]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/i386/kernel/setup.c
Merge master.kernel.org:/pub/scm/linux/kernel/git/gregkh/pci-2.6
[net-next-2.6.git] / arch / i386 / kernel / setup.c
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/i386/kernel/setup.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 *
6 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
7 *
8 * Memory region support
9 * David Parsons <orc@pell.chi.il.us>, July-August 1999
10 *
11 * Added E820 sanitization routine (removes overlapping memory regions);
12 * Brian Moyle <bmoyle@mvista.com>, February 2001
13 *
14 * Moved CPU detection code to cpu/${cpu}.c
15 * Patrick Mochel <mochel@osdl.org>, March 2002
16 *
17 * Provisions for empty E820 memory regions (reported by certain BIOSes).
18 * Alex Achenbach <xela@slit.de>, December 2002.
19 *
20 */
21
22/*
23 * This file handles the architecture-dependent parts of initialization
24 */
25
129f6946 26#include <linux/config.h>
1da177e4
LT
27#include <linux/sched.h>
28#include <linux/mm.h>
05b79bdc 29#include <linux/mmzone.h>
1da177e4
LT
30#include <linux/tty.h>
31#include <linux/ioport.h>
32#include <linux/acpi.h>
33#include <linux/apm_bios.h>
34#include <linux/initrd.h>
35#include <linux/bootmem.h>
36#include <linux/seq_file.h>
37#include <linux/console.h>
38#include <linux/mca.h>
39#include <linux/root_dev.h>
40#include <linux/highmem.h>
41#include <linux/module.h>
42#include <linux/efi.h>
43#include <linux/init.h>
44#include <linux/edd.h>
45#include <linux/nodemask.h>
1bc3b91a 46#include <linux/kexec.h>
2030eae5 47#include <linux/crash_dump.h>
1bc3b91a 48
1da177e4 49#include <video/edid.h>
1bc3b91a 50
9635b47d 51#include <asm/apic.h>
1da177e4
LT
52#include <asm/e820.h>
53#include <asm/mpspec.h>
54#include <asm/setup.h>
55#include <asm/arch_hooks.h>
56#include <asm/sections.h>
57#include <asm/io_apic.h>
58#include <asm/ist.h>
59#include <asm/io.h>
60#include "setup_arch_pre.h"
61#include <bios_ebda.h>
62
92aa63a5
VG
63/* Forward Declaration. */
64void __init find_max_pfn(void);
65
1da177e4
LT
66/* This value is set up by the early boot code to point to the value
67 immediately after the boot time page tables. It contains a *physical*
68 address, and must not be in the .bss segment! */
69unsigned long init_pg_tables_end __initdata = ~0UL;
70
0bb3184d 71int disable_pse __devinitdata = 0;
1da177e4
LT
72
73/*
74 * Machine setup..
75 */
76
77#ifdef CONFIG_EFI
78int efi_enabled = 0;
79EXPORT_SYMBOL(efi_enabled);
80#endif
81
82/* cpu data as detected by the assembly code in head.S */
83struct cpuinfo_x86 new_cpu_data __initdata = { 0, 0, 0, 0, -1, 1, 0, 0, -1 };
84/* common cpu data for all cpus */
c3d8c141 85struct cpuinfo_x86 boot_cpu_data __read_mostly = { 0, 0, 0, 0, -1, 1, 0, 0, -1 };
129f6946 86EXPORT_SYMBOL(boot_cpu_data);
1da177e4
LT
87
88unsigned long mmu_cr4_features;
89
8466361a 90#ifdef CONFIG_ACPI
1da177e4
LT
91 int acpi_disabled = 0;
92#else
93 int acpi_disabled = 1;
94#endif
95EXPORT_SYMBOL(acpi_disabled);
96
888ba6c6 97#ifdef CONFIG_ACPI
1da177e4
LT
98int __initdata acpi_force = 0;
99extern acpi_interrupt_flags acpi_sci_flags;
100#endif
101
102/* for MCA, but anyone else can use it if they want */
103unsigned int machine_id;
129f6946
AD
104#ifdef CONFIG_MCA
105EXPORT_SYMBOL(machine_id);
106#endif
1da177e4
LT
107unsigned int machine_submodel_id;
108unsigned int BIOS_revision;
109unsigned int mca_pentium_flag;
110
111/* For PCI or other memory-mapped resources */
112unsigned long pci_mem_start = 0x10000000;
129f6946
AD
113#ifdef CONFIG_PCI
114EXPORT_SYMBOL(pci_mem_start);
115#endif
1da177e4
LT
116
117/* Boot loader ID as an integer, for the benefit of proc_dointvec */
118int bootloader_type;
119
120/* user-defined highmem size */
121static unsigned int highmem_pages = -1;
122
123/*
124 * Setup options
125 */
126struct drive_info_struct { char dummy[32]; } drive_info;
129f6946
AD
127#if defined(CONFIG_BLK_DEV_IDE) || defined(CONFIG_BLK_DEV_HD) || \
128 defined(CONFIG_BLK_DEV_IDE_MODULE) || defined(CONFIG_BLK_DEV_HD_MODULE)
129EXPORT_SYMBOL(drive_info);
130#endif
1da177e4 131struct screen_info screen_info;
129f6946
AD
132#ifdef CONFIG_VT
133EXPORT_SYMBOL(screen_info);
134#endif
1da177e4 135struct apm_info apm_info;
129f6946 136EXPORT_SYMBOL(apm_info);
1da177e4
LT
137struct sys_desc_table_struct {
138 unsigned short length;
139 unsigned char table[0];
140};
141struct edid_info edid_info;
5e518d76 142EXPORT_SYMBOL_GPL(edid_info);
1da177e4 143struct ist_info ist_info;
129f6946
AD
144#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
145 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
146EXPORT_SYMBOL(ist_info);
147#endif
1da177e4
LT
148struct e820map e820;
149
150extern void early_cpu_init(void);
151extern void dmi_scan_machine(void);
152extern void generic_apic_probe(char *);
153extern int root_mountflags;
154
155unsigned long saved_videomode;
156
157#define RAMDISK_IMAGE_START_MASK 0x07FF
158#define RAMDISK_PROMPT_FLAG 0x8000
159#define RAMDISK_LOAD_FLAG 0x4000
160
161static char command_line[COMMAND_LINE_SIZE];
162
163unsigned char __initdata boot_params[PARAM_SIZE];
164
165static struct resource data_resource = {
166 .name = "Kernel data",
167 .start = 0,
168 .end = 0,
169 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
170};
171
172static struct resource code_resource = {
173 .name = "Kernel code",
174 .start = 0,
175 .end = 0,
176 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
177};
178
179static struct resource system_rom_resource = {
180 .name = "System ROM",
181 .start = 0xf0000,
182 .end = 0xfffff,
183 .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
184};
185
186static struct resource extension_rom_resource = {
187 .name = "Extension ROM",
188 .start = 0xe0000,
189 .end = 0xeffff,
190 .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
191};
192
193static struct resource adapter_rom_resources[] = { {
194 .name = "Adapter ROM",
195 .start = 0xc8000,
196 .end = 0,
197 .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
198}, {
199 .name = "Adapter ROM",
200 .start = 0,
201 .end = 0,
202 .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
203}, {
204 .name = "Adapter ROM",
205 .start = 0,
206 .end = 0,
207 .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
