390 /*
5391 * reset the requested PMD registers using the short reset values
5392 */
5393 if (reset_pmds) {
5394 unsigned long bm = reset_pmds;
5395 pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5396 }
5397
5398 if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5399 /*
5400 * keep track of what to reset when unblocking
5401 */
5402 ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5403
5404 /*
5405 * check for blocking context
5406 */
5407 if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5408
5409 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5410
5411 /*
5412 * set the perfmon specific checking pending work for the task
5413 */
5414 PFM_SET_WORK_PENDING(task, 1);
5415
5416 /*
5417 * when coming from ctxsw, current still points to the
5418 * previous task, therefore we must work with task and not current.
5419 */
5420 pfm_set_task_notify(task);
5421 }
5422 /*
5423 * defer until state is changed (shorten spin window). the context is locked
5424 * anyway, so the signal receiver would come spin for nothing.
5425 */
5426 must_notify = 1;
5427 }
5428
5429 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5430 GET_PMU_OWNER() ? GET_PMU_OWNER()->pid : -1,
5431 PFM_GET_WORK_PENDING(task),
5432 ctx->ctx_fl_trap_reason,
5433 ovfl_pmds,
5434 ovfl_notify,
5435 ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5436 /*
5437 * in case monitoring must be stopped, we toggle the psr bits
5438 */
5439 if (ovfl_ctrl.bits.mask_monitoring) {
5440 pfm_mask_monitoring(task);
5441 ctx->ctx_state = PFM_CTX_MASKED;
5442 ctx->ctx_fl_can_restart = 1;
5443 }
5444
5445 /*
5446 * send notification now
5447 */
5448 if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5449
5450 return;
5451
5452sanity_check:
5453 printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5454 smp_processor_id(),
5455 task ? task->pid : -1,
5456 pmc0);
5457 return;
5458
5459stop_monitoring:
5460 /*
5461 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5462 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5463 * come here as zombie only if the task is the current task. In which case, we
5464 * can access the PMU hardware directly.
5465 *
5466 * Note that zombies do have PM_VALID set. So here we do the minimal.
5467 *
5468 * In case the context was zombified it could not be reclaimed at the time
5469 * the monitoring program exited. At this point, the PMU reservation has been
5470 * returned, the sampiing buffer has been freed. We must convert this call
5471 * into a spurious interrupt. However, we must also avoid infinite overflows
5472 * by stopping monitoring for this task. We can only come here for a per-task
5473 * context. All we need to do is to stop monitoring using the psr bits which
5474 * are always task private. By re-enabling secure montioring, we ensure that
5475 * the monitored task will not be able to re-activate monitoring.
5476 * The task will eventually be context switched out, at which point the context
5477 * will be reclaimed (that includes releasing ownership of the PMU).
5478 *
5479 * So there might be a window of time where the number of per-task session is zero
5480 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5481 * context. This is safe because if a per-task session comes in, it will push this one
5482 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5483 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5484 * also push our zombie context out.
5485 *
5486 * Overall pretty hairy stuff....
5487 */
5488 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task->pid: -1));
5489 pfm_clear_psr_up();
5490 ia64_psr(regs)->up = 0;
5491 ia64_psr(regs)->sp = 1;
5492 return;
5493}
5494
5495static int
5496pfm_do_interrupt_handler(int irq, void *arg, struct pt_regs *regs)
5497{
5498 struct task_struct *task;
5499 pfm_context_t *ctx;
5500 unsigned long flags;
5501 u64 pmc0;
5502 int this_cpu = smp_processor_id();
5503 int retval = 0;
5504
5505 pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5506
5507 /*
5508 * srlz.d done before arriving here
5509 */
5510 pmc0 = ia64_get_pmc(0);
5511
5512 task = GET_PMU_OWNER();
5513 ctx = GET_PMU_CTX();
5514
5515 /*
5516 * if we have some pending bits set
5517 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5518 */
5519 if (PMC0_HAS_OVFL(pmc0) && task) {
5520 /*
5521 * we assume that pmc0.fr is always set here
5522 */
5523
5524 /* sanity check */
5525 if (!ctx) goto report_spurious1;
5526
5527 if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5528 goto report_spurious2;
5529
5530 PROTECT_CTX_NOPRINT(ctx, flags);
5531
5532 pfm_overflow_handler(task, ctx, pmc0, regs);
5533
5534 UNPROTECT_CTX_NOPRINT(ctx, flags);
5535
5536 } else {
5537 pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5538 retval = -1;
5539 }
5540 /*
5541 * keep it unfrozen at all times
5542 */
5543 pfm_unfreeze_pmu();
5544
5545 return retval;
5546
5547report_spurious1:
5548 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5549 this_cpu, task->pid);
