]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/arm/mm/mmu.c
ARM: 6207/1: Replace CONFIG_HAS_TLS_REG with HWCAP_TLS and check for it on V6
[net-next-2.6.git] / arch / arm / mm / mmu.c
CommitLineData
d111e8f9
RK
1/*
2 * linux/arch/arm/mm/mmu.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
ae8f1541 10#include <linux/module.h>
d111e8f9
RK
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/init.h>
14#include <linux/bootmem.h>
15#include <linux/mman.h>
16#include <linux/nodemask.h>
ceb683d3 17#include <linux/sort.h>
d111e8f9 18
0ba8b9b2 19#include <asm/cputype.h>
d111e8f9 20#include <asm/mach-types.h>
37efe642 21#include <asm/sections.h>
3f973e22 22#include <asm/cachetype.h>
d111e8f9
RK
23#include <asm/setup.h>
24#include <asm/sizes.h>
e616c591 25#include <asm/smp_plat.h>
d111e8f9 26#include <asm/tlb.h>
d73cd428 27#include <asm/highmem.h>
d111e8f9
RK
28
29#include <asm/mach/arch.h>
30#include <asm/mach/map.h>
31
32#include "mm.h"
33
34DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
35
d111e8f9
RK
36/*
37 * empty_zero_page is a special page that is used for
38 * zero-initialized data and COW.
39 */
40struct page *empty_zero_page;
3653f3ab 41EXPORT_SYMBOL(empty_zero_page);
d111e8f9
RK
42
43/*
44 * The pmd table for the upper-most set of pages.
45 */
46pmd_t *top_pmd;
47
ae8f1541
RK
48#define CPOLICY_UNCACHED 0
49#define CPOLICY_BUFFERED 1
50#define CPOLICY_WRITETHROUGH 2
51#define CPOLICY_WRITEBACK 3
52#define CPOLICY_WRITEALLOC 4
53
54static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
55static unsigned int ecc_mask __initdata = 0;
44b18693 56pgprot_t pgprot_user;
ae8f1541
RK
57pgprot_t pgprot_kernel;
58
44b18693 59EXPORT_SYMBOL(pgprot_user);
ae8f1541
RK
60EXPORT_SYMBOL(pgprot_kernel);
61
62struct cachepolicy {
63 const char policy[16];
64 unsigned int cr_mask;
65 unsigned int pmd;
66 unsigned int pte;
67};
68
69static struct cachepolicy cache_policies[] __initdata = {
70 {
71 .policy = "uncached",
72 .cr_mask = CR_W|CR_C,
73 .pmd = PMD_SECT_UNCACHED,
bb30f36f 74 .pte = L_PTE_MT_UNCACHED,
ae8f1541
RK
75 }, {
76 .policy = "buffered",
77 .cr_mask = CR_C,
78 .pmd = PMD_SECT_BUFFERED,
bb30f36f 79 .pte = L_PTE_MT_BUFFERABLE,
ae8f1541
RK
80 }, {
81 .policy = "writethrough",
82 .cr_mask = 0,
83 .pmd = PMD_SECT_WT,
bb30f36f 84 .pte = L_PTE_MT_WRITETHROUGH,
ae8f1541
RK
85 }, {
86 .policy = "writeback",
87 .cr_mask = 0,
88 .pmd = PMD_SECT_WB,
bb30f36f 89 .pte = L_PTE_MT_WRITEBACK,
ae8f1541
RK
90 }, {
91 .policy = "writealloc",
92 .cr_mask = 0,
93 .pmd = PMD_SECT_WBWA,
bb30f36f 94 .pte = L_PTE_MT_WRITEALLOC,
ae8f1541
RK
95 }
96};
97
98/*
6cbdc8c5 99 * These are useful for identifying cache coherency
ae8f1541
RK
100 * problems by allowing the cache or the cache and
101 * writebuffer to be turned off. (Note: the write
102 * buffer should not be on and the cache off).
103 */
2b0d8c25 104static int __init early_cachepolicy(char *p)
ae8f1541
RK
105{
106 int i;
107
108 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
109 int len = strlen(cache_policies[i].policy);
110
2b0d8c25 111 if (memcmp(p, cache_policies[i].policy, len) == 0) {
ae8f1541
RK
112 cachepolicy = i;
113 cr_alignment &= ~cache_policies[i].cr_mask;
114 cr_no_alignment &= ~cache_policies[i].cr_mask;
ae8f1541
RK
115 break;
116 }
117 }
118 if (i == ARRAY_SIZE(cache_policies))
119 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
4b46d641
RK
120 /*
121 * This restriction is partly to do with the way we boot; it is
122 * unpredictable to have memory mapped using two different sets of
123 * memory attributes (shared, type, and cache attribs). We can not
124 * change these attributes once the initial assembly has setup the
125 * page tables.