208}, {
209 .name = "Adapter ROM",
210 .start = 0,
211 .end = 0,
212 .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
213}, {
214 .name = "Adapter ROM",
215 .start = 0,
216 .end = 0,
217 .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
218}, {
219 .name = "Adapter ROM",
220 .start = 0,
221 .end = 0,
222 .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
223} };
224
225#define ADAPTER_ROM_RESOURCES \
226 (sizeof adapter_rom_resources / sizeof adapter_rom_resources[0])
227
228static struct resource video_rom_resource = {
229 .name = "Video ROM",
230 .start = 0xc0000,
231 .end = 0xc7fff,
232 .flags = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
233};
234
235static struct resource video_ram_resource = {
236 .name = "Video RAM area",
237 .start = 0xa0000,
238 .end = 0xbffff,
239 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
240};
241
242static struct resource standard_io_resources[] = { {
243 .name = "dma1",
244 .start = 0x0000,
245 .end = 0x001f,
246 .flags = IORESOURCE_BUSY | IORESOURCE_IO
247}, {
248 .name = "pic1",
249 .start = 0x0020,
250 .end = 0x0021,
251 .flags = IORESOURCE_BUSY | IORESOURCE_IO
252}, {
253 .name = "timer0",
254 .start = 0x0040,
255 .end = 0x0043,
256 .flags = IORESOURCE_BUSY | IORESOURCE_IO
257}, {
258 .name = "timer1",
259 .start = 0x0050,
260 .end = 0x0053,
261 .flags = IORESOURCE_BUSY | IORESOURCE_IO
262}, {
263 .name = "keyboard",
264 .start = 0x0060,
265 .end = 0x006f,
266 .flags = IORESOURCE_BUSY | IORESOURCE_IO
267}, {
268 .name = "dma page reg",
269 .start = 0x0080,
270 .end = 0x008f,
271 .flags = IORESOURCE_BUSY | IORESOURCE_IO
272}, {
273 .name = "pic2",
274 .start = 0x00a0,
275 .end = 0x00a1,
276 .flags = IORESOURCE_BUSY | IORESOURCE_IO
277}, {
278 .name = "dma2",
279 .start = 0x00c0,
280 .end = 0x00df,
281 .flags = IORESOURCE_BUSY | IORESOURCE_IO
282}, {
283 .name = "fpu",
284 .start = 0x00f0,
285 .end = 0x00ff,
286 .flags = IORESOURCE_BUSY | IORESOURCE_IO
287} };
288
289#define STANDARD_IO_RESOURCES \
290 (sizeof standard_io_resources / sizeof standard_io_resources[0])
291
292#define romsignature(x) (*(unsigned short *)(x) == 0xaa55)
293
294static int __init romchecksum(unsigned char *rom, unsigned long length)
295{
296 unsigned char *p, sum = 0;
297
298 for (p = rom; p < rom + length; p++)
299 sum += *p;
300 return sum == 0;
301}
302
303static void __init probe_roms(void)
304{
305 unsigned long start, length, upper;
306 unsigned char *rom;
307 int i;
308
309 /* video rom */
310 upper = adapter_rom_resources[0].start;
311 for (start = video_rom_resource.start; start < upper; start += 2048) {
312 rom = isa_bus_to_virt(start);
313 if (!romsignature(rom))
314 continue;
315
316 video_rom_resource.start = start;
317
318 /* 0 < length <= 0x7f * 512, historically */
319 length = rom[2] * 512;
320
321 /* if checksum okay, trust length byte */
322 if (length && romchecksum(rom, length))
323 video_rom_resource.end = start + length - 1;
324
325 request_resource(&iomem_resource, &video_rom_resource);
326 break;
327 }
328
329 start = (video_rom_resource.end + 1 + 2047) & ~2047UL;
330 if (start < upper)
331 start = upper;
332
333 /* system rom */
334 request_resource(&iomem_resource, &system_rom_resource);
335 upper = system_rom_resource.start;
336
337 /* check for extension rom (ignore length byte!) */
338 rom = isa_bus_to_virt(extension_rom_resource.start);
339 if (romsignature(rom)) {
340 length = extension_rom_resource.end - extension_rom_resource.start + 1;
341 if (romchecksum(rom, length)) {
342 request_resource(&iomem_resource, &extension_rom_resource);
343 upper = extension_rom_resource.start;
344 }
345 }
346
347 /* check for adapter roms on 2k boundaries */
348 for (i = 0; i < ADAPTER_ROM_RESOURCES && start < upper; start += 2048) {
349 rom = isa_bus_to_virt(start);
350 if (!romsignature(rom))
351 continue;
352
353 /* 0 < length <= 0x7f * 512, historically */
354 length = rom[2] * 512;
355
356 /* but accept any length that fits if checksum okay */
357 if (!length || start + length > upper || !romchecksum(rom, length))
358 continue;
359
360 adapter_rom_resources[i].start = start;
361 adapter_rom_resources[i].end = start + length - 1;
362 request_resource(&iomem_resource, &adapter_rom_resources[i]);
363
364 start = adapter_rom_resources[i++].end & ~2047UL;
365 }
366}
367
368static void __init limit_regions(unsigned long long size)
369{
370 unsigned long long current_addr = 0;
371 int i;
372
373 if (efi_enabled) {
7ae65fd3
MT
374 efi_memory_desc_t *md;
375 void *p;
376
377 for (p = memmap.map, i = 0; p < memmap.map_end;
378 p += memmap.desc_size, i++) {
379 md = p;
380 current_addr = md->phys_addr + (md->num_pages << 12);
381 if (md->type == EFI_CONVENTIONAL_MEMORY) {
1da177e4 382 if (current_addr >= size) {
7ae65fd3 383 md->num_pages -=
1da177e4
LT
384 (((current_addr-size) + PAGE_SIZE-1) >> PAGE_SHIFT);
385 memmap.nr_map = i + 1;
386 return;
387 }
388 }
389 }
390 }
391 for (i = 0; i < e820.nr_map; i++) {
392 if (e820.map[i].type == E820_RAM) {
393 current_addr = e820.map[i].addr + e820.map[i].size;
394 if (current_addr >= size) {
395 e820.map[i].size -= current_addr-size;
396 e820.nr_map = i + 1;
397 return;
398 }
399 }
400 }
401}
402
403static void __init add_memory_region(unsigned long long start,
404 unsigned long long size, int type)
405{
406 int x;
407
408 if (!efi_enabled) {
409 x = e820.nr_map;
410
411 if (x == E820MAX) {
412 printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
413 return;
414 }
415
416 e820.map[x].addr = start;
417 e820.map[x].size = size;
418 e820.map[x].type = type;
419 e820.nr_map++;
420 }
421} /* add_memory_region */
422
423#define E820_DEBUG 1
424
425static void __init print_memory_map(char *who)
426{
427 int i;
428
429 for (i = 0; i < e820.nr_map; i++) {
430 printk(" %s: %016Lx - %016Lx ", who,
431 e820.map[i].addr,
432 e820.map[i].addr + e820.map[i].size);
433 switch (e820.map[i].type) {
434 case E820_RAM: printk("(usable)\n");
435 break;
436 case E820_RESERVED:
437 printk("(reserved)\n");
438 break;
439 case E820_ACPI:
440 printk("(ACPI data)\n");
441 break;
442 case E820_NVS:
443 printk("(ACPI NVS)\n");
444 break;
445 default: printk("type %lu\n", e820.map[i].type);
446 break;
447 }
448 }
449}
450
451/*
452 * Sanitize the BIOS e820 map.