5550 pfm_unfreeze_pmu();
5551 return -1;
5552report_spurious2:
5553 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5554 this_cpu,
5555 task->pid);
5556 pfm_unfreeze_pmu();
5557 return -1;
5558}
5559
5560static irqreturn_t
3bbe486b 5561pfm_interrupt_handler(int irq, void *arg)
1da177e4
LT
5562{
5563 unsigned long start_cycles, total_cycles;
5564 unsigned long min, max;
5565 int this_cpu;
5566 int ret;
3bbe486b 5567 struct pt_regs *regs = get_irq_regs();
1da177e4
LT
5568
5569 this_cpu = get_cpu();
a1ecf7f6
TL
5570 if (likely(!pfm_alt_intr_handler)) {
5571 min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5572 max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
1da177e4 5573
a1ecf7f6 5574 start_cycles = ia64_get_itc();
1da177e4 5575
a1ecf7f6 5576 ret = pfm_do_interrupt_handler(irq, arg, regs);
1da177e4 5577
a1ecf7f6 5578 total_cycles = ia64_get_itc();
1da177e4 5579
a1ecf7f6
TL
5580 /*
5581 * don't measure spurious interrupts
5582 */
5583 if (likely(ret == 0)) {
5584 total_cycles -= start_cycles;
1da177e4 5585
a1ecf7f6
TL
5586 if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5587 if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
1da177e4 5588
a1ecf7f6
TL
5589 pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5590 }
5591 }
5592 else {
5593 (*pfm_alt_intr_handler->handler)(irq, arg, regs);
1da177e4 5594 }
a1ecf7f6 5595
1da177e4
LT
5596 put_cpu_no_resched();
5597 return IRQ_HANDLED;
5598}
5599
5600/*
5601 * /proc/perfmon interface, for debug only
5602 */
5603
5604#define PFM_PROC_SHOW_HEADER ((void *)NR_CPUS+1)
5605
5606static void *
5607pfm_proc_start(struct seq_file *m, loff_t *pos)
5608{
5609 if (*pos == 0) {
5610 return PFM_PROC_SHOW_HEADER;
5611 }
5612
5613 while (*pos <= NR_CPUS) {
5614 if (cpu_online(*pos - 1)) {
5615 return (void *)*pos;
5616 }
5617 ++*pos;
5618 }
5619 return NULL;
5620}
5621
5622static void *
5623pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5624{
5625 ++*pos;
5626 return pfm_proc_start(m, pos);
5627}
5628
5629static void
5630pfm_proc_stop(struct seq_file *m, void *v)
5631{
5632}
5633
5634static void
5635pfm_proc_show_header(struct seq_file *m)
5636{
5637 struct list_head * pos;
5638 pfm_buffer_fmt_t * entry;
5639 unsigned long flags;
5640
5641 seq_printf(m,
5642 "perfmon version : %u.%u\n"
5643 "model : %s\n"
5644 "fastctxsw : %s\n"
5645 "expert mode : %s\n"
5646 "ovfl_mask : 0x%lx\n"
5647 "PMU flags : 0x%x\n",
5648 PFM_VERSION_MAJ, PFM_VERSION_MIN,
5649 pmu_conf->pmu_name,
5650 pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5651 pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5652 pmu_conf->ovfl_val,
5653 pmu_conf->flags);
5654
5655 LOCK_PFS(flags);
5656
5657 seq_printf(m,
5658 "proc_sessions : %u\n"
5659 "sys_sessions : %u\n"
5660 "sys_use_dbregs : %u\n"
5661 "ptrace_use_dbregs : %u\n",
5662 pfm_sessions.pfs_task_sessions,
5663 pfm_sessions.pfs_sys_sessions,
5664 pfm_sessions.pfs_sys_use_dbregs,
5665 pfm_sessions.pfs_ptrace_use_dbregs);
5666
5667 UNLOCK_PFS(flags);
5668
5669 spin_lock(&pfm_buffer_fmt_lock);
5670
5671 list_for_each(pos, &pfm_buffer_fmt_list) {
5672 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5673 seq_printf(m, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5674 entry->fmt_uuid[0],
5675 entry->fmt_uuid[1],
5676 entry->fmt_uuid[2],
5677 entry->fmt_uuid[3],
5678 entry->fmt_uuid[4],
5679 entry->fmt_uuid[5],
5680 entry->fmt_uuid[6],
5681 entry->fmt_uuid[7],
5682 entry->fmt_uuid[8],
5683 entry->fmt_uuid[9],
5684 entry->fmt_uuid[10],
5685 entry->fmt_uuid[11],
5686 entry->fmt_uuid[12],
5687 entry->fmt_uuid[13],
5688 entry->fmt_uuid[14],
5689 entry->fmt_uuid[15],
5690 entry->fmt_name);
5691 }
5692 spin_unlock(&pfm_buffer_fmt_lock);
5693
5694}
5695
5696static int
5697pfm_proc_show(struct seq_file *m, void *v)
5698{
5699 unsigned long psr;
5700 unsigned int i;
5701 int cpu;
5702
5703 if (v == PFM_PROC_SHOW_HEADER) {
5704 pfm_proc_show_header(m);
5705 return 0;
5706 }
5707
5708 /* show info for CPU (v - 1) */
5709
5710 cpu = (long)v - 1;
5711 seq_printf(m,
5712 "CPU%-2d overflow intrs : %lu\n"
5713 "CPU%-2d overflow cycles : %lu\n"
5714 "CPU%-2d overflow min : %lu\n"
5715 "CPU%-2d overflow max : %lu\n"
5716 "CPU%-2d smpl handler calls : %lu\n"
5717 "CPU%-2d smpl handler cycles : %lu\n"
5718 "CPU%-2d spurious intrs : %lu\n"
5719 "CPU%-2d replay intrs : %lu\n"
5720 "CPU%-2d syst_wide : %d\n"
5721 "CPU%-2d dcr_pp : %d\n"
5722 "CPU%-2d exclude idle : %d\n"
5723 "CPU%-2d owner : %d\n"
5724 "CPU%-2d context : %p\n"
5725 "CPU%-2d activations : %lu\n",
5726 cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5727 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5728 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5729 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5730 cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5731 cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5732 cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5733 cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5734 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5735 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5736 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5737 cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5738 cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5739 cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5740
