]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/i386/kernel/vmi.c
[PATCH] vmi: smp fixes
[net-next-2.6.git] / arch / i386 / kernel / vmi.c
CommitLineData
7ce0bcfd
ZA
1/*
2 * VMI specific paravirt-ops implementation
3 *
4 * Copyright (C) 2005, VMware, Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14 * NON INFRINGEMENT. See the GNU General Public License for more
15 * details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 *
21 * Send feedback to zach@vmware.com
22 *
23 */
24
25#include <linux/module.h>
26#include <linux/license.h>
27#include <linux/cpu.h>
28#include <linux/bootmem.h>
29#include <linux/mm.h>
30#include <asm/vmi.h>
31#include <asm/io.h>
32#include <asm/fixmap.h>
33#include <asm/apicdef.h>
34#include <asm/apic.h>
35#include <asm/processor.h>
36#include <asm/timer.h>
bbab4f3b 37#include <asm/vmi_time.h>
7ce0bcfd
ZA
38
39/* Convenient for calling VMI functions indirectly in the ROM */
40typedef u32 __attribute__((regparm(1))) (VROMFUNC)(void);
41typedef u64 __attribute__((regparm(2))) (VROMLONGFUNC)(int);
42
43#define call_vrom_func(rom,func) \
44 (((VROMFUNC *)(rom->func))())
45
46#define call_vrom_long_func(rom,func,arg) \
47 (((VROMLONGFUNC *)(rom->func)) (arg))
48
49static struct vrom_header *vmi_rom;
50static int license_gplok;
7ce0bcfd
ZA
51static int disable_pge;
52static int disable_pse;
53static int disable_sep;
54static int disable_tsc;
55static int disable_mtrr;
7507ba34 56static int disable_noidle;
772205f6 57static int disable_vmi_timer;
7ce0bcfd
ZA
58
59/* Cached VMI operations */
60struct {
61 void (*cpuid)(void /* non-c */);
62 void (*_set_ldt)(u32 selector);
63 void (*set_tr)(u32 selector);
64 void (*set_kernel_stack)(u32 selector, u32 esp0);
65 void (*allocate_page)(u32, u32, u32, u32, u32);
66 void (*release_page)(u32, u32);
67 void (*set_pte)(pte_t, pte_t *, unsigned);
68 void (*update_pte)(pte_t *, unsigned);
69 void (*set_linear_mapping)(int, u32, u32, u32);
70 void (*flush_tlb)(int);
71 void (*set_initial_ap_state)(int, int);
bbab4f3b 72 void (*halt)(void);
7ce0bcfd
ZA
73} vmi_ops;
74
75/* XXX move this to alternative.h */
76extern struct paravirt_patch __start_parainstructions[],
77 __stop_parainstructions[];
78
79/*
80 * VMI patching routines.
81 */
82#define MNEM_CALL 0xe8
83#define MNEM_JMP 0xe9
84#define MNEM_RET 0xc3
85
86static char irq_save_disable_callout[] = {
87 MNEM_CALL, 0, 0, 0, 0,
88 MNEM_CALL, 0, 0, 0, 0,
89 MNEM_RET
90};
91#define IRQ_PATCH_INT_MASK 0
92#define IRQ_PATCH_DISABLE 5
93
94static inline void patch_offset(unsigned char *eip, unsigned char *dest)
95{
96 *(unsigned long *)(eip+1) = dest-eip-5;
97}
98
99static unsigned patch_internal(int call, unsigned len, void *insns)
100{
101 u64 reloc;
102 struct vmi_relocation_info *const rel = (struct vmi_relocation_info *)&reloc;
103 reloc = call_vrom_long_func(vmi_rom, get_reloc, call);
104 switch(rel->type) {
105 case VMI_RELOCATION_CALL_REL:
106 BUG_ON(len < 5);
107 *(char *)insns = MNEM_CALL;
108 patch_offset(insns, rel->eip);
109 return 5;
110
111 case VMI_RELOCATION_JUMP_REL:
112 BUG_ON(len < 5);
113 *(char *)insns = MNEM_JMP;
114 patch_offset(insns, rel->eip);
115 return 5;
116
117 case VMI_RELOCATION_NOP:
118 /* obliterate the whole thing */
119 return 0;
120
121 case VMI_RELOCATION_NONE:
122 /* leave native code in place */
123 break;
124
125 default:
126 BUG();
127 }
128 return len;
129}
130
131/*
132 * Apply patch if appropriate, return length of new instruction
133 * sequence. The callee does nop padding for us.