453 *
454 * Some e820 responses include overlapping entries. The following
455 * replaces the original e820 map with a new one, removing overlaps.
456 *
457 */
458struct change_member {
459 struct e820entry *pbios; /* pointer to original bios entry */
460 unsigned long long addr; /* address for this change point */
461};
462static struct change_member change_point_list[2*E820MAX] __initdata;
463static struct change_member *change_point[2*E820MAX] __initdata;
464static struct e820entry *overlap_list[E820MAX] __initdata;
465static struct e820entry new_bios[E820MAX] __initdata;
466
467static int __init sanitize_e820_map(struct e820entry * biosmap, char * pnr_map)
468{
469 struct change_member *change_tmp;
470 unsigned long current_type, last_type;
471 unsigned long long last_addr;
472 int chgidx, still_changing;
473 int overlap_entries;
474 int new_bios_entry;
475 int old_nr, new_nr, chg_nr;
476 int i;
477
478 /*
479 Visually we're performing the following (1,2,3,4 = memory types)...
480
481 Sample memory map (w/overlaps):
482 ____22__________________
483 ______________________4_
484 ____1111________________
485 _44_____________________
486 11111111________________
487 ____________________33__
488 ___________44___________
489 __________33333_________
490 ______________22________
491 ___________________2222_
492 _________111111111______
493 _____________________11_
494 _________________4______
495
496 Sanitized equivalent (no overlap):
497 1_______________________
498 _44_____________________
499 ___1____________________
500 ____22__________________
501 ______11________________
502 _________1______________
503 __________3_____________
504 ___________44___________
505 _____________33_________
506 _______________2________
507 ________________1_______
508 _________________4______
509 ___________________2____
510 ____________________33__
511 ______________________4_
512 */
513
514 /* if there's only one memory region, don't bother */
515 if (*pnr_map < 2)
516 return -1;
517
518 old_nr = *pnr_map;
519
520 /* bail out if we find any unreasonable addresses in bios map */
521 for (i=0; i<old_nr; i++)
522 if (biosmap[i].addr + biosmap[i].size < biosmap[i].addr)
523 return -1;
524
525 /* create pointers for initial change-point information (for sorting) */
526 for (i=0; i < 2*old_nr; i++)
527 change_point[i] = &change_point_list[i];
528
529 /* record all known change-points (starting and ending addresses),
530 omitting those that are for empty memory regions */
531 chgidx = 0;
532 for (i=0; i < old_nr; i++) {
533 if (biosmap[i].size != 0) {
534 change_point[chgidx]->addr = biosmap[i].addr;
535 change_point[chgidx++]->pbios = &biosmap[i];
536 change_point[chgidx]->addr = biosmap[i].addr + biosmap[i].size;
537 change_point[chgidx++]->pbios = &biosmap[i];
538 }
539 }
540 chg_nr = chgidx; /* true number of change-points */
541
542 /* sort change-point list by memory addresses (low -> high) */
543 still_changing = 1;
544 while (still_changing) {
545 still_changing = 0;
546 for (i=1; i < chg_nr; i++) {
547 /* if <current_addr> > <last_addr>, swap */
548 /* or, if current=<start_addr> & last=<end_addr>, swap */
549 if ((change_point[i]->addr < change_point[i-1]->addr) ||
550 ((change_point[i]->addr == change_point[i-1]->addr) &&
551 (change_point[i]->addr == change_point[i]->pbios->addr) &&
552 (change_point[i-1]->addr != change_point[i-1]->pbios->addr))
553 )
554 {
555 change_tmp = change_point[i];
556 change_point[i] = change_point[i-1];
557 change_point[i-1] = change_tmp;
558 still_changing=1;
559 }
560 }
561 }
562
563 /* create a new bios memory map, removing overlaps */
564 overlap_entries=0; /* number of entries in the overlap table */
565 new_bios_entry=0; /* index for creating new bios map entries */
566 last_type = 0; /* start with undefined memory type */
567 last_addr = 0; /* start with 0 as last starting address */
568 /* loop through change-points, determining affect on the new bios map */
569 for (chgidx=0; chgidx < chg_nr; chgidx++)
570 {
571 /* keep track of all overlapping bios entries */
572 if (change_point[chgidx]->addr == change_point[chgidx]->pbios->addr)
573 {
574 /* add map entry to overlap list (> 1 entry implies an overlap) */
575 overlap_list[overlap_entries++]=change_point[chgidx]->pbios;
576 }
577 else
578 {
579 /* remove entry from list (order independent, so swap with last) */
580 for (i=0; i<overlap_entries; i++)
581 {
582 if (overlap_list[i] == change_point[chgidx]->pbios)
583 overlap_list[i] = overlap_list[overlap_entries-1];
584 }
585 overlap_entries--;
586 }
587 /* if there are overlapping entries, decide which "type" to use */
588 /* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
589 current_type = 0;
590 for (i=0; i<overlap_entries; i++)
591 if (overlap_list[i]->type > current_type)
592 current_type = overlap_list[i]->type;
593 /* continue building up new bios map based on this information */
594 if (current_type != last_type) {
595 if (last_type != 0) {
596 new_bios[new_bios_entry].size =
597 change_point[chgidx]->addr - last_addr;
598 /* move forward only if the new size was non-zero */
599 if (new_bios[new_bios_entry].size != 0)
600 if (++new_bios_entry >= E820MAX)
601 break; /* no more space left for new bios entries */
602 }
603 if (current_type != 0) {
604 new_bios[new_bios_entry].addr = change_point[chgidx]->addr;
605 new_bios[new_bios_entry].type = current_type;
606 last_addr=change_point[chgidx]->addr;
607 }
608 last_type = current_type;
609 }
610 }
611 new_nr = new_bios_entry; /* retain count for new bios entries */
612
613 /* copy new bios mapping into original location */
614 memcpy(biosmap, new_bios, new_nr*sizeof(struct e820entry));
615 *pnr_map = new_nr;
616
617 return 0;
618}
619
620/*
621 * Copy the BIOS e820 map into a safe place.
622 *
623 * Sanity-check it while we're at it..
624 *
625 * If we're lucky and live on a modern system, the setup code
626 * will have given us a memory map that we can use to properly
627 * set up memory. If we aren't, we'll fake a memory map.
628 *
629 * We check to see that the memory map contains at least 2 elements
630 * before we'll use it, because the detection code in setup.S may
631 * not be perfect and most every PC known to man has two memory
632 * regions: one from 0 to 640k, and one from 1mb up. (The IBM
633 * thinkpad 560x, for example, does not cooperate with the memory
634 * detection code.)