126 */
11179d8c
CM
127 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
128 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
129 cachepolicy = CPOLICY_WRITEBACK;
130 }
ae8f1541
RK
131 flush_cache_all();
132 set_cr(cr_alignment);
2b0d8c25 133 return 0;
ae8f1541 134}
2b0d8c25 135early_param("cachepolicy", early_cachepolicy);
ae8f1541 136
2b0d8c25 137static int __init early_nocache(char *__unused)
ae8f1541
RK
138{
139 char *p = "buffered";
140 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
141 early_cachepolicy(p);
142 return 0;
ae8f1541 143}
2b0d8c25 144early_param("nocache", early_nocache);
ae8f1541 145
2b0d8c25 146static int __init early_nowrite(char *__unused)
ae8f1541
RK
147{
148 char *p = "uncached";
149 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
150 early_cachepolicy(p);
151 return 0;
ae8f1541 152}
2b0d8c25 153early_param("nowb", early_nowrite);
ae8f1541 154
2b0d8c25 155static int __init early_ecc(char *p)
ae8f1541 156{
2b0d8c25 157 if (memcmp(p, "on", 2) == 0)
ae8f1541 158 ecc_mask = PMD_PROTECTION;
2b0d8c25 159 else if (memcmp(p, "off", 3) == 0)
ae8f1541 160 ecc_mask = 0;
2b0d8c25 161 return 0;
ae8f1541 162}
2b0d8c25 163early_param("ecc", early_ecc);
ae8f1541
RK
164
165static int __init noalign_setup(char *__unused)
166{
167 cr_alignment &= ~CR_A;
168 cr_no_alignment &= ~CR_A;
169 set_cr(cr_alignment);
170 return 1;
171}
172__setup("noalign", noalign_setup);
173
255d1f86
RK
174#ifndef CONFIG_SMP
175void adjust_cr(unsigned long mask, unsigned long set)
176{
177 unsigned long flags;
178
179 mask &= ~CR_A;
180
181 set &= mask;
182
183 local_irq_save(flags);
184
185 cr_no_alignment = (cr_no_alignment & ~mask) | set;
186 cr_alignment = (cr_alignment & ~mask) | set;
187
188 set_cr((get_cr() & ~mask) | set);
189
190 local_irq_restore(flags);
191}
192#endif
193
0af92bef 194#define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
b1cce6b1 195#define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
0af92bef 196
b29e9f5e 197static struct mem_type mem_types[] = {
0af92bef 198 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
bb30f36f
RK
199 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
200 L_PTE_SHARED,
0af92bef 201 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 202 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
0af92bef
RK
203 .domain = DOMAIN_IO,
204 },
205 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
bb30f36f 206 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
0af92bef 207 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 208 .prot_sect = PROT_SECT_DEVICE,
0af92bef
RK
209 .domain = DOMAIN_IO,
210 },
211 [MT_DEVICE_CACHED] = { /* ioremap_cached */
bb30f36f 212 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
0af92bef
RK
213 .prot_l1 = PMD_TYPE_TABLE,
214 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
215 .domain = DOMAIN_IO,
216 },
1ad77a87 217 [MT_DEVICE_WC] = { /* ioremap_wc */
bb30f36f 218 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
0af92bef 219 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 220 .prot_sect = PROT_SECT_DEVICE,
0af92bef 221 .domain = DOMAIN_IO,
ae8f1541 222 },
ebb4c658
RK
223 [MT_UNCACHED] = {
224 .prot_pte = PROT_PTE_DEVICE,
225 .prot_l1 = PMD_TYPE_TABLE,
226 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
227 .domain = DOMAIN_IO,
228 },
ae8f1541 229 [MT_CACHECLEAN] = {
9ef79635 230 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
ae8f1541
RK
231 .domain = DOMAIN_KERNEL,
232 },
233 [MT_MINICLEAN] = {
9ef79635 234 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
ae8f1541
RK
235 .domain = DOMAIN_KERNEL,
236 },
237 [MT_LOW_VECTORS] = {
238 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
239 L_PTE_EXEC,
240 .prot_l1 = PMD_TYPE_TABLE,
241 .domain = DOMAIN_USER,
242 },
243 [MT_HIGH_VECTORS] = {
244 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
245 L_PTE_USER | L_PTE_EXEC,
246 .prot_l1 = PMD_TYPE_TABLE,
247 .domain = DOMAIN_USER,
248 },
249 [MT_MEMORY] = {
9ef79635 250 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
ae8f1541
RK
251 .domain = DOMAIN_KERNEL,
252 },
253 [MT_ROM] = {
9ef79635 254 .prot_sect = PMD_TYPE_SECT,
ae8f1541
RK
255 .domain = DOMAIN_KERNEL,
256 },
e4707dd3
PW
257 [MT_MEMORY_NONCACHED] = {
258 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
259 .domain = DOMAIN_KERNEL,
260 },
ae8f1541
RK
261};
262
b29e9f5e
RK
263const struct mem_type *get_mem_type(unsigned int type)
264{
265 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
266}
69d3a84a 267EXPORT_SYMBOL(get_mem_type);
b29e9f5e 268
ae8f1541
RK
269/*
270 * Adjust the PMD section entries according to the CPU in use.