5741 if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5742
5743 psr = pfm_get_psr();
5744
5745 ia64_srlz_d();
5746
5747 seq_printf(m,
5748 "CPU%-2d psr : 0x%lx\n"
5749 "CPU%-2d pmc0 : 0x%lx\n",
5750 cpu, psr,
5751 cpu, ia64_get_pmc(0));
5752
5753 for (i=0; PMC_IS_LAST(i) == 0; i++) {
5754 if (PMC_IS_COUNTING(i) == 0) continue;
5755 seq_printf(m,
5756 "CPU%-2d pmc%u : 0x%lx\n"
5757 "CPU%-2d pmd%u : 0x%lx\n",
5758 cpu, i, ia64_get_pmc(i),
5759 cpu, i, ia64_get_pmd(i));
5760 }
5761 }
5762 return 0;
5763}
5764
5765struct seq_operations pfm_seq_ops = {
5766 .start = pfm_proc_start,
5767 .next = pfm_proc_next,
5768 .stop = pfm_proc_stop,
5769 .show = pfm_proc_show
5770};
5771
5772static int
5773pfm_proc_open(struct inode *inode, struct file *file)
5774{
5775 return seq_open(file, &pfm_seq_ops);
5776}
5777
5778
5779/*
5780 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5781 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5782 * is active or inactive based on mode. We must rely on the value in
5783 * local_cpu_data->pfm_syst_info
5784 */
5785void
5786pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5787{
5788 struct pt_regs *regs;
5789 unsigned long dcr;
5790 unsigned long dcr_pp;
5791
5792 dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5793
5794 /*
5795 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5796 * on every CPU, so we can rely on the pid to identify the idle task.
5797 */
5798 if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
6450578f 5799 regs = task_pt_regs(task);
1da177e4
LT
5800 ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5801 return;
5802 }
5803 /*
5804 * if monitoring has started
5805 */
5806 if (dcr_pp) {
5807 dcr = ia64_getreg(_IA64_REG_CR_DCR);
5808 /*
5809 * context switching in?
5810 */
5811 if (is_ctxswin) {
5812 /* mask monitoring for the idle task */
5813 ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5814 pfm_clear_psr_pp();
5815 ia64_srlz_i();
5816 return;
5817 }
5818 /*
5819 * context switching out
5820 * restore monitoring for next task
5821 *
5822 * Due to inlining this odd if-then-else construction generates
5823 * better code.
5824 */
5825 ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5826 pfm_set_psr_pp();
5827 ia64_srlz_i();
5828 }
5829}
5830
5831#ifdef CONFIG_SMP
5832
5833static void
5834pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5835{
5836 struct task_struct *task = ctx->ctx_task;
5837
5838 ia64_psr(regs)->up = 0;
5839 ia64_psr(regs)->sp = 1;
5840
5841 if (GET_PMU_OWNER() == task) {
5842 DPRINT(("cleared ownership for [%d]\n", ctx->ctx_task->pid));
5843 SET_PMU_OWNER(NULL, NULL);
5844 }
5845
5846 /*
5847 * disconnect the task from the context and vice-versa
5848 */
5849 PFM_SET_WORK_PENDING(task, 0);
5850
5851 task->thread.pfm_context = NULL;
5852 task->thread.flags &= ~IA64_THREAD_PM_VALID;
5853
5854 DPRINT(("force cleanup for [%d]\n", task->pid));
5855}
5856
5857
5858/*
5859 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5860 */
5861void
5862pfm_save_regs(struct task_struct *task)
5863{
5864 pfm_context_t *ctx;
1da177e4
LT
5865 unsigned long flags;
5866 u64 psr;
5867
5868
5869 ctx = PFM_GET_CTX(task);
5870 if (ctx == NULL) return;
1da177e4
LT
5871
5872 /*
5873 * we always come here with interrupts ALREADY disabled by
5874 * the scheduler. So we simply need to protect against concurrent
5875 * access, not CPU concurrency.
5876 */
5877 flags = pfm_protect_ctx_ctxsw(ctx);
5878
5879 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
6450578f 5880 struct pt_regs *regs = task_pt_regs(task);
1da177e4
LT
5881
5882 pfm_clear_psr_up();
5883
5884 pfm_force_cleanup(ctx, regs);
5885
5886 BUG_ON(ctx->ctx_smpl_hdr);
5887
5888 pfm_unprotect_ctx_ctxsw(ctx, flags);
5889
5890 pfm_context_free(ctx);
5891 return;
5892 }
5893
5894 /*
5895 * save current PSR: needed because we modify it
5896 */
5897 ia64_srlz_d();
5898 psr = pfm_get_psr();
5899
5900 BUG_ON(psr & (IA64_PSR_I));
5901
5902 /*
5903 * stop monitoring:
5904 * This is the last instruction which may generate an overflow
5905 *
5906 * We do not need to set psr.sp because, it is irrelevant in kernel.
5907 * It will be restored from ipsr when going back to user level
5908 */
5909 pfm_clear_psr_up();
5910
5911 /*
5912 * keep a copy of psr.up (for reload)
5913 */
5914 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5915
5916 /*
5917 * release ownership of this PMU.
5918 * PM interrupts are masked, so nothing
5919 * can happen.
5920 */
5921 SET_PMU_OWNER(NULL, NULL);
5922
5923 /*
5924 * we systematically save the PMD as we have no
5925 * guarantee we will be schedule at that same
5926 * CPU again.