134 */
135static unsigned vmi_patch(u8 type, u16 clobbers, void *insns, unsigned len)
136{
137 switch (type) {
138 case PARAVIRT_IRQ_DISABLE:
139 return patch_internal(VMI_CALL_DisableInterrupts, len, insns);
140 case PARAVIRT_IRQ_ENABLE:
141 return patch_internal(VMI_CALL_EnableInterrupts, len, insns);
142 case PARAVIRT_RESTORE_FLAGS:
143 return patch_internal(VMI_CALL_SetInterruptMask, len, insns);
144 case PARAVIRT_SAVE_FLAGS:
145 return patch_internal(VMI_CALL_GetInterruptMask, len, insns);
146 case PARAVIRT_SAVE_FLAGS_IRQ_DISABLE:
147 if (len >= 10) {
148 patch_internal(VMI_CALL_GetInterruptMask, len, insns);
149 patch_internal(VMI_CALL_DisableInterrupts, len-5, insns+5);
150 return 10;
151 } else {
152 /*
153 * You bastards didn't leave enough room to
154 * patch save_flags_irq_disable inline. Patch
155 * to a helper
156 */
157 BUG_ON(len < 5);
158 *(char *)insns = MNEM_CALL;
159 patch_offset(insns, irq_save_disable_callout);
160 return 5;
161 }
162 case PARAVIRT_INTERRUPT_RETURN:
163 return patch_internal(VMI_CALL_IRET, len, insns);
164 case PARAVIRT_STI_SYSEXIT:
165 return patch_internal(VMI_CALL_SYSEXIT, len, insns);
166 default:
167 break;
168 }
169 return len;
170}
171
172/* CPUID has non-C semantics, and paravirt-ops API doesn't match hardware ISA */
173static void vmi_cpuid(unsigned int *eax, unsigned int *ebx,
174 unsigned int *ecx, unsigned int *edx)
175{
176 int override = 0;
177 if (*eax == 1)
178 override = 1;
179 asm volatile ("call *%6"
180 : "=a" (*eax),
181 "=b" (*ebx),
182 "=c" (*ecx),
183 "=d" (*edx)
184 : "0" (*eax), "2" (*ecx), "r" (vmi_ops.cpuid));
185 if (override) {
186 if (disable_pse)
187 *edx &= ~X86_FEATURE_PSE;
188 if (disable_pge)
189 *edx &= ~X86_FEATURE_PGE;
190 if (disable_sep)
191 *edx &= ~X86_FEATURE_SEP;
192 if (disable_tsc)
193 *edx &= ~X86_FEATURE_TSC;
194 if (disable_mtrr)
195 *edx &= ~X86_FEATURE_MTRR;
196 }
197}
198
199static inline void vmi_maybe_load_tls(struct desc_struct *gdt, int nr, struct desc_struct *new)
200{
201 if (gdt[nr].a != new->a || gdt[nr].b != new->b)
202 write_gdt_entry(gdt, nr, new->a, new->b);
203}
204
205static void vmi_load_tls(struct thread_struct *t, unsigned int cpu)
206{
207 struct desc_struct *gdt = get_cpu_gdt_table(cpu);
208 vmi_maybe_load_tls(gdt, GDT_ENTRY_TLS_MIN + 0, &t->tls_array[0]);
209 vmi_maybe_load_tls(gdt, GDT_ENTRY_TLS_MIN + 1, &t->tls_array[1]);
210 vmi_maybe_load_tls(gdt, GDT_ENTRY_TLS_MIN + 2, &t->tls_array[2]);
211}
212
213static void vmi_set_ldt(const void *addr, unsigned entries)
214{
215 unsigned cpu = smp_processor_id();
216 u32 low, high;
217
218 pack_descriptor(&low, &high, (unsigned long)addr,
219 entries * sizeof(struct desc_struct) - 1,
220 DESCTYPE_LDT, 0);
221 write_gdt_entry(get_cpu_gdt_table(cpu), GDT_ENTRY_LDT, low, high);
222 vmi_ops._set_ldt(entries ? GDT_ENTRY_LDT*sizeof(struct desc_struct) : 0);
223}
224
225static void vmi_set_tr(void)
226{
227 vmi_ops.set_tr(GDT_ENTRY_TSS*sizeof(struct desc_struct));
228}
229
230static void vmi_load_esp0(struct tss_struct *tss,
231 struct thread_struct *thread)
232{
233 tss->esp0 = thread->esp0;
234
235 /* This can only happen when SEP is enabled, no need to test "SEP"arately */
236 if (unlikely(tss->ss1 != thread->sysenter_cs)) {
237 tss->ss1 = thread->sysenter_cs;
238 wrmsr(MSR_IA32_SYSENTER_CS, thread->sysenter_cs, 0);
239 }
240 vmi_ops.set_kernel_stack(__KERNEL_DS, tss->esp0);
241}
242
243static void vmi_flush_tlb_user(void)
244{
245 vmi_ops.flush_tlb(VMI_FLUSH_TLB);
246}
247
248static void vmi_flush_tlb_kernel(void)
249{
250 vmi_ops.flush_tlb(VMI_FLUSH_TLB | VMI_FLUSH_GLOBAL);
251}
252
253/* Stub to do nothing at all; used for delays and unimplemented calls */
254static void vmi_nop(void)
255{
256}
257
bbab4f3b 258/* For NO_IDLE_HZ, we stop the clock when halting the kernel */
bbab4f3b
ZA
259static fastcall void vmi_safe_halt(void)
260{
261 int idle = vmi_stop_hz_timer();
262 vmi_ops.halt();
263 if (idle) {
264 local_irq_disable();
265 vmi_account_time_restart_hz_timer();
266 local_irq_enable();
267 }
268}
7ce0bcfd
ZA
269
270#ifdef CONFIG_DEBUG_PAGE_TYPE
271
272#ifdef CONFIG_X86_PAE
273#define MAX_BOOT_PTS (2048+4+1)
274#else
275#define MAX_BOOT_PTS (1024+1)
276#endif
277
278/*
279 * During boot, mem_map is not yet available in paging_init, so stash
280 * all the boot page allocations here.