635 */
636static int __init copy_e820_map(struct e820entry * biosmap, int nr_map)
637{
638 /* Only one memory region (or negative)? Ignore it */
639 if (nr_map < 2)
640 return -1;
641
642 do {
643 unsigned long long start = biosmap->addr;
644 unsigned long long size = biosmap->size;
645 unsigned long long end = start + size;
646 unsigned long type = biosmap->type;
647
648 /* Overflow in 64 bits? Ignore the memory map. */
649 if (start > end)
650 return -1;
651
652 /*
653 * Some BIOSes claim RAM in the 640k - 1M region.
654 * Not right. Fix it up.
655 */
656 if (type == E820_RAM) {
657 if (start < 0x100000ULL && end > 0xA0000ULL) {
658 if (start < 0xA0000ULL)
659 add_memory_region(start, 0xA0000ULL-start, type);
660 if (end <= 0x100000ULL)
661 continue;
662 start = 0x100000ULL;
663 size = end - start;
664 }
665 }
666 add_memory_region(start, size, type);
667 } while (biosmap++,--nr_map);
668 return 0;
669}
670
671#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
672struct edd edd;
673#ifdef CONFIG_EDD_MODULE
674EXPORT_SYMBOL(edd);
675#endif
676/**
677 * copy_edd() - Copy the BIOS EDD information
678 * from boot_params into a safe place.
679 *
680 */
681static inline void copy_edd(void)
682{
683 memcpy(edd.mbr_signature, EDD_MBR_SIGNATURE, sizeof(edd.mbr_signature));
684 memcpy(edd.edd_info, EDD_BUF, sizeof(edd.edd_info));
685 edd.mbr_signature_nr = EDD_MBR_SIG_NR;
686 edd.edd_info_nr = EDD_NR;
687}
688#else
689static inline void copy_edd(void)
690{
691}
692#endif
693
694/*
695 * Do NOT EVER look at the BIOS memory size location.
696 * It does not work on many machines.
697 */
698#define LOWMEMSIZE() (0x9f000)
699
700static void __init parse_cmdline_early (char ** cmdline_p)
701{
702 char c = ' ', *to = command_line, *from = saved_command_line;
703 int len = 0;
704 int userdef = 0;
705
706 /* Save unparsed command line copy for /proc/cmdline */
707 saved_command_line[COMMAND_LINE_SIZE-1] = '\0';
708
709 for (;;) {
710 if (c != ' ')
711 goto next_char;
712 /*
713 * "mem=nopentium" disables the 4MB page tables.
714 * "mem=XXX[kKmM]" defines a memory region from HIGH_MEM
715 * to <mem>, overriding the bios size.
716 * "memmap=XXX[KkmM]@XXX[KkmM]" defines a memory region from
717 * <start> to <start>+<mem>, overriding the bios size.
718 *
719 * HPA tells me bootloaders need to parse mem=, so no new
720 * option should be mem= [also see Documentation/i386/boot.txt]
721 */
722 if (!memcmp(from, "mem=", 4)) {
723 if (to != command_line)
724 to--;
725 if (!memcmp(from+4, "nopentium", 9)) {
726 from += 9+4;
727 clear_bit(X86_FEATURE_PSE, boot_cpu_data.x86_capability);
728 disable_pse = 1;
729 } else {
730 /* If the user specifies memory size, we
731 * limit the BIOS-provided memory map to
732 * that size. exactmap can be used to specify
733 * the exact map. mem=number can be used to
734 * trim the existing memory map.
735 */
736 unsigned long long mem_size;
737
738 mem_size = memparse(from+4, &from);
739 limit_regions(mem_size);
740 userdef=1;
741 }
742 }
743
744 else if (!memcmp(from, "memmap=", 7)) {
745 if (to != command_line)
746 to--;
747 if (!memcmp(from+7, "exactmap", 8)) {
92aa63a5
VG
748#ifdef CONFIG_CRASH_DUMP
749 /* If we are doing a crash dump, we
750 * still need to know the real mem
751 * size before original memory map is
752 * reset.
753 */
754 find_max_pfn();
755 saved_max_pfn = max_pfn;
756#endif
1da177e4
LT
757 from += 8+7;
758 e820.nr_map = 0;
759 userdef = 1;
760 } else {
761 /* If the user specifies memory size, we
762 * limit the BIOS-provided memory map to
763 * that size. exactmap can be used to specify
764 * the exact map. mem=number can be used to
765 * trim the existing memory map.
766 */
767 unsigned long long start_at, mem_size;
768
769 mem_size = memparse(from+7, &from);
770 if (*from == '@') {
771 start_at = memparse(from+1, &from);
772 add_memory_region(start_at, mem_size, E820_RAM);
773 } else if (*from == '#') {
774 start_at = memparse(from+1, &from);
775 add_memory_region(start_at, mem_size, E820_ACPI);
776 } else if (*from == '$') {
777 start_at = memparse(from+1, &from);
778 add_memory_region(start_at, mem_size, E820_RESERVED);
779 } else {
780 limit_regions(mem_size);
781 userdef=1;
782 }
783 }
784 }
785
786 else if (!memcmp(from, "noexec=", 7))
787 noexec_setup(from + 7);
788
789
790#ifdef CONFIG_X86_SMP
791 /*
792 * If the BIOS enumerates physical processors before logical,
793 * maxcpus=N at enumeration-time can be used to disable HT.
794 */
795 else if (!memcmp(from, "maxcpus=", 8)) {
796 extern unsigned int maxcpus;
797
798 maxcpus = simple_strtoul(from + 8, NULL, 0);
799 }
800#endif
801
888ba6c6 802#ifdef CONFIG_ACPI
1da177e4
LT
803 /* "acpi=off" disables both ACPI table parsing and interpreter */
804 else if (!memcmp(from, "acpi=off", 8)) {
805 disable_acpi();
806 }
807
808 /* acpi=force to over-ride black-list */
809 else if (!memcmp(from, "acpi=force", 10)) {
810 acpi_force = 1;
811 acpi_ht = 1;
812 acpi_disabled = 0;
813 }
814
815 /* acpi=strict disables out-of-spec workarounds */
816 else if (!memcmp(from, "acpi=strict", 11)) {
817 acpi_strict = 1;
818 }
819
820 /* Limit ACPI just to boot-time to enable HT */
821 else if (!memcmp(from, "acpi=ht", 7)) {
822 if (!acpi_force)
823 disable_acpi();
824 acpi_ht = 1;
825 }
826
827 /* "pci=noacpi" disable ACPI IRQ routing and PCI scan */
828 else if (!memcmp(from, "pci=noacpi", 10)) {
829 acpi_disable_pci();
830 }
831 /* "acpi=noirq" disables ACPI interrupt routing */
832 else if (!memcmp(from, "acpi=noirq", 10)) {
833 acpi_noirq_set();
834 }
835
836 else if (!memcmp(from, "acpi_sci=edge", 13))
837 acpi_sci_flags.trigger = 1;
838
839 else if (!memcmp(from, "acpi_sci=level", 14))
840 acpi_sci_flags.trigger = 3;
841
842 else if (!memcmp(from, "acpi_sci=high", 13))
843 acpi_sci_flags.polarity = 1;
844
845 else if (!memcmp(from, "acpi_sci=low", 12))
846 acpi_sci_flags.polarity = 3;
847
848#ifdef CONFIG_X86_IO_APIC
849 else if (!memcmp(from, "acpi_skip_timer_override", 24))
850 acpi_skip_timer_override = 1;
851#endif
852
853#ifdef CONFIG_X86_LOCAL_APIC
854 /* disable IO-APIC */
855 else if (!memcmp(from, "noapic", 6))
856 disable_ioapic_setup();
857#endif /* CONFIG_X86_LOCAL_APIC */
888ba6c6 858#endif /* CONFIG_ACPI */
1da177e4 859
9635b47d
EB
860#ifdef CONFIG_X86_LOCAL_APIC
861 /* enable local APIC */
862 else if (!memcmp(from, "lapic", 5))
863 lapic_enable();
864
865 /* disable local APIC */
866 else if (!memcmp(from, "nolapic", 6))
867 lapic_disable();
868#endif /* CONFIG_X86_LOCAL_APIC */
869
1bc3b91a
EB
870#ifdef CONFIG_KEXEC
871 /* crashkernel=size@addr specifies the location to reserve for
872 * a crash kernel. By reserving this memory we guarantee
873 * that linux never set's it up as a DMA target.