5927 */
35589a8f 5928 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
1da177e4
LT
5929
5930 /*
5931 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5932 * we will need it on the restore path to check
5933 * for pending overflow.
5934 */
35589a8f 5935 ctx->th_pmcs[0] = ia64_get_pmc(0);
1da177e4
LT
5936
5937 /*
5938 * unfreeze PMU if had pending overflows
5939 */
35589a8f 5940 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
1da177e4
LT
5941
5942 /*
5943 * finally, allow context access.
5944 * interrupts will still be masked after this call.
5945 */
5946 pfm_unprotect_ctx_ctxsw(ctx, flags);
5947}
5948
5949#else /* !CONFIG_SMP */
5950void
5951pfm_save_regs(struct task_struct *task)
5952{
5953 pfm_context_t *ctx;
5954 u64 psr;
5955
5956 ctx = PFM_GET_CTX(task);
5957 if (ctx == NULL) return;
5958
5959 /*
5960 * save current PSR: needed because we modify it
5961 */
5962 psr = pfm_get_psr();
5963
5964 BUG_ON(psr & (IA64_PSR_I));
5965
5966 /*
5967 * stop monitoring:
5968 * This is the last instruction which may generate an overflow
5969 *
5970 * We do not need to set psr.sp because, it is irrelevant in kernel.
5971 * It will be restored from ipsr when going back to user level
5972 */
5973 pfm_clear_psr_up();
5974
5975 /*
5976 * keep a copy of psr.up (for reload)
5977 */
5978 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5979}
5980
5981static void
5982pfm_lazy_save_regs (struct task_struct *task)
5983{
5984 pfm_context_t *ctx;
1da177e4
LT
5985 unsigned long flags;
5986
5987 { u64 psr = pfm_get_psr();
5988 BUG_ON(psr & IA64_PSR_UP);
5989 }
5990
5991 ctx = PFM_GET_CTX(task);
1da177e4
LT
5992
5993 /*
5994 * we need to mask PMU overflow here to
5995 * make sure that we maintain pmc0 until
5996 * we save it. overflow interrupts are
5997 * treated as spurious if there is no
5998 * owner.
5999 *
6000 * XXX: I don't think this is necessary
6001 */
6002 PROTECT_CTX(ctx,flags);
6003
6004 /*
6005 * release ownership of this PMU.
6006 * must be done before we save the registers.
6007 *
6008 * after this call any PMU interrupt is treated
6009 * as spurious.
6010 */
6011 SET_PMU_OWNER(NULL, NULL);
6012
6013 /*
6014 * save all the pmds we use
6015 */
35589a8f 6016 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
1da177e4
LT
6017
6018 /*
6019 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
6020 * it is needed to check for pended overflow
6021 * on the restore path
6022 */
35589a8f 6023 ctx->th_pmcs[0] = ia64_get_pmc(0);
1da177e4
LT
6024
6025 /*
6026 * unfreeze PMU if had pending overflows
6027 */
35589a8f 6028 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
1da177e4
LT
6029
6030 /*
6031 * now get can unmask PMU interrupts, they will
6032 * be treated as purely spurious and we will not
6033 * lose any information
6034 */
6035 UNPROTECT_CTX(ctx,flags);
6036}
6037#endif /* CONFIG_SMP */
6038
6039#ifdef CONFIG_SMP
6040/*
6041 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6042 */
6043void
6044pfm_load_regs (struct task_struct *task)
6045{
6046 pfm_context_t *ctx;
1da177e4
LT
6047 unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6048 unsigned long flags;
6049 u64 psr, psr_up;
6050 int need_irq_resend;
6051
6052 ctx = PFM_GET_CTX(task);
6053 if (unlikely(ctx == NULL)) return;
6054
6055 BUG_ON(GET_PMU_OWNER());
6056
1da177e4
LT
6057 /*
6058 * possible on unload
6059 */
35589a8f 6060 if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
1da177e4
LT
6061
6062 /*
6063 * we always come here with interrupts ALREADY disabled by
6064 * the scheduler. So we simply need to protect against concurrent
6065 * access, not CPU concurrency.
6066 */
6067 flags = pfm_protect_ctx_ctxsw(ctx);
6068 psr = pfm_get_psr();
6069
6070 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6071
6072 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6073 BUG_ON(psr & IA64_PSR_I);
6074
6075 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6450578f 6076 struct pt_regs *regs = task_pt_regs(task);
1da177e4
LT
6077
6078 BUG_ON(ctx->ctx_smpl_hdr);
6079
6080 pfm_force_cleanup(ctx, regs);
6081
6082 pfm_unprotect_ctx_ctxsw(ctx, flags);
6083
6084 /*
6085 * this one (kmalloc'ed) is fine with interrupts disabled
6086 */
6087 pfm_context_free(ctx);
6088
6089 return;
6090 }
6091
6092 /*
6093 * we restore ALL the debug registers to avoid picking up
6094 * stale state.
6095 */
6096 if (ctx->ctx_fl_using_dbreg) {
6097 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6098 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6099 }
6100 /*
6101 * retrieve saved psr.up
6102 */
6103 psr_up = ctx->ctx_saved_psr_up;
6104
6105 /*
6106 * if we were the last user of the PMU on that CPU,
6107 * then nothing to do except restore psr
6108 */
6109 if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6110
6111 /*
6112 * retrieve partial reload masks (due to user modifications)
6113 */
6114 pmc_mask = ctx->ctx_reload_pmcs[0];
6115 pmd_mask = ctx->ctx_reload_pmds[0];
6116
6117 } else {
6118 /*
6119 * To avoid leaking information to the user level when psr.sp=0,
6120 * we must reload ALL implemented pmds (even the ones we don't use).