281 */
282static struct {
283 u32 pfn;
284 int type;
285} boot_page_allocations[MAX_BOOT_PTS];
286static int num_boot_page_allocations;
287static int boot_allocations_applied;
288
289void vmi_apply_boot_page_allocations(void)
290{
291 int i;
292 BUG_ON(!mem_map);
293 for (i = 0; i < num_boot_page_allocations; i++) {
294 struct page *page = pfn_to_page(boot_page_allocations[i].pfn);
295 page->type = boot_page_allocations[i].type;
296 page->type = boot_page_allocations[i].type &
297 ~(VMI_PAGE_ZEROED | VMI_PAGE_CLONE);
298 }
299 boot_allocations_applied = 1;
300}
301
302static void record_page_type(u32 pfn, int type)
303{
304 BUG_ON(num_boot_page_allocations >= MAX_BOOT_PTS);
305 boot_page_allocations[num_boot_page_allocations].pfn = pfn;
306 boot_page_allocations[num_boot_page_allocations].type = type;
307 num_boot_page_allocations++;
308}
309
310static void check_zeroed_page(u32 pfn, int type, struct page *page)
311{
312 u32 *ptr;
313 int i;
314 int limit = PAGE_SIZE / sizeof(int);
315
316 if (page_address(page))
317 ptr = (u32 *)page_address(page);
318 else
319 ptr = (u32 *)__va(pfn << PAGE_SHIFT);
320 /*
321 * When cloning the root in non-PAE mode, only the userspace
322 * pdes need to be zeroed.
323 */
324 if (type & VMI_PAGE_CLONE)
325 limit = USER_PTRS_PER_PGD;
326 for (i = 0; i < limit; i++)
327 BUG_ON(ptr[i]);
328}
329
330/*
331 * We stash the page type into struct page so we can verify the page
332 * types are used properly.
333 */
334static void vmi_set_page_type(u32 pfn, int type)
335{
336 /* PAE can have multiple roots per page - don't track */
337 if (PTRS_PER_PMD > 1 && (type & VMI_PAGE_PDP))
338 return;
339
340 if (boot_allocations_applied) {
341 struct page *page = pfn_to_page(pfn);
342 if (type != VMI_PAGE_NORMAL)
343 BUG_ON(page->type);
344 else
345 BUG_ON(page->type == VMI_PAGE_NORMAL);
346 page->type = type & ~(VMI_PAGE_ZEROED | VMI_PAGE_CLONE);
347 if (type & VMI_PAGE_ZEROED)
348 check_zeroed_page(pfn, type, page);
349 } else {
350 record_page_type(pfn, type);
351 }
352}
353
354static void vmi_check_page_type(u32 pfn, int type)
355{
356 /* PAE can have multiple roots per page - skip checks */
357 if (PTRS_PER_PMD > 1 && (type & VMI_PAGE_PDP))
358 return;
359
360 type &= ~(VMI_PAGE_ZEROED | VMI_PAGE_CLONE);
361 if (boot_allocations_applied) {
362 struct page *page = pfn_to_page(pfn);
363 BUG_ON((page->type ^ type) & VMI_PAGE_PAE);
364 BUG_ON(type == VMI_PAGE_NORMAL && page->type);
365 BUG_ON((type & page->type) == 0);
366 }
367}
368#else
369#define vmi_set_page_type(p,t) do { } while (0)
370#define vmi_check_page_type(p,t) do { } while (0)
371#endif
372
9a1c13e9
ZA
373static void vmi_map_pt_hook(int type, pte_t *va, u32 pfn)
374{
375 /*
376 * Internally, the VMI ROM must map virtual addresses to physical
377 * addresses for processing MMU updates. By the time MMU updates
378 * are issued, this information is typically already lost.
379 * Fortunately, the VMI provides a cache of mapping slots for active
380 * page tables.
381 *
382 * We use slot zero for the linear mapping of physical memory, and
383 * in HIGHPTE kernels, slot 1 and 2 for KM_PTE0 and KM_PTE1.
384 *
385 * args: SLOT VA COUNT PFN
386 */
387 BUG_ON(type != KM_PTE0 && type != KM_PTE1);
388 vmi_ops.set_linear_mapping((type - KM_PTE0)+1, (u32)va, 1, pfn);
389}
390
7ce0bcfd
ZA
391static void vmi_allocate_pt(u32 pfn)
392{
393 vmi_set_page_type(pfn, VMI_PAGE_L1);
394 vmi_ops.allocate_page(pfn, VMI_PAGE_L1, 0, 0, 0);
395}
396
397static void vmi_allocate_pd(u32 pfn)
398{
399 /*
400 * This call comes in very early, before mem_map is setup.
401 * It is called only for swapper_pg_dir, which already has
402 * data on it.
403 */
404 vmi_set_page_type(pfn, VMI_PAGE_L2);
405 vmi_ops.allocate_page(pfn, VMI_PAGE_L2, 0, 0, 0);
406}
407
408static void vmi_allocate_pd_clone(u32 pfn, u32 clonepfn, u32 start, u32 count)
409{
410 vmi_set_page_type(pfn, VMI_PAGE_L2 | VMI_PAGE_CLONE);
411 vmi_check_page_type(clonepfn, VMI_PAGE_L2);
412 vmi_ops.allocate_page(pfn, VMI_PAGE_L2 | VMI_PAGE_CLONE, clonepfn, start, count);
413}
414
415static void vmi_release_pt(u32 pfn)
416{
417 vmi_ops.release_page(pfn, VMI_PAGE_L1);
418 vmi_set_page_type(pfn, VMI_PAGE_NORMAL);
419}
420
421static void vmi_release_pd(u32 pfn)
422{
423 vmi_ops.release_page(pfn, VMI_PAGE_L2);
424 vmi_set_page_type(pfn, VMI_PAGE_NORMAL);
425}
426
427/*
428 * Helper macros for MMU update flags. We can defer updates until a flush
429 * or page invalidation only if the update is to the current address space
430 * (otherwise, there is no flush). We must check against init_mm, since
431 * this could be a kernel update, which usually passes init_mm, although
432 * sometimes this check can be skipped if we know the particular function
433 * is only called on user mode PTEs. We could change the kernel to pass
434 * current->active_mm here, but in particular, I was unsure if changing
435 * mm/highmem.c to do this would still be correct on other architectures.