874 * Useful for holding code to do something appropriate
875 * after a kernel panic.
876 */
877 else if (!memcmp(from, "crashkernel=", 12)) {
878 unsigned long size, base;
879 size = memparse(from+12, &from);
880 if (*from == '@') {
881 base = memparse(from+1, &from);
882 /* FIXME: Do I want a sanity check
883 * to validate the memory range?
884 */
885 crashk_res.start = base;
886 crashk_res.end = base + size - 1;
887 }
888 }
889#endif
2030eae5
VG
890#ifdef CONFIG_CRASH_DUMP
891 /* elfcorehdr= specifies the location of elf core header
892 * stored by the crashed kernel.
893 */
894 else if (!memcmp(from, "elfcorehdr=", 11))
895 elfcorehdr_addr = memparse(from+11, &from);
896#endif
1bc3b91a 897
1da177e4
LT
898 /*
899 * highmem=size forces highmem to be exactly 'size' bytes.
900 * This works even on boxes that have no highmem otherwise.
901 * This also works to reduce highmem size on bigger boxes.
902 */
903 else if (!memcmp(from, "highmem=", 8))
904 highmem_pages = memparse(from+8, &from) >> PAGE_SHIFT;
905
906 /*
907 * vmalloc=size forces the vmalloc area to be exactly 'size'
908 * bytes. This can be used to increase (or decrease) the
909 * vmalloc area - the default is 128m.
910 */
911 else if (!memcmp(from, "vmalloc=", 8))
912 __VMALLOC_RESERVE = memparse(from+8, &from);
913
914 next_char:
915 c = *(from++);
916 if (!c)
917 break;
918 if (COMMAND_LINE_SIZE <= ++len)
919 break;
920 *(to++) = c;
921 }
922 *to = '\0';
923 *cmdline_p = command_line;
924 if (userdef) {
925 printk(KERN_INFO "user-defined physical RAM map:\n");
926 print_memory_map("user");
927 }
928}
929
930/*
931 * Callback for efi_memory_walk.
932 */
933static int __init
934efi_find_max_pfn(unsigned long start, unsigned long end, void *arg)
935{
936 unsigned long *max_pfn = arg, pfn;
937
938 if (start < end) {
939 pfn = PFN_UP(end -1);
940 if (pfn > *max_pfn)
941 *max_pfn = pfn;
942 }
943 return 0;
944}
945
946
947/*
948 * Find the highest page frame number we have available
949 */
950void __init find_max_pfn(void)
951{
952 int i;
953
954 max_pfn = 0;
955 if (efi_enabled) {
956 efi_memmap_walk(efi_find_max_pfn, &max_pfn);
957 return;
958 }
959
960 for (i = 0; i < e820.nr_map; i++) {
961 unsigned long start, end;
962 /* RAM? */
963 if (e820.map[i].type != E820_RAM)
964 continue;
965 start = PFN_UP(e820.map[i].addr);
966 end = PFN_DOWN(e820.map[i].addr + e820.map[i].size);
967 if (start >= end)
968 continue;
969 if (end > max_pfn)
970 max_pfn = end;
971 }
972}
973
974/*
975 * Determine low and high memory ranges:
976 */
977unsigned long __init find_max_low_pfn(void)
978{
979 unsigned long max_low_pfn;
980
981 max_low_pfn = max_pfn;
982 if (max_low_pfn > MAXMEM_PFN) {
983 if (highmem_pages == -1)
984 highmem_pages = max_pfn - MAXMEM_PFN;
985 if (highmem_pages + MAXMEM_PFN < max_pfn)
986 max_pfn = MAXMEM_PFN + highmem_pages;
987 if (highmem_pages + MAXMEM_PFN > max_pfn) {
988 printk("only %luMB highmem pages available, ignoring highmem size of %uMB.\n", pages_to_mb(max_pfn - MAXMEM_PFN), pages_to_mb(highmem_pages));
989 highmem_pages = 0;
990 }
991 max_low_pfn = MAXMEM_PFN;
992#ifndef CONFIG_HIGHMEM
993 /* Maximum memory usable is what is directly addressable */
994 printk(KERN_WARNING "Warning only %ldMB will be used.\n",
995 MAXMEM>>20);
996 if (max_pfn > MAX_NONPAE_PFN)
997 printk(KERN_WARNING "Use a PAE enabled kernel.\n");
998 else
999 printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n");
1000 max_pfn = MAXMEM_PFN;
1001#else /* !CONFIG_HIGHMEM */
1002#ifndef CONFIG_X86_PAE
1003 if (max_pfn > MAX_NONPAE_PFN) {
1004 max_pfn = MAX_NONPAE_PFN;
1005 printk(KERN_WARNING "Warning only 4GB will be used.\n");
1006 printk(KERN_WARNING "Use a PAE enabled kernel.\n");
1007 }
1008#endif /* !CONFIG_X86_PAE */
1009#endif /* !CONFIG_HIGHMEM */
1010 } else {
1011 if (highmem_pages == -1)
1012 highmem_pages = 0;
1013#ifdef CONFIG_HIGHMEM
1014 if (highmem_pages >= max_pfn) {
1015 printk(KERN_ERR "highmem size specified (%uMB) is bigger than pages available (%luMB)!.\n", pages_to_mb(highmem_pages), pages_to_mb(max_pfn));
1016 highmem_pages = 0;
1017 }
1018 if (highmem_pages) {
1019 if (max_low_pfn-highmem_pages < 64*1024*1024/PAGE_SIZE){
1020 printk(KERN_ERR "highmem size %uMB results in smaller than 64MB lowmem, ignoring it.\n", pages_to_mb(highmem_pages));
1021 highmem_pages = 0;
1022 }
1023 max_low_pfn -= highmem_pages;
1024 }
1025#else
1026 if (highmem_pages)
1027 printk(KERN_ERR "ignoring highmem size on non-highmem kernel!\n");
1028#endif
1029 }
1030 return max_low_pfn;
1031}
1032
1033/*
1034 * Free all available memory for boot time allocation. Used
1035 * as a callback function by efi_memory_walk()
1036 */
1037
1038static int __init
1039free_available_memory(unsigned long start, unsigned long end, void *arg)
1040{
1041 /* check max_low_pfn */
1042 if (start >= ((max_low_pfn + 1) << PAGE_SHIFT))
1043 return 0;
1044 if (end >= ((max_low_pfn + 1) << PAGE_SHIFT))
1045 end = (max_low_pfn + 1) << PAGE_SHIFT;
1046 if (start < end)
1047 free_bootmem(start, end - start);
1048
1049 return 0;
1050}
1051/*
1052 * Register fully available low RAM pages with the bootmem allocator.