6121 * In the kernel we only allow PFM_READ_PMDS on registers which
6122 * we initialized or requested (sampling) so there is no risk there.
6123 */
6124 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6125
6126 /*
6127 * ALL accessible PMCs are systematically reloaded, unused registers
6128 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6129 * up stale configuration.
6130 *
6131 * PMC0 is never in the mask. It is always restored separately.
6132 */
6133 pmc_mask = ctx->ctx_all_pmcs[0];
6134 }
6135 /*
6136 * when context is MASKED, we will restore PMC with plm=0
6137 * and PMD with stale information, but that's ok, nothing
6138 * will be captured.
6139 *
6140 * XXX: optimize here
6141 */
35589a8f
KA
6142 if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6143 if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
1da177e4
LT
6144
6145 /*
6146 * check for pending overflow at the time the state
6147 * was saved.
6148 */
35589a8f 6149 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
1da177e4
LT
6150 /*
6151 * reload pmc0 with the overflow information
6152 * On McKinley PMU, this will trigger a PMU interrupt
6153 */
35589a8f 6154 ia64_set_pmc(0, ctx->th_pmcs[0]);
1da177e4 6155 ia64_srlz_d();
35589a8f 6156 ctx->th_pmcs[0] = 0UL;
1da177e4
LT
6157
6158 /*
6159 * will replay the PMU interrupt
6160 */
c0ad90a3 6161 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
1da177e4
LT
6162
6163 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6164 }
6165
6166 /*
6167 * we just did a reload, so we reset the partial reload fields
6168 */
6169 ctx->ctx_reload_pmcs[0] = 0UL;
6170 ctx->ctx_reload_pmds[0] = 0UL;
6171
6172 SET_LAST_CPU(ctx, smp_processor_id());
6173
6174 /*
6175 * dump activation value for this PMU
6176 */
6177 INC_ACTIVATION();
6178 /*
6179 * record current activation for this context
6180 */
6181 SET_ACTIVATION(ctx);
6182
6183 /*
6184 * establish new ownership.
6185 */
6186 SET_PMU_OWNER(task, ctx);
6187
6188 /*
6189 * restore the psr.up bit. measurement
6190 * is active again.
6191 * no PMU interrupt can happen at this point
6192 * because we still have interrupts disabled.
6193 */
6194 if (likely(psr_up)) pfm_set_psr_up();
6195
6196 /*
6197 * allow concurrent access to context
6198 */
6199 pfm_unprotect_ctx_ctxsw(ctx, flags);
6200}
6201#else /* !CONFIG_SMP */
6202/*
6203 * reload PMU state for UP kernels
6204 * in 2.5 we come here with interrupts disabled
6205 */
6206void
6207pfm_load_regs (struct task_struct *task)
6208{
1da177e4
LT
6209 pfm_context_t *ctx;
6210 struct task_struct *owner;
6211 unsigned long pmd_mask, pmc_mask;
6212 u64 psr, psr_up;
6213 int need_irq_resend;
6214
6215 owner = GET_PMU_OWNER();
6216 ctx = PFM_GET_CTX(task);
1da177e4
LT
6217 psr = pfm_get_psr();
6218
6219 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6220 BUG_ON(psr & IA64_PSR_I);
6221
6222 /*
6223 * we restore ALL the debug registers to avoid picking up
6224 * stale state.
6225 *
6226 * This must be done even when the task is still the owner
6227 * as the registers may have been modified via ptrace()
6228 * (not perfmon) by the previous task.
6229 */
6230 if (ctx->ctx_fl_using_dbreg) {
6231 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6232 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6233 }
6234
6235 /*
6236 * retrieved saved psr.up
6237 */
6238 psr_up = ctx->ctx_saved_psr_up;
6239 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6240
6241 /*
6242 * short path, our state is still there, just
6243 * need to restore psr and we go
6244 *
6245 * we do not touch either PMC nor PMD. the psr is not touched
6246 * by the overflow_handler. So we are safe w.r.t. to interrupt
6247 * concurrency even without interrupt masking.
6248 */
6249 if (likely(owner == task)) {
6250 if (likely(psr_up)) pfm_set_psr_up();
6251 return;
6252 }
6253
6254 /*
6255 * someone else is still using the PMU, first push it out and
6256 * then we'll be able to install our stuff !
6257 *
6258 * Upon return, there will be no owner for the current PMU
6259 */
6260 if (owner) pfm_lazy_save_regs(owner);
6261
6262 /*
6263 * To avoid leaking information to the user level when psr.sp=0,
6264 * we must reload ALL implemented pmds (even the ones we don't use).
6265 * In the kernel we only allow PFM_READ_PMDS on registers which
6266 * we initialized or requested (sampling) so there is no risk there.
6267 */
6268 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6269
6270 /*
6271 * ALL accessible PMCs are systematically reloaded, unused registers
6272 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6273 * up stale configuration.
6274 *
6275 * PMC0 is never in the mask. It is always restored separately
6276 */
6277 pmc_mask = ctx->ctx_all_pmcs[0];
6278
35589a8f
KA
6279 pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6280 pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
1da177e4
LT
6281
6282 /*
6283 * check for pending overflow at the time the state
6284 * was saved.