436 */
437#define is_current_as(mm, mustbeuser) ((mm) == current->active_mm || \
438 (!mustbeuser && (mm) == &init_mm))
439#define vmi_flags_addr(mm, addr, level, user) \
440 ((level) | (is_current_as(mm, user) ? \
441 (VMI_PAGE_CURRENT_AS | ((addr) & VMI_PAGE_VA_MASK)) : 0))
442#define vmi_flags_addr_defer(mm, addr, level, user) \
443 ((level) | (is_current_as(mm, user) ? \
444 (VMI_PAGE_DEFER | VMI_PAGE_CURRENT_AS | ((addr) & VMI_PAGE_VA_MASK)) : 0))
445
446static void vmi_update_pte(struct mm_struct *mm, u32 addr, pte_t *ptep)
447{
448 vmi_check_page_type(__pa(ptep) >> PAGE_SHIFT, VMI_PAGE_PTE);
449 vmi_ops.update_pte(ptep, vmi_flags_addr(mm, addr, VMI_PAGE_PT, 0));
450}
451
452static void vmi_update_pte_defer(struct mm_struct *mm, u32 addr, pte_t *ptep)
453{
454 vmi_check_page_type(__pa(ptep) >> PAGE_SHIFT, VMI_PAGE_PTE);
455 vmi_ops.update_pte(ptep, vmi_flags_addr_defer(mm, addr, VMI_PAGE_PT, 0));
456}
457
458static void vmi_set_pte(pte_t *ptep, pte_t pte)
459{
460 /* XXX because of set_pmd_pte, this can be called on PT or PD layers */
461 vmi_check_page_type(__pa(ptep) >> PAGE_SHIFT, VMI_PAGE_PTE | VMI_PAGE_PD);
462 vmi_ops.set_pte(pte, ptep, VMI_PAGE_PT);
463}
464
465static void vmi_set_pte_at(struct mm_struct *mm, u32 addr, pte_t *ptep, pte_t pte)
466{
467 vmi_check_page_type(__pa(ptep) >> PAGE_SHIFT, VMI_PAGE_PTE);
468 vmi_ops.set_pte(pte, ptep, vmi_flags_addr(mm, addr, VMI_PAGE_PT, 0));
469}
470
471static void vmi_set_pmd(pmd_t *pmdp, pmd_t pmdval)
472{
473#ifdef CONFIG_X86_PAE
474 const pte_t pte = { pmdval.pmd, pmdval.pmd >> 32 };
475 vmi_check_page_type(__pa(pmdp) >> PAGE_SHIFT, VMI_PAGE_PMD);
476#else
477 const pte_t pte = { pmdval.pud.pgd.pgd };
478 vmi_check_page_type(__pa(pmdp) >> PAGE_SHIFT, VMI_PAGE_PGD);
479#endif
480 vmi_ops.set_pte(pte, (pte_t *)pmdp, VMI_PAGE_PD);
481}
482
483#ifdef CONFIG_X86_PAE
484
485static void vmi_set_pte_atomic(pte_t *ptep, pte_t pteval)
486{
487 /*
488 * XXX This is called from set_pmd_pte, but at both PT
489 * and PD layers so the VMI_PAGE_PT flag is wrong. But
490 * it is only called for large page mapping changes,
491 * the Xen backend, doesn't support large pages, and the
492 * ESX backend doesn't depend on the flag.