1053 */
1054static void __init register_bootmem_low_pages(unsigned long max_low_pfn)
1055{
1056 int i;
1057
1058 if (efi_enabled) {
1059 efi_memmap_walk(free_available_memory, NULL);
1060 return;
1061 }
1062 for (i = 0; i < e820.nr_map; i++) {
1063 unsigned long curr_pfn, last_pfn, size;
1064 /*
1065 * Reserve usable low memory
1066 */
1067 if (e820.map[i].type != E820_RAM)
1068 continue;
1069 /*
1070 * We are rounding up the start address of usable memory:
1071 */
1072 curr_pfn = PFN_UP(e820.map[i].addr);
1073 if (curr_pfn >= max_low_pfn)
1074 continue;
1075 /*
1076 * ... and at the end of the usable range downwards:
1077 */
1078 last_pfn = PFN_DOWN(e820.map[i].addr + e820.map[i].size);
1079
1080 if (last_pfn > max_low_pfn)
1081 last_pfn = max_low_pfn;
1082
1083 /*
1084 * .. finally, did all the rounding and playing
1085 * around just make the area go away?
1086 */
1087 if (last_pfn <= curr_pfn)
1088 continue;
1089
1090 size = last_pfn - curr_pfn;
1091 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size));
1092 }
1093}
1094
1095/*
1096 * workaround for Dell systems that neglect to reserve EBDA
1097 */
1098static void __init reserve_ebda_region(void)
1099{
1100 unsigned int addr;
1101 addr = get_bios_ebda();
1102 if (addr)
1103 reserve_bootmem(addr, PAGE_SIZE);
1104}
1105
05b79bdc 1106#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
1107void __init setup_bootmem_allocator(void);
1108static unsigned long __init setup_memory(void)
1109{
1110 /*
1111 * partially used pages are not usable - thus
1112 * we are rounding upwards:
1113 */
1114 min_low_pfn = PFN_UP(init_pg_tables_end);
1115
1116 find_max_pfn();
1117
1118 max_low_pfn = find_max_low_pfn();
1119
1120#ifdef CONFIG_HIGHMEM
1121 highstart_pfn = highend_pfn = max_pfn;
1122 if (max_pfn > max_low_pfn) {
1123 highstart_pfn = max_low_pfn;
1124 }
1125 printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
1126 pages_to_mb(highend_pfn - highstart_pfn));
1127#endif
1128 printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
1129 pages_to_mb(max_low_pfn));
1130
1131 setup_bootmem_allocator();
1132
1133 return max_low_pfn;
1134}
1135
1136void __init zone_sizes_init(void)
1137{
1138 unsigned long zones_size[MAX_NR_ZONES] = {0, 0, 0};
1139 unsigned int max_dma, low;
1140
1141 max_dma = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
1142 low = max_low_pfn;
1143
1144 if (low < max_dma)
1145 zones_size[ZONE_DMA] = low;
1146 else {
1147 zones_size[ZONE_DMA] = max_dma;
1148 zones_size[ZONE_NORMAL] = low - max_dma;
1149#ifdef CONFIG_HIGHMEM
1150 zones_size[ZONE_HIGHMEM] = highend_pfn - low;
1151#endif
1152 }
1153 free_area_init(zones_size);
1154}
1155#else
05b79bdc 1156extern unsigned long __init setup_memory(void);
1da177e4 1157extern void zone_sizes_init(void);
05b79bdc 1158#endif /* !CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
1159
1160void __init setup_bootmem_allocator(void)
1161{
1162 unsigned long bootmap_size;
1163 /*
1164 * Initialize the boot-time allocator (with low memory only):
1165 */
1166 bootmap_size = init_bootmem(min_low_pfn, max_low_pfn);
1167
1168 register_bootmem_low_pages(max_low_pfn);
1169
1170 /*
1171 * Reserve the bootmem bitmap itself as well. We do this in two
1172 * steps (first step was init_bootmem()) because this catches
1173 * the (very unlikely) case of us accidentally initializing the
1174 * bootmem allocator with an invalid RAM area.
1175 */
8a919085
VG
1176 reserve_bootmem(__PHYSICAL_START, (PFN_PHYS(min_low_pfn) +
1177 bootmap_size + PAGE_SIZE-1) - (__PHYSICAL_START));
1da177e4
LT
1178
1179 /*
1180 * reserve physical page 0 - it's a special BIOS page on many boxes,
1181 * enabling clean reboots, SMP operation, laptop functions.
1182 */
1183 reserve_bootmem(0, PAGE_SIZE);
1184
1185 /* reserve EBDA region, it's a 4K region */
1186 reserve_ebda_region();
1187
1188 /* could be an AMD 768MPX chipset. Reserve a page before VGA to prevent
1189 PCI prefetch into it (errata #56). Usually the page is reserved anyways,
1190 unless you have no PS/2 mouse plugged in. */
1191 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
1192 boot_cpu_data.x86 == 6)
1193 reserve_bootmem(0xa0000 - 4096, 4096);
1194
1195#ifdef CONFIG_SMP
1196 /*
1197 * But first pinch a few for the stack/trampoline stuff
1198 * FIXME: Don't need the extra page at 4K, but need to fix
1199 * trampoline before removing it. (see the GDT stuff)
1200 */
1201 reserve_bootmem(PAGE_SIZE, PAGE_SIZE);
1202#endif
1203#ifdef CONFIG_ACPI_SLEEP
1204 /*
1205 * Reserve low memory region for sleep support.
1206 */
1207 acpi_reserve_bootmem();
1208#endif
1209#ifdef CONFIG_X86_FIND_SMP_CONFIG
1210 /*
1211 * Find and reserve possible boot-time SMP configuration:
1212 */
1213 find_smp_config();
1214#endif
1215
1216#ifdef CONFIG_BLK_DEV_INITRD
1217 if (LOADER_TYPE && INITRD_START) {
1218 if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) {
1219 reserve_bootmem(INITRD_START, INITRD_SIZE);
1220 initrd_start =
1221 INITRD_START ? INITRD_START + PAGE_OFFSET : 0;
1222 initrd_end = initrd_start+INITRD_SIZE;
1223 }
1224 else {
1225 printk(KERN_ERR "initrd extends beyond end of memory "
1226 "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
1227 INITRD_START + INITRD_SIZE,
1228 max_low_pfn << PAGE_SHIFT);
1229 initrd_start = 0;
1230 }
1231 }
1232#endif
1bc3b91a
EB
1233#ifdef CONFIG_KEXEC
1234 if (crashk_res.start != crashk_res.end)
1235 reserve_bootmem(crashk_res.start,
1236 crashk_res.end - crashk_res.start + 1);
1237#endif
1da177e4
LT
1238}
1239
1240/*
1241 * The node 0 pgdat is initialized before all of these because
1242 * it's needed for bootmem. node>0 pgdats have their virtual
1243 * space allocated before the pagetables are in place to access
1244 * them, so they can't be cleared then.