271 */
272static void __init build_mem_type_table(void)
273{
274 struct cachepolicy *cp;
275 unsigned int cr = get_cr();
bb30f36f 276 unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
ae8f1541
RK
277 int cpu_arch = cpu_architecture();
278 int i;
279
11179d8c 280 if (cpu_arch < CPU_ARCH_ARMv6) {
ae8f1541 281#if defined(CONFIG_CPU_DCACHE_DISABLE)
11179d8c
CM
282 if (cachepolicy > CPOLICY_BUFFERED)
283 cachepolicy = CPOLICY_BUFFERED;
ae8f1541 284#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
11179d8c
CM
285 if (cachepolicy > CPOLICY_WRITETHROUGH)
286 cachepolicy = CPOLICY_WRITETHROUGH;
ae8f1541 287#endif
11179d8c 288 }
ae8f1541
RK
289 if (cpu_arch < CPU_ARCH_ARMv5) {
290 if (cachepolicy >= CPOLICY_WRITEALLOC)
291 cachepolicy = CPOLICY_WRITEBACK;
292 ecc_mask = 0;
293 }
bb30f36f
RK
294#ifdef CONFIG_SMP
295 cachepolicy = CPOLICY_WRITEALLOC;
296#endif
ae8f1541 297
1ad77a87 298 /*
b1cce6b1
RK
299 * Strip out features not present on earlier architectures.
300 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
301 * without extended page tables don't have the 'Shared' bit.
1ad77a87 302 */
b1cce6b1
RK
303 if (cpu_arch < CPU_ARCH_ARMv5)
304 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
305 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
306 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
307 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
308 mem_types[i].prot_sect &= ~PMD_SECT_S;
ae8f1541
RK
309
310 /*
b1cce6b1
RK
311 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
312 * "update-able on write" bit on ARM610). However, Xscale and
313 * Xscale3 require this bit to be cleared.
ae8f1541 314 */
b1cce6b1 315 if (cpu_is_xscale() || cpu_is_xsc3()) {
9ef79635 316 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541 317 mem_types[i].prot_sect &= ~PMD_BIT4;
9ef79635
RK
318 mem_types[i].prot_l1 &= ~PMD_BIT4;
319 }
320 } else if (cpu_arch < CPU_ARCH_ARMv6) {
321 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541
RK
322 if (mem_types[i].prot_l1)
323 mem_types[i].prot_l1 |= PMD_BIT4;
9ef79635
RK
324 if (mem_types[i].prot_sect)
325 mem_types[i].prot_sect |= PMD_BIT4;
326 }
327 }
ae8f1541 328
b1cce6b1
RK
329 /*
330 * Mark the device areas according to the CPU/architecture.
331 */
332 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
333 if (!cpu_is_xsc3()) {
334 /*
335 * Mark device regions on ARMv6+ as execute-never
336 * to prevent speculative instruction fetches.
337 */
338 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
339 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
340 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
341 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
342 }
343 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
344 /*
345 * For ARMv7 with TEX remapping,
346 * - shared device is SXCB=1100
347 * - nonshared device is SXCB=0100
348 * - write combine device mem is SXCB=0001
349 * (Uncached Normal memory)
350 */
351 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
352 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
353 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
354 } else if (cpu_is_xsc3()) {
355 /*
356 * For Xscale3,
357 * - shared device is TEXCB=00101
358 * - nonshared device is TEXCB=01000
359 * - write combine device mem is TEXCB=00100
360 * (Inner/Outer Uncacheable in xsc3 parlance)
361 */
362 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
363 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
364 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
365 } else {
366 /*
367 * For ARMv6 and ARMv7 without TEX remapping,
368 * - shared device is TEXCB=00001
369 * - nonshared device is TEXCB=01000
370 * - write combine device mem is TEXCB=00100
371 * (Uncached Normal in ARMv6 parlance).
372 */
373 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
374 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
375 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
376 }
377 } else {
378 /*
379 * On others, write combining is "Uncached/Buffered"
380 */
381 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
382 }
383
384 /*
385 * Now deal with the memory-type mappings
386 */
ae8f1541 387 cp = &cache_policies[cachepolicy];
bb30f36f
RK
388 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
389
390#ifndef CONFIG_SMP
391 /*
392 * Only use write-through for non-SMP systems
393 */
394 if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
395 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
396#endif
ae8f1541
RK
397
398 /*
399 * Enable CPU-specific coherency if supported.