493 */
494 set_64bit((unsigned long long *)ptep,pte_val(pteval));
495 vmi_ops.update_pte(ptep, VMI_PAGE_PT);
496}
497
498static void vmi_set_pte_present(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte)
499{
500 vmi_check_page_type(__pa(ptep) >> PAGE_SHIFT, VMI_PAGE_PTE);
501 vmi_ops.set_pte(pte, ptep, vmi_flags_addr_defer(mm, addr, VMI_PAGE_PT, 1));
502}
503
504static void vmi_set_pud(pud_t *pudp, pud_t pudval)
505{
506 /* Um, eww */
507 const pte_t pte = { pudval.pgd.pgd, pudval.pgd.pgd >> 32 };
508 vmi_check_page_type(__pa(pudp) >> PAGE_SHIFT, VMI_PAGE_PGD);
509 vmi_ops.set_pte(pte, (pte_t *)pudp, VMI_PAGE_PDP);
510}
511
512static void vmi_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
513{
514 const pte_t pte = { 0 };
515 vmi_check_page_type(__pa(ptep) >> PAGE_SHIFT, VMI_PAGE_PTE);
516 vmi_ops.set_pte(pte, ptep, vmi_flags_addr(mm, addr, VMI_PAGE_PT, 0));
517}
518
519void vmi_pmd_clear(pmd_t *pmd)
520{
521 const pte_t pte = { 0 };
522 vmi_check_page_type(__pa(pmd) >> PAGE_SHIFT, VMI_PAGE_PMD);
523 vmi_ops.set_pte(pte, (pte_t *)pmd, VMI_PAGE_PD);
524}
525#endif
526
527#ifdef CONFIG_SMP
7ce0bcfd
ZA
528extern void setup_pda(void);
529
c6b36e9a 530static void __devinit
7ce0bcfd
ZA
531vmi_startup_ipi_hook(int phys_apicid, unsigned long start_eip,
532 unsigned long start_esp)
533{
c6b36e9a
ZA
534 struct vmi_ap_state ap;
535
7ce0bcfd
ZA
536 /* Default everything to zero. This is fine for most GPRs. */
537 memset(&ap, 0, sizeof(struct vmi_ap_state));
538
539 ap.gdtr_limit = GDT_SIZE - 1;
540 ap.gdtr_base = (unsigned long) get_cpu_gdt_table(phys_apicid);
541
542 ap.idtr_limit = IDT_ENTRIES * 8 - 1;
543 ap.idtr_base = (unsigned long) idt_table;
544
545 ap.ldtr = 0;
546
547 ap.cs = __KERNEL_CS;
548 ap.eip = (unsigned long) start_eip;
549 ap.ss = __KERNEL_DS;
550 ap.esp = (unsigned long) start_esp;
551
552 ap.ds = __USER_DS;
553 ap.es = __USER_DS;
554 ap.fs = __KERNEL_PDA;
555 ap.gs = 0;
556
557 ap.eflags = 0;
558
559 setup_pda();
560
561#ifdef CONFIG_X86_PAE
562 /* efer should match BSP efer. */
563 if (cpu_has_nx) {
564 unsigned l, h;
565 rdmsr(MSR_EFER, l, h);
566 ap.efer = (unsigned long long) h << 32 | l;
567 }
568#endif
569
570 ap.cr3 = __pa(swapper_pg_dir);
571 /* Protected mode, paging, AM, WP, NE, MP. */
572 ap.cr0 = 0x80050023;
573 ap.cr4 = mmu_cr4_features;
c6b36e9a 574 vmi_ops.set_initial_ap_state((u32)&ap, phys_apicid);
7ce0bcfd
ZA
575}
576#endif
577
578static inline int __init check_vmi_rom(struct vrom_header *rom)
579{
580 struct pci_header *pci;
581 struct pnp_header *pnp;
582 const char *manufacturer = "UNKNOWN";
583 const char *product = "UNKNOWN";
584 const char *license = "unspecified";
585
586 if (rom->rom_signature != 0xaa55)
587 return 0;
588 if (rom->vrom_signature != VMI_SIGNATURE)
589 return 0;
590 if (rom->api_version_maj != VMI_API_REV_MAJOR ||
591 rom->api_version_min+1 < VMI_API_REV_MINOR+1) {
592 printk(KERN_WARNING "VMI: Found mismatched rom version %d.%d\n",
593 rom->api_version_maj,
594 rom->api_version_min);
595 return 0;
596 }
597
598 /*
599 * Relying on the VMI_SIGNATURE field is not 100% safe, so check
600 * the PCI header and device type to make sure this is really a
601 * VMI device.
602 */
603 if (!rom->pci_header_offs) {
604 printk(KERN_WARNING "VMI: ROM does not contain PCI header.\n");
605 return 0;
606 }
607
608 pci = (struct pci_header *)((char *)rom+rom->pci_header_offs);
609 if (pci->vendorID != PCI_VENDOR_ID_VMWARE ||
610 pci->deviceID != PCI_DEVICE_ID_VMWARE_VMI) {
611 /* Allow it to run... anyways, but warn */
612 printk(KERN_WARNING "VMI: ROM from unknown manufacturer\n");
613 }
614
615 if (rom->pnp_header_offs) {
616 pnp = (struct pnp_header *)((char *)rom+rom->pnp_header_offs);
617 if (pnp->manufacturer_offset)
618 manufacturer = (const char *)rom+pnp->manufacturer_offset;
619 if (pnp->product_offset)
620 product = (const char *)rom+pnp->product_offset;
621 }
622
623 if (rom->license_offs)
624 license = (char *)rom+rom->license_offs;
625
626 printk(KERN_INFO "VMI: Found %s %s, API version %d.%d, ROM version %d.%d\n",
627 manufacturer, product,
628 rom->api_version_maj, rom->api_version_min,
629 pci->rom_version_maj, pci->rom_version_min);
630
631 license_gplok = license_is_gpl_compatible(license);
632 if (!license_gplok) {
633 printk(KERN_WARNING "VMI: ROM license '%s' taints kernel... "
634 "inlining disabled\n",
635 license);
636 add_taint(TAINT_PROPRIETARY_MODULE);
637 }
638 return 1;
639}
640
641/*
642 * Probe for the VMI option ROM
643 */
644static inline int __init probe_vmi_rom(void)
645{
646 unsigned long base;
647
648 /* VMI ROM is in option ROM area, check signature */
649 for (base = 0xC0000; base < 0xE0000; base += 2048) {
650 struct vrom_header *romstart;
651 romstart = (struct vrom_header *)isa_bus_to_virt(base);
652 if (check_vmi_rom(romstart)) {
653 vmi_rom = romstart;
654 return 1;
655 }
656 }
657 return 0;
658}
659
660/*
661 * VMI setup common to all processors
662 */
663void vmi_bringup(void)
664{
665 /* We must establish the lowmem mapping for MMU ops to work */
772205f6 666 if (vmi_ops.set_linear_mapping)
7ce0bcfd
ZA
667 vmi_ops.set_linear_mapping(0, __PAGE_OFFSET, max_low_pfn, 0);
668}
669
670/*
772205f6 671 * Return a pointer to a VMI function or NULL if unimplemented
7ce0bcfd
ZA
672 */
673static void *vmi_get_function(int vmicall)
674{
675 u64 reloc;
676 const struct vmi_relocation_info *rel = (struct vmi_relocation_info *)&reloc;
677 reloc = call_vrom_long_func(vmi_rom, get_reloc, vmicall);
678 BUG_ON(rel->type == VMI_RELOCATION_JUMP_REL);
679 if (rel->type == VMI_RELOCATION_CALL_REL)
680 return (void *)rel->eip;
681 else
772205f6 682 return NULL;
7ce0bcfd
ZA
683}
684
685/*
686 * Helper macro for making the VMI paravirt-ops fill code readable.