1245 *
1246 * This should all compile down to nothing when NUMA is off.
1247 */
1248void __init remapped_pgdat_init(void)
1249{
1250 int nid;
1251
1252 for_each_online_node(nid) {
1253 if (nid != 0)
1254 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
1255 }
1256}
1257
1258/*
1259 * Request address space for all standard RAM and ROM resources
1260 * and also for regions reported as reserved by the e820.
1261 */
1262static void __init
1263legacy_init_iomem_resources(struct resource *code_resource, struct resource *data_resource)
1264{
1265 int i;
1266
1267 probe_roms();
1268 for (i = 0; i < e820.nr_map; i++) {
1269 struct resource *res;
1270 if (e820.map[i].addr + e820.map[i].size > 0x100000000ULL)
1271 continue;
1272 res = alloc_bootmem_low(sizeof(struct resource));
1273 switch (e820.map[i].type) {
1274 case E820_RAM: res->name = "System RAM"; break;
1275 case E820_ACPI: res->name = "ACPI Tables"; break;
1276 case E820_NVS: res->name = "ACPI Non-volatile Storage"; break;
1277 default: res->name = "reserved";
1278 }
1279 res->start = e820.map[i].addr;
1280 res->end = res->start + e820.map[i].size - 1;
1281 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1282 request_resource(&iomem_resource, res);
1283 if (e820.map[i].type == E820_RAM) {
1284 /*
1285 * We don't know which RAM region contains kernel data,
1286 * so we try it repeatedly and let the resource manager
1287 * test it.
1288 */
1289 request_resource(res, code_resource);
1290 request_resource(res, data_resource);
1bc3b91a
EB
1291#ifdef CONFIG_KEXEC
1292 request_resource(res, &crashk_res);
1293#endif
1da177e4
LT
1294 }
1295 }
1296}
1297
1298/*
1299 * Request address space for all standard resources
1300 */
1301static void __init register_memory(void)
1302{
1303 unsigned long gapstart, gapsize;
1304 unsigned long long last;
1305 int i;
1306
1307 if (efi_enabled)
1308 efi_initialize_iomem_resources(&code_resource, &data_resource);
1309 else
1310 legacy_init_iomem_resources(&code_resource, &data_resource);
1311
1312 /* EFI systems may still have VGA */
1313 request_resource(&iomem_resource, &video_ram_resource);
1314
1315 /* request I/O space for devices used on all i[345]86 PCs */
1316 for (i = 0; i < STANDARD_IO_RESOURCES; i++)
1317 request_resource(&ioport_resource, &standard_io_resources[i]);
1318
1319 /*
1320 * Search for the bigest gap in the low 32 bits of the e820
1321 * memory space.
1322 */
1323 last = 0x100000000ull;
1324 gapstart = 0x10000000;
1325 gapsize = 0x400000;
1326 i = e820.nr_map;
1327 while (--i >= 0) {
1328 unsigned long long start = e820.map[i].addr;
1329 unsigned long long end = start + e820.map[i].size;
1330
1331 /*
1332 * Since "last" is at most 4GB, we know we'll
1333 * fit in 32 bits if this condition is true
1334 */
1335 if (last > end) {
1336 unsigned long gap = last - end;
1337
1338 if (gap > gapsize) {
1339 gapsize = gap;
1340 gapstart = end;
1341 }
1342 }
1343 if (start < last)
1344 last = start;
1345 }
1346
1347 /*
1348 * Start allocating dynamic PCI memory a bit into the gap,
1349 * aligned up to the nearest megabyte.
1350 *
1351 * Question: should we try to pad it up a bit (do something
1352 * like " + (gapsize >> 3)" in there too?). We now have the
1353 * technology.
1354 */
1355 pci_mem_start = (gapstart + 0xfffff) & ~0xfffff;
1356
1357 printk("Allocating PCI resources starting at %08lx (gap: %08lx:%08lx)\n",
1358 pci_mem_start, gapstart, gapsize);
1359}
1360
1361/* Use inline assembly to define this because the nops are defined
1362 as inline assembly strings in the include files and we cannot
1363 get them easily into strings. */
1364asm("\t.data\nintelnops: "
1365 GENERIC_NOP1 GENERIC_NOP2 GENERIC_NOP3 GENERIC_NOP4 GENERIC_NOP5 GENERIC_NOP6
1366 GENERIC_NOP7 GENERIC_NOP8);
1367asm("\t.data\nk8nops: "
1368 K8_NOP1 K8_NOP2 K8_NOP3 K8_NOP4 K8_NOP5 K8_NOP6
1369 K8_NOP7 K8_NOP8);
1370asm("\t.data\nk7nops: "
1371 K7_NOP1 K7_NOP2 K7_NOP3 K7_NOP4 K7_NOP5 K7_NOP6
1372 K7_NOP7 K7_NOP8);
1373
1374extern unsigned char intelnops[], k8nops[], k7nops[];
1375static unsigned char *intel_nops[ASM_NOP_MAX+1] = {
1376 NULL,
1377 intelnops,
1378 intelnops + 1,
1379 intelnops + 1 + 2,
1380 intelnops + 1 + 2 + 3,
1381 intelnops + 1 + 2 + 3 + 4,
1382 intelnops + 1 + 2 + 3 + 4 + 5,
1383 intelnops + 1 + 2 + 3 + 4 + 5 + 6,
1384 intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
1385};
1386static unsigned char *k8_nops[ASM_NOP_MAX+1] = {
1387 NULL,
1388 k8nops,
1389 k8nops + 1,
1390 k8nops + 1 + 2,
1391 k8nops + 1 + 2 + 3,
1392 k8nops + 1 + 2 + 3 + 4,
1393 k8nops + 1 + 2 + 3 + 4 + 5,
1394 k8nops + 1 + 2 + 3 + 4 + 5 + 6,
1395 k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
1396};
1397static unsigned char *k7_nops[ASM_NOP_MAX+1] = {
1398 NULL,
1399 k7nops,
1400 k7nops + 1,
1401 k7nops + 1 + 2,
1402 k7nops + 1 + 2 + 3,
1403 k7nops + 1 + 2 + 3 + 4,
1404 k7nops + 1 + 2 + 3 + 4 + 5,
1405 k7nops + 1 + 2 + 3 + 4 + 5 + 6,
1406 k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
1407};
1408static struct nop {
1409 int cpuid;
1410 unsigned char **noptable;
1411} noptypes[] = {
1412 { X86_FEATURE_K8, k8_nops },
1413 { X86_FEATURE_K7, k7_nops },
1414 { -1, NULL }
1415};
1416
1417/* Replace instructions with better alternatives for this CPU type.