6285 */
35589a8f 6286 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
1da177e4
LT
6287 /*
6288 * reload pmc0 with the overflow information
6289 * On McKinley PMU, this will trigger a PMU interrupt
6290 */
35589a8f 6291 ia64_set_pmc(0, ctx->th_pmcs[0]);
1da177e4
LT
6292 ia64_srlz_d();
6293
35589a8f 6294 ctx->th_pmcs[0] = 0UL;
1da177e4
LT
6295
6296 /*
6297 * will replay the PMU interrupt
6298 */
c0ad90a3 6299 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
1da177e4
LT
6300
6301 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6302 }
6303
6304 /*
6305 * establish new ownership.
6306 */
6307 SET_PMU_OWNER(task, ctx);
6308
6309 /*
6310 * restore the psr.up bit. measurement
6311 * is active again.
6312 * no PMU interrupt can happen at this point
6313 * because we still have interrupts disabled.
6314 */
6315 if (likely(psr_up)) pfm_set_psr_up();
6316}
6317#endif /* CONFIG_SMP */
6318
6319/*
6320 * this function assumes monitoring is stopped
6321 */
6322static void
6323pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6324{
6325 u64 pmc0;
6326 unsigned long mask2, val, pmd_val, ovfl_val;
6327 int i, can_access_pmu = 0;
6328 int is_self;
6329
6330 /*
6331 * is the caller the task being monitored (or which initiated the
6332 * session for system wide measurements)
6333 */
6334 is_self = ctx->ctx_task == task ? 1 : 0;
6335
6336 /*
6337 * can access PMU is task is the owner of the PMU state on the current CPU
6338 * or if we are running on the CPU bound to the context in system-wide mode
6339 * (that is not necessarily the task the context is attached to in this mode).
6340 * In system-wide we always have can_access_pmu true because a task running on an
6341 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6342 */
6343 can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6344 if (can_access_pmu) {
6345 /*
6346 * Mark the PMU as not owned
6347 * This will cause the interrupt handler to do nothing in case an overflow
6348 * interrupt was in-flight
6349 * This also guarantees that pmc0 will contain the final state
6350 * It virtually gives us full control on overflow processing from that point
6351 * on.
6352 */
6353 SET_PMU_OWNER(NULL, NULL);
6354 DPRINT(("releasing ownership\n"));
6355
6356 /*
6357 * read current overflow status:
6358 *
6359 * we are guaranteed to read the final stable state
6360 */
6361 ia64_srlz_d();
6362 pmc0 = ia64_get_pmc(0); /* slow */
6363
6364 /*
6365 * reset freeze bit, overflow status information destroyed
6366 */
6367 pfm_unfreeze_pmu();
6368 } else {
35589a8f 6369 pmc0 = ctx->th_pmcs[0];
1da177e4
LT
6370 /*
6371 * clear whatever overflow status bits there were
6372 */
35589a8f 6373 ctx->th_pmcs[0] = 0;
1da177e4
LT
6374 }
6375 ovfl_val = pmu_conf->ovfl_val;
6376 /*
6377 * we save all the used pmds
6378 * we take care of overflows for counting PMDs
6379 *
6380 * XXX: sampling situation is not taken into account here
6381 */
6382 mask2 = ctx->ctx_used_pmds[0];
6383
6384 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6385
6386 for (i = 0; mask2; i++, mask2>>=1) {
6387
6388 /* skip non used pmds */
6389 if ((mask2 & 0x1) == 0) continue;
6390
6391 /*
6392 * can access PMU always true in system wide mode
6393 */
35589a8f 6394 val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
1da177e4
LT
6395
6396 if (PMD_IS_COUNTING(i)) {
6397 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6398 task->pid,
6399 i,
6400 ctx->ctx_pmds[i].val,
6401 val & ovfl_val));
6402
6403 /*
6404 * we rebuild the full 64 bit value of the counter
6405 */
6406 val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6407
6408 /*
6409 * now everything is in ctx_pmds[] and we need
6410 * to clear the saved context from save_regs() such that
6411 * pfm_read_pmds() gets the correct value
6412 */
6413 pmd_val = 0UL;
6414
6415 /*
6416 * take care of overflow inline
6417 */
6418 if (pmc0 & (1UL << i)) {
6419 val += 1 + ovfl_val;
6420 DPRINT(("[%d] pmd[%d] overflowed\n", task->pid, i));
6421 }
6422 }
6423
6424 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task->pid, i, val, pmd_val));
6425
35589a8f 6426 if (is_self) ctx->th_pmds[i] = pmd_val;
1da177e4
LT
6427
6428 ctx->ctx_pmds[i].val = val;
6429 }
6430}
6431
6432static struct irqaction perfmon_irqaction = {
6433 .handler = pfm_interrupt_handler,
121a4226 6434 .flags = IRQF_DISABLED,
1da177e4
LT
6435 .name = "perfmon"
6436};
6437
a1ecf7f6
TL
6438static void
6439pfm_alt_save_pmu_state(void *data)
6440{
6441 struct pt_regs *regs;
6442
6450578f 6443 regs = task_pt_regs(current);
a1ecf7f6
TL
6444
6445 DPRINT(("called\n"));
6446
6447 /*
6448 * should not be necessary but
6449 * let's take not risk
6450 */
6451 pfm_clear_psr_up();
6452 pfm_clear_psr_pp();
6453 ia64_psr(regs)->pp = 0;