772205f6
ZA
687 * For unimplemented operations, fall back to default, unless nop
688 * is returned by the ROM.
7ce0bcfd
ZA
689 */
690#define para_fill(opname, vmicall) \
691do { \
692 reloc = call_vrom_long_func(vmi_rom, get_reloc, \
693 VMI_CALL_##vmicall); \
694 if (rel->type != VMI_RELOCATION_NONE) { \
695 BUG_ON(rel->type != VMI_RELOCATION_CALL_REL); \
696 paravirt_ops.opname = (void *)rel->eip; \
772205f6
ZA
697 } else if (rel->type == VMI_RELOCATION_NOP) \
698 paravirt_ops.opname = (void *)vmi_nop; \
699} while (0)
700
701/*
702 * Helper macro for making the VMI paravirt-ops fill code readable.
703 * For cached operations which do not match the VMI ROM ABI and must
704 * go through a tranlation stub. Ignore NOPs, since it is not clear
705 * a NOP * VMI function corresponds to a NOP paravirt-op when the
706 * functions are not in 1-1 correspondence.
707 */
708#define para_wrap(opname, wrapper, cache, vmicall) \
709do { \
710 reloc = call_vrom_long_func(vmi_rom, get_reloc, \
711 VMI_CALL_##vmicall); \
712 BUG_ON(rel->type == VMI_RELOCATION_JUMP_REL); \
713 if (rel->type == VMI_RELOCATION_CALL_REL) { \
714 paravirt_ops.opname = wrapper; \
715 vmi_ops.cache = (void *)rel->eip; \
7ce0bcfd
ZA
716 } \
717} while (0)
718
772205f6 719
7ce0bcfd
ZA
720/*
721 * Activate the VMI interface and switch into paravirtualized mode
722 */
723static inline int __init activate_vmi(void)
724{
725 short kernel_cs;
726 u64 reloc;
727 const struct vmi_relocation_info *rel = (struct vmi_relocation_info *)&reloc;
728
729 if (call_vrom_func(vmi_rom, vmi_init) != 0) {
730 printk(KERN_ERR "VMI ROM failed to initialize!");
731 return 0;
732 }
733 savesegment(cs, kernel_cs);
734
735 paravirt_ops.paravirt_enabled = 1;
736 paravirt_ops.kernel_rpl = kernel_cs & SEGMENT_RPL_MASK;
737
738 paravirt_ops.patch = vmi_patch;
739 paravirt_ops.name = "vmi";
740
741 /*
742 * Many of these operations are ABI compatible with VMI.
743 * This means we can fill in the paravirt-ops with direct
744 * pointers into the VMI ROM. If the calling convention for
745 * these operations changes, this code needs to be updated.