1418
1419 This runs before SMP is initialized to avoid SMP problems with
1420 self modifying code. This implies that assymetric systems where
1421 APs have less capabilities than the boot processor are not handled.
72538d85 1422 Tough. Make sure you disable such features by hand. */
1da177e4
LT
1423void apply_alternatives(void *start, void *end)
1424{
1425 struct alt_instr *a;
1426 int diff, i, k;
1427 unsigned char **noptable = intel_nops;
1428 for (i = 0; noptypes[i].cpuid >= 0; i++) {
1429 if (boot_cpu_has(noptypes[i].cpuid)) {
1430 noptable = noptypes[i].noptable;
1431 break;
1432 }
1433 }
1434 for (a = start; (void *)a < end; a++) {
1435 if (!boot_cpu_has(a->cpuid))
1436 continue;
1437 BUG_ON(a->replacementlen > a->instrlen);
1438 memcpy(a->instr, a->replacement, a->replacementlen);
1439 diff = a->instrlen - a->replacementlen;
1440 /* Pad the rest with nops */
1441 for (i = a->replacementlen; diff > 0; diff -= k, i += k) {
1442 k = diff;
1443 if (k > ASM_NOP_MAX)
1444 k = ASM_NOP_MAX;
1445 memcpy(a->instr + i, noptable[k], k);
1446 }
1447 }
1448}
1449
1da177e4
LT
1450void __init alternative_instructions(void)
1451{
1452 extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
1da177e4
LT
1453 apply_alternatives(__alt_instructions, __alt_instructions_end);
1454}
1455
1da177e4
LT
1456static char * __init machine_specific_memory_setup(void);
1457
1458#ifdef CONFIG_MCA
1459static void set_mca_bus(int x)
1460{
1461 MCA_bus = x;
1462}
1463#else
1464static void set_mca_bus(int x) { }
1465#endif
1466
1467/*
1468 * Determine if we were loaded by an EFI loader. If so, then we have also been
1469 * passed the efi memmap, systab, etc., so we should use these data structures
1470 * for initialization. Note, the efi init code path is determined by the
1471 * global efi_enabled. This allows the same kernel image to be used on existing
1472 * systems (with a traditional BIOS) as well as on EFI systems.
1473 */
1474void __init setup_arch(char **cmdline_p)
1475{
1476 unsigned long max_low_pfn;
1477
1478 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
1479 pre_setup_arch_hook();
1480 early_cpu_init();
1481
1482 /*
1483 * FIXME: This isn't an official loader_type right
1484 * now but does currently work with elilo.
1485 * If we were configured as an EFI kernel, check to make
1486 * sure that we were loaded correctly from elilo and that
1487 * the system table is valid. If not, then initialize normally.
1488 */
1489#ifdef CONFIG_EFI
1490 if ((LOADER_TYPE == 0x50) && EFI_SYSTAB)
1491 efi_enabled = 1;
1492#endif
1493
1494 ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
1495 drive_info = DRIVE_INFO;
1496 screen_info = SCREEN_INFO;
1497 edid_info = EDID_INFO;
1498 apm_info.bios = APM_BIOS_INFO;
1499 ist_info = IST_INFO;
1500 saved_videomode = VIDEO_MODE;
1501 if( SYS_DESC_TABLE.length != 0 ) {
1502 set_mca_bus(SYS_DESC_TABLE.table[3] & 0x2);
1503 machine_id = SYS_DESC_TABLE.table[0];
1504 machine_submodel_id = SYS_DESC_TABLE.table[1];
1505 BIOS_revision = SYS_DESC_TABLE.table[2];
1506 }
1507 bootloader_type = LOADER_TYPE;
1508
1509#ifdef CONFIG_BLK_DEV_RAM
1510 rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
1511 rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
1512 rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
1513#endif
1514 ARCH_SETUP
1515 if (efi_enabled)
1516 efi_init();
1517 else {
1518 printk(KERN_INFO "BIOS-provided physical RAM map:\n");
1519 print_memory_map(machine_specific_memory_setup());
1520 }
1521
1522 copy_edd();
1523
1524 if (!MOUNT_ROOT_RDONLY)
1525 root_mountflags &= ~MS_RDONLY;
1526 init_mm.start_code = (unsigned long) _text;
1527 init_mm.end_code = (unsigned long) _etext;
1528 init_mm.end_data = (unsigned long) _edata;
1529 init_mm.brk = init_pg_tables_end + PAGE_OFFSET;
1530
1531 code_resource.start = virt_to_phys(_text);
1532 code_resource.end = virt_to_phys(_etext)-1;
1533 data_resource.start = virt_to_phys(_etext);
1534 data_resource.end = virt_to_phys(_edata)-1;
1535
1536 parse_cmdline_early(cmdline_p);
1537
1538 max_low_pfn = setup_memory();
1539
1540 /*
1541 * NOTE: before this point _nobody_ is allowed to allocate
1542 * any memory using the bootmem allocator. Although the
1543 * alloctor is now initialised only the first 8Mb of the kernel
1544 * virtual address space has been mapped. All allocations before
1545 * paging_init() has completed must use the alloc_bootmem_low_pages()
1546 * variant (which allocates DMA'able memory) and care must be taken
1547 * not to exceed the 8Mb limit.
1548 */
1549
1550#ifdef CONFIG_SMP
1551 smp_alloc_memory(); /* AP processor realmode stacks in low memory*/
1552#endif
1553 paging_init();
1554 remapped_pgdat_init();
05b79bdc 1555 sparse_init();
1da177e4
LT
1556 zone_sizes_init();
1557
1558 /*
1559 * NOTE: at this point the bootmem allocator is fully available.
1560 */
1561
1562#ifdef CONFIG_EARLY_PRINTK
1563 {
1564 char *s = strstr(*cmdline_p, "earlyprintk=");
1565 if (s) {
1566 extern void setup_early_printk(char *);
1567
1568 setup_early_printk(s);
1569 printk("early console enabled\n");
1570 }
1571 }
1572#endif
1573
1574
1575 dmi_scan_machine();
1576
1577#ifdef CONFIG_X86_GENERICARCH
1578 generic_apic_probe(*cmdline_p);
1579#endif
1580 if (efi_enabled)
1581 efi_map_memmap();
1582
888ba6c6 1583#ifdef CONFIG_ACPI
1da177e4
LT
1584 /*
1585 * Parse the ACPI tables for possible boot-time SMP configuration.
1586 */
1587 acpi_boot_table_init();
1588 acpi_boot_init();
1589
911a62d4
VP
1590#if defined(CONFIG_SMP) && defined(CONFIG_X86_PC)
1591 if (def_to_bigsmp)
1592 printk(KERN_WARNING "More than 8 CPUs detected and "
1593 "CONFIG_X86_PC cannot handle it.\nUse "
1594 "CONFIG_X86_GENERICARCH or CONFIG_X86_BIGSMP.\n");
1595#endif
1596#endif
1da177e4
LT
1597#ifdef CONFIG_X86_LOCAL_APIC
1598 if (smp_found_config)
1599 get_smp_config();
1600#endif
1601
1602 register_memory();
1603
1604#ifdef CONFIG_VT
1605#if defined(CONFIG_VGA_CONSOLE)
1606 if (!efi_enabled || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1607 conswitchp = &vga_con;
1608#elif defined(CONFIG_DUMMY_CONSOLE)
1609 conswitchp = &dummy_con;
1610#endif
1611#endif
1612}
1613
1614#include "setup_arch_post.h"
1615/*
1616 * Local Variables:
1617 * mode:c
1618 * c-file-style:"k&r"
1619 * c-basic-offset:8
1620 * End:
1621 */