6454
6455 /*
6456 * This call is required
6457 * May cause a spurious interrupt on some processors
6458 */
6459 pfm_freeze_pmu();
6460
6461 ia64_srlz_d();
6462}
6463
6464void
6465pfm_alt_restore_pmu_state(void *data)
6466{
6467 struct pt_regs *regs;
6468
6450578f 6469 regs = task_pt_regs(current);
a1ecf7f6
TL
6470
6471 DPRINT(("called\n"));
6472
6473 /*
6474 * put PMU back in state expected
6475 * by perfmon
6476 */
6477 pfm_clear_psr_up();
6478 pfm_clear_psr_pp();
6479 ia64_psr(regs)->pp = 0;
6480
6481 /*
6482 * perfmon runs with PMU unfrozen at all times
6483 */
6484 pfm_unfreeze_pmu();
6485
6486 ia64_srlz_d();
6487}
6488
6489int
6490pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6491{
6492 int ret, i;
6493 int reserve_cpu;
6494
6495 /* some sanity checks */
6496 if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6497
6498 /* do the easy test first */
6499 if (pfm_alt_intr_handler) return -EBUSY;
6500
6501 /* one at a time in the install or remove, just fail the others */
6502 if (!spin_trylock(&pfm_alt_install_check)) {
6503 return -EBUSY;
6504 }
6505
6506 /* reserve our session */
6507 for_each_online_cpu(reserve_cpu) {
6508 ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6509 if (ret) goto cleanup_reserve;
6510 }
6511
6512 /* save the current system wide pmu states */
6513 ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 0, 1);
6514 if (ret) {
6515 DPRINT(("on_each_cpu() failed: %d\n", ret));
6516 goto cleanup_reserve;
6517 }
6518
6519 /* officially change to the alternate interrupt handler */
6520 pfm_alt_intr_handler = hdl;
6521
6522 spin_unlock(&pfm_alt_install_check);
6523
6524 return 0;
6525
6526cleanup_reserve:
6527 for_each_online_cpu(i) {
6528 /* don't unreserve more than we reserved */
6529 if (i >= reserve_cpu) break;
6530
6531 pfm_unreserve_session(NULL, 1, i);
6532 }
6533
6534 spin_unlock(&pfm_alt_install_check);
6535
6536 return ret;
6537}
6538EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6539
6540int
6541pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6542{
6543 int i;
6544 int ret;
6545
6546 if (hdl == NULL) return -EINVAL;
6547
6548 /* cannot remove someone else's handler! */
6549 if (pfm_alt_intr_handler != hdl) return -EINVAL;
6550
6551 /* one at a time in the install or remove, just fail the others */
6552 if (!spin_trylock(&pfm_alt_install_check)) {
6553 return -EBUSY;
6554 }
6555
6556 pfm_alt_intr_handler = NULL;
6557
6558 ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 0, 1);
6559 if (ret) {
6560 DPRINT(("on_each_cpu() failed: %d\n", ret));
6561 }
6562
6563 for_each_online_cpu(i) {
6564 pfm_unreserve_session(NULL, 1, i);
6565 }
6566
6567 spin_unlock(&pfm_alt_install_check);
6568
6569 return 0;
6570}
6571EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6572
1da177e4
LT
6573/*
6574 * perfmon initialization routine, called from the initcall() table
6575 */
6576static int init_pfm_fs(void);
6577
6578static int __init
6579pfm_probe_pmu(void)
6580{
6581 pmu_config_t **p;
6582 int family;
6583
6584 family = local_cpu_data->family;
6585 p = pmu_confs;
6586
6587 while(*p) {
6588 if ((*p)->probe) {
6589 if ((*p)->probe() == 0) goto found;
6590 } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6591 goto found;
6592 }
6593 p++;
6594 }
6595 return -1;
6596found:
6597 pmu_conf = *p;
6598 return 0;
6599}
6600
6601static struct file_operations pfm_proc_fops = {
6602 .open = pfm_proc_open,
6603 .read = seq_read,
6604 .llseek = seq_lseek,
6605 .release = seq_release,
6606};
6607
6608int __init
6609pfm_init(void)
6610{
6611 unsigned int n, n_counters, i;
6612
6613 printk("perfmon: version %u.%u IRQ %u\n",
6614 PFM_VERSION_MAJ,
6615 PFM_VERSION_MIN,
6616 IA64_PERFMON_VECTOR);
6617
6618 if (pfm_probe_pmu()) {
6619 printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6620 local_cpu_data->family);
6621 return -ENODEV;
6622 }
6623
6624 /*
6625 * compute the number of implemented PMD/PMC from the
6626 * description tables
6627 */
6628 n = 0;
6629 for (i=0; PMC_IS_LAST(i) == 0; i++) {
6630 if (PMC_IS_IMPL(i) == 0) continue;
6631 pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6632 n++;
6633 }
6634 pmu_conf->num_pmcs = n;
6635
6636 n = 0; n_counters = 0;
6637 for (i=0; PMD_IS_LAST(i) == 0; i++) {
6638 if (PMD_IS_IMPL(i) == 0) continue;
6639 pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6640 n++;
6641 if (PMD_IS_COUNTING(i)) n_counters++;
6642 }
6643 pmu_conf->num_pmds = n;
6644 pmu_conf->num_counters = n_counters;
6645
6646 /*
6647 * sanity checks on the number of debug registers
6648 */
6649 if (pmu_conf->use_rr_dbregs) {
6650 if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6651 printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6652 pmu_conf = NULL;