746 *
747 * Exceptions
748 * CPUID paravirt-op uses pointers, not the native ISA
749 * halt has no VMI equivalent; all VMI halts are "safe"
750 * no MSR support yet - just trap and emulate. VMI uses the
751 * same ABI as the native ISA, but Linux wants exceptions
752 * from bogus MSR read / write handled
753 * rdpmc is not yet used in Linux
754 */
755
772205f6
ZA
756 /* CPUID is special, so very special it gets wrapped like a present */
757 para_wrap(cpuid, vmi_cpuid, cpuid, CPUID);
7ce0bcfd
ZA
758
759 para_fill(clts, CLTS);
760 para_fill(get_debugreg, GetDR);
761 para_fill(set_debugreg, SetDR);
762 para_fill(read_cr0, GetCR0);
763 para_fill(read_cr2, GetCR2);
764 para_fill(read_cr3, GetCR3);
765 para_fill(read_cr4, GetCR4);
766 para_fill(write_cr0, SetCR0);
767 para_fill(write_cr2, SetCR2);
768 para_fill(write_cr3, SetCR3);
769 para_fill(write_cr4, SetCR4);
770 para_fill(save_fl, GetInterruptMask);
771 para_fill(restore_fl, SetInterruptMask);
772 para_fill(irq_disable, DisableInterrupts);
773 para_fill(irq_enable, EnableInterrupts);
772205f6 774
7ce0bcfd
ZA
775 /* irq_save_disable !!! sheer pain */
776 patch_offset(&irq_save_disable_callout[IRQ_PATCH_INT_MASK],
777 (char *)paravirt_ops.save_fl);
778 patch_offset(&irq_save_disable_callout[IRQ_PATCH_DISABLE],
779 (char *)paravirt_ops.irq_disable);
7507ba34 780
7ce0bcfd 781 para_fill(wbinvd, WBINVD);
772205f6
ZA
782 para_fill(read_tsc, RDTSC);
783
784 /* The following we emulate with trap and emulate for now */
7ce0bcfd
ZA
785 /* paravirt_ops.read_msr = vmi_rdmsr */
786 /* paravirt_ops.write_msr = vmi_wrmsr */
7ce0bcfd
ZA
787 /* paravirt_ops.rdpmc = vmi_rdpmc */
788
772205f6
ZA
789 /* TR interface doesn't pass TR value, wrap */
790 para_wrap(load_tr_desc, vmi_set_tr, set_tr, SetTR);
7ce0bcfd
ZA
791
792 /* LDT is special, too */
772205f6 793 para_wrap(set_ldt, vmi_set_ldt, _set_ldt, SetLDT);
7ce0bcfd
ZA
794
795 para_fill(load_gdt, SetGDT);
796 para_fill(load_idt, SetIDT);
797 para_fill(store_gdt, GetGDT);
798 para_fill(store_idt, GetIDT);
799 para_fill(store_tr, GetTR);
800 paravirt_ops.load_tls = vmi_load_tls;
801 para_fill(write_ldt_entry, WriteLDTEntry);
802 para_fill(write_gdt_entry, WriteGDTEntry);
803 para_fill(write_idt_entry, WriteIDTEntry);
772205f6 804 para_wrap(load_esp0, vmi_load_esp0, set_kernel_stack, UpdateKernelStack);
7ce0bcfd 805 para_fill(set_iopl_mask, SetIOPLMask);
772205f6 806 para_fill(io_delay, IODelay);
7ce0bcfd
ZA
807 para_fill(set_lazy_mode, SetLazyMode);
808
772205f6
ZA
809 /* user and kernel flush are just handled with different flags to FlushTLB */
810 para_wrap(flush_tlb_user, vmi_flush_tlb_user, flush_tlb, FlushTLB);
811 para_wrap(flush_tlb_kernel, vmi_flush_tlb_kernel, flush_tlb, FlushTLB);
7ce0bcfd
ZA
812 para_fill(flush_tlb_single, InvalPage);
813
814 /*
815 * Until a standard flag format can be agreed on, we need to
816 * implement these as wrappers in Linux. Get the VMI ROM
817 * function pointers for the two backend calls.
818 */
819#ifdef CONFIG_X86_PAE
820 vmi_ops.set_pte = vmi_get_function(VMI_CALL_SetPxELong);
821 vmi_ops.update_pte = vmi_get_function(VMI_CALL_UpdatePxELong);
822#else
823 vmi_ops.set_pte = vmi_get_function(VMI_CALL_SetPxE);
824 vmi_ops.update_pte = vmi_get_function(VMI_CALL_UpdatePxE);
825#endif
7ce0bcfd 826
772205f6
ZA
827 if (vmi_ops.set_pte) {
828 paravirt_ops.set_pte = vmi_set_pte;
829 paravirt_ops.set_pte_at = vmi_set_pte_at;
830 paravirt_ops.set_pmd = vmi_set_pmd;
7ce0bcfd 831#ifdef CONFIG_X86_PAE
772205f6
ZA
832 paravirt_ops.set_pte_atomic = vmi_set_pte_atomic;
833 paravirt_ops.set_pte_present = vmi_set_pte_present;
834 paravirt_ops.set_pud = vmi_set_pud;
835 paravirt_ops.pte_clear = vmi_pte_clear;
836 paravirt_ops.pmd_clear = vmi_pmd_clear;
7ce0bcfd 837#endif
772205f6
ZA
838 }
839
840 if (vmi_ops.update_pte) {
841 paravirt_ops.pte_update = vmi_update_pte;
842 paravirt_ops.pte_update_defer = vmi_update_pte_defer;
843 }
844
845 vmi_ops.allocate_page = vmi_get_function(VMI_CALL_AllocatePage);
846 if (vmi_ops.allocate_page) {
847 paravirt_ops.alloc_pt = vmi_allocate_pt;
848 paravirt_ops.alloc_pd = vmi_allocate_pd;
849 paravirt_ops.alloc_pd_clone = vmi_allocate_pd_clone;
850 }
851
852 vmi_ops.release_page = vmi_get_function(VMI_CALL_ReleasePage);
853 if (vmi_ops.release_page) {
854 paravirt_ops.release_pt = vmi_release_pt;
855 paravirt_ops.release_pd = vmi_release_pd;
856 }
857 para_wrap(map_pt_hook, vmi_map_pt_hook, set_linear_mapping,
858 SetLinearMapping);
859
7ce0bcfd
ZA
860 /*
861 * These MUST always be patched. Don't support indirect jumps
862 * through these operations, as the VMI interface may use either
863 * a jump or a call to get to these operations, depending on
864 * the backend. They are performance critical anyway, so requiring
865 * a patch is not a big problem.
866 */
867 paravirt_ops.irq_enable_sysexit = (void *)0xfeedbab0;
868 paravirt_ops.iret = (void *)0xbadbab0;
869
870#ifdef CONFIG_SMP
772205f6 871 para_wrap(startup_ipi_hook, vmi_startup_ipi_hook, set_initial_ap_state, SetInitialAPState);
7ce0bcfd
ZA
872#endif
873
874#ifdef CONFIG_X86_LOCAL_APIC
772205f6
ZA
875 para_fill(apic_read, APICRead);
876 para_fill(apic_write, APICWrite);
877 para_fill(apic_write_atomic, APICWrite);
7ce0bcfd
ZA
878#endif
879
bbab4f3b
ZA
880 /*
881 * Check for VMI timer functionality by probing for a cycle frequency method
882 */
883 reloc = call_vrom_long_func(vmi_rom, get_reloc, VMI_CALL_GetCycleFrequency);
772205f6 884 if (!disable_vmi_timer && rel->type != VMI_RELOCATION_NONE) {
bbab4f3b
ZA
885 vmi_timer_ops.get_cycle_frequency = (void *)rel->eip;
886 vmi_timer_ops.get_cycle_counter =
887 vmi_get_function(VMI_CALL_GetCycleCounter);
888 vmi_timer_ops.get_wallclock =
889 vmi_get_function(VMI_CALL_GetWallclockTime);
890 vmi_timer_ops.wallclock_updated =
891 vmi_get_function(VMI_CALL_WallclockUpdated);
892 vmi_timer_ops.set_alarm = vmi_get_function(VMI_CALL_SetAlarm);
893 vmi_timer_ops.cancel_alarm =
894 vmi_get_function(VMI_CALL_CancelAlarm);
895 paravirt_ops.time_init = vmi_time_init;
896 paravirt_ops.get_wallclock = vmi_get_wallclock;
897 paravirt_ops.set_wallclock = vmi_set_wallclock;
898#ifdef CONFIG_X86_LOCAL_APIC
899 paravirt_ops.setup_boot_clock = vmi_timer_setup_boot_alarm;
900 paravirt_ops.setup_secondary_clock = vmi_timer_setup_secondary_alarm;
901#endif
6cb9a835 902 paravirt_ops.get_scheduled_cycles = vmi_get_sched_cycles;
1182d852 903 paravirt_ops.get_cpu_khz = vmi_cpu_khz;
772205f6
ZA
904
905 /* We have true wallclock functions; disable CMOS clock sync */
906 no_sync_cmos_clock = 1;
907 } else {
908 disable_noidle = 1;
909 disable_vmi_timer = 1;
bbab4f3b 910 }
772205f6
ZA
911
912 /* No idle HZ mode only works if VMI timer and no idle is enabled */
913 if (disable_noidle || disable_vmi_timer)
7507ba34 914 para_fill(safe_halt, Halt);
772205f6
ZA
915 else
916 para_wrap(safe_halt, vmi_safe_halt, halt, Halt);
bbab4f3b 917
7ce0bcfd
ZA
918 /*
919 * Alternative instruction rewriting doesn't happen soon enough
920 * to convert VMI_IRET to a call instead of a jump; so we have
921 * to do this before IRQs get reenabled. Fortunately, it is
922 * idempotent.
923 */
924 apply_paravirt(__start_parainstructions, __stop_parainstructions);
925
926 vmi_bringup();
927
928 return 1;
929}
930
931#undef para_fill
932
933void __init vmi_init(void)
934{
935 unsigned long flags;
936
937 if (!vmi_rom)
938 probe_vmi_rom();
939 else
940 check_vmi_rom(vmi_rom);
941
942 /* In case probing for or validating the ROM failed, basil */
943 if (!vmi_rom)
944 return;
945
946 reserve_top_address(-vmi_rom->virtual_top);
947
948 local_irq_save(flags);
949 activate_vmi();
7507ba34
ZA
950
951#ifdef CONFIG_X86_IO_APIC
772205f6 952 /* This is virtual hardware; timer routing is wired correctly */
7ce0bcfd
ZA
953 no_timer_check = 1;
954#endif
955 local_irq_restore(flags & X86_EFLAGS_IF);
956}
957
958static int __init parse_vmi(char *arg)
959{
960 if (!arg)
961 return -EINVAL;
962
eda08b1b 963 if (!strcmp(arg, "disable_pge")) {
7ce0bcfd
ZA
964 clear_bit(X86_FEATURE_PGE, boot_cpu_data.x86_capability);
965 disable_pge = 1;
966 } else if (!strcmp(arg, "disable_pse")) {
967 clear_bit(X86_FEATURE_PSE, boot_cpu_data.x86_capability);
968 disable_pse = 1;
969 } else if (!strcmp(arg, "disable_sep")) {
970 clear_bit(X86_FEATURE_SEP, boot_cpu_data.x86_capability);
971 disable_sep = 1;
972 } else if (!strcmp(arg, "disable_tsc")) {
973 clear_bit(X86_FEATURE_TSC, boot_cpu_data.x86_capability);
974 disable_tsc = 1;
975 } else if (!strcmp(arg, "disable_mtrr")) {
976 clear_bit(X86_FEATURE_MTRR, boot_cpu_data.x86_capability);
977 disable_mtrr = 1;
772205f6
ZA
978 } else if (!strcmp(arg, "disable_timer")) {
979 disable_vmi_timer = 1;
980 disable_noidle = 1;
7507ba34
ZA
981 } else if (!strcmp(arg, "disable_noidle"))
982 disable_noidle = 1;
7ce0bcfd
ZA
983 return 0;
984}
985
986early_param("vmi", parse_vmi);