6653 return -1;
6654 }
6655 if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6656 printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6657 pmu_conf = NULL;
6658 return -1;
6659 }
6660 }
6661
6662 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6663 pmu_conf->pmu_name,
6664 pmu_conf->num_pmcs,
6665 pmu_conf->num_pmds,
6666 pmu_conf->num_counters,
6667 ffz(pmu_conf->ovfl_val));
6668
6669 /* sanity check */
35589a8f 6670 if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
1da177e4
LT
6671 printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6672 pmu_conf = NULL;
6673 return -1;
6674 }
6675
6676 /*
6677 * create /proc/perfmon (mostly for debugging purposes)
6678 */
6679 perfmon_dir = create_proc_entry("perfmon", S_IRUGO, NULL);
6680 if (perfmon_dir == NULL) {
6681 printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6682 pmu_conf = NULL;
6683 return -1;
6684 }
6685 /*
6686 * install customized file operations for /proc/perfmon entry
6687 */
6688 perfmon_dir->proc_fops = &pfm_proc_fops;
6689
6690 /*
6691 * create /proc/sys/kernel/perfmon (for debugging purposes)
6692 */
6693 pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root, 0);
6694
6695 /*
6696 * initialize all our spinlocks
6697 */
6698 spin_lock_init(&pfm_sessions.pfs_lock);
6699 spin_lock_init(&pfm_buffer_fmt_lock);
6700
6701 init_pfm_fs();
6702
6703 for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6704
6705 return 0;
6706}
6707
6708__initcall(pfm_init);
6709
6710/*
6711 * this function is called before pfm_init()
6712 */
6713void
6714pfm_init_percpu (void)
6715{
ff741906 6716 static int first_time=1;
1da177e4
LT
6717 /*
6718 * make sure no measurement is active
6719 * (may inherit programmed PMCs from EFI).
6720 */
6721 pfm_clear_psr_pp();
6722 pfm_clear_psr_up();
6723
6724 /*
6725 * we run with the PMU not frozen at all times
6726 */
6727 pfm_unfreeze_pmu();
6728
ff741906 6729 if (first_time) {
1da177e4 6730 register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
ff741906
AR
6731 first_time=0;
6732 }
1da177e4
LT
6733
6734 ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6735 ia64_srlz_d();
6736}
6737
6738/*
6739 * used for debug purposes only
6740 */
6741void
6742dump_pmu_state(const char *from)
6743{
6744 struct task_struct *task;
1da177e4
LT
6745 struct pt_regs *regs;
6746 pfm_context_t *ctx;
6747 unsigned long psr, dcr, info, flags;
6748 int i, this_cpu;
6749
6750 local_irq_save(flags);
6751
6752 this_cpu = smp_processor_id();
6450578f 6753 regs = task_pt_regs(current);
1da177e4
LT
6754 info = PFM_CPUINFO_GET();
6755 dcr = ia64_getreg(_IA64_REG_CR_DCR);
6756
6757 if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6758 local_irq_restore(flags);
6759 return;
6760 }
6761
6762 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6763 this_cpu,
6764 from,
6765 current->pid,
6766 regs->cr_iip,
6767 current->comm);
6768
6769 task = GET_PMU_OWNER();
6770 ctx = GET_PMU_CTX();
6771
6772 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task->pid : -1, ctx);
6773
6774 psr = pfm_get_psr();
6775
6776 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6777 this_cpu,
6778 ia64_get_pmc(0),
6779 psr & IA64_PSR_PP ? 1 : 0,
6780 psr & IA64_PSR_UP ? 1 : 0,
6781 dcr & IA64_DCR_PP ? 1 : 0,
6782 info,
6783 ia64_psr(regs)->up,
6784 ia64_psr(regs)->pp);
6785
6786 ia64_psr(regs)->up = 0;
6787 ia64_psr(regs)->pp = 0;
6788
1da177e4
LT
6789 for (i=1; PMC_IS_LAST(i) == 0; i++) {
6790 if (PMC_IS_IMPL(i) == 0) continue;
35589a8f 6791 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
1da177e4
LT
6792 }
6793
6794 for (i=1; PMD_IS_LAST(i) == 0; i++) {
6795 if (PMD_IS_IMPL(i) == 0) continue;
35589a8f 6796 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
1da177e4
LT
6797 }
6798
6799 if (ctx) {
6800 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6801 this_cpu,
6802 ctx->ctx_state,
6803 ctx->ctx_smpl_vaddr,
6804 ctx->ctx_smpl_hdr,
6805 ctx->ctx_msgq_head,
6806 ctx->ctx_msgq_tail,
6807 ctx->ctx_saved_psr_up);
6808 }
6809 local_irq_restore(flags);
6810}
6811
6812/*
6813 * called from process.c:copy_thread(). task is new child.
6814 */
6815void
6816pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6817{
6818 struct thread_struct *thread;
6819
6820 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task->pid));
6821
6822 thread = &task->thread;
6823
6824 /*
6825 * cut links inherited from parent (current)
6826 */
6827 thread->pfm_context = NULL;
6828
6829 PFM_SET_WORK_PENDING(task, 0);
6830
6831 /*
6832 * the psr bits are already set properly in copy_threads()
6833 */
6834}
6835#else /* !CONFIG_PERFMON */
6836asmlinkage long
6837sys_perfmonctl (int fd, int cmd, void *arg, int count)
6838{
6839 return -ENOSYS;
6840}
6841#endif /* CONFIG_PERFMON */