400 * (Only available on XSC3 at the moment.)
401 */
b1cce6b1
RK
402 if (arch_is_coherent() && cpu_is_xsc3())
403 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
ae8f1541
RK
404
405 /*
406 * ARMv6 and above have extended page tables.
407 */
408 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
ae8f1541
RK
409 /*
410 * Mark cache clean areas and XIP ROM read only
411 * from SVC mode and no access from userspace.
412 */
413 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
414 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
415 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
416
ae8f1541
RK
417#ifdef CONFIG_SMP
418 /*
419 * Mark memory with the "shared" attribute for SMP systems
420 */
421 user_pgprot |= L_PTE_SHARED;
422 kern_pgprot |= L_PTE_SHARED;
bb30f36f 423 vecs_pgprot |= L_PTE_SHARED;
85b3cce8
RK
424 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
425 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
426 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
427 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
ae8f1541 428 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
e4707dd3 429 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
ae8f1541
RK
430#endif
431 }
432
e4707dd3
PW
433 /*
434 * Non-cacheable Normal - intended for memory areas that must
435 * not cause dirty cache line writebacks when used
436 */
437 if (cpu_arch >= CPU_ARCH_ARMv6) {
438 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
439 /* Non-cacheable Normal is XCB = 001 */
440 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
441 PMD_SECT_BUFFERED;
442 } else {
443 /* For both ARMv6 and non-TEX-remapping ARMv7 */
444 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
445 PMD_SECT_TEX(1);
446 }
447 } else {
448 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
449 }
450
ae8f1541
RK
451 for (i = 0; i < 16; i++) {
452 unsigned long v = pgprot_val(protection_map[i]);
bb30f36f 453 protection_map[i] = __pgprot(v | user_pgprot);
ae8f1541
RK
454 }
455
bb30f36f
RK
456 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
457 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
ae8f1541 458
44b18693 459 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
ae8f1541 460 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
6dc995a3 461 L_PTE_DIRTY | L_PTE_WRITE | kern_pgprot);
ae8f1541
RK
462
463 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
464 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
465 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
466 mem_types[MT_ROM].prot_sect |= cp->pmd;
467
468 switch (cp->pmd) {
469 case PMD_SECT_WT:
470 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
471 break;
472 case PMD_SECT_WB:
473 case PMD_SECT_WBWA:
474 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
475 break;
476 }
477 printk("Memory policy: ECC %sabled, Data cache %s\n",
478 ecc_mask ? "en" : "dis", cp->policy);
2497f0a8
RK
479
480 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
481 struct mem_type *t = &mem_types[i];
482 if (t->prot_l1)
483 t->prot_l1 |= PMD_DOMAIN(t->domain);
484 if (t->prot_sect)
485 t->prot_sect |= PMD_DOMAIN(t->domain);
486 }
ae8f1541
RK
487}
488
489#define vectors_base() (vectors_high() ? 0xffff0000 : 0)
490
24e6c699
RK
491static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
492 unsigned long end, unsigned long pfn,
493 const struct mem_type *type)
ae8f1541 494{
24e6c699 495 pte_t *pte;
ae8f1541 496
24e6c699
RK
497 if (pmd_none(*pmd)) {
498 pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
499 __pmd_populate(pmd, __pa(pte) | type->prot_l1);
500 }
ae8f1541 501
24e6c699
RK
502 pte = pte_offset_kernel(pmd, addr);
503 do {
40d192b6 504 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
24e6c699
RK
505 pfn++;
506 } while (pte++, addr += PAGE_SIZE, addr != end);
ae8f1541
RK
507}
508
24e6c699
RK
509static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
510 unsigned long end, unsigned long phys,
511 const struct mem_type *type)
ae8f1541 512{
24e6c699 513 pmd_t *pmd = pmd_offset(pgd, addr);
ae8f1541 514
24e6c699
RK
515 /*
516 * Try a section mapping - end, addr and phys must all be aligned
517 * to a section boundary. Note that PMDs refer to the individual
518 * L1 entries, whereas PGDs refer to a group of L1 entries making
519 * up one logical pointer to an L2 table.
520 */
521 if (((addr | end | phys) & ~SECTION_MASK) == 0) {
522 pmd_t *p = pmd;
ae8f1541 523
24e6c699
RK
524 if (addr & SECTION_SIZE)
525 pmd++;
526
527 do {
528 *pmd = __pmd(phys | type->prot_sect);
529 phys += SECTION_SIZE;
530 } while (pmd++, addr += SECTION_SIZE, addr != end);
ae8f1541 531
24e6c699
RK
532 flush_pmd_entry(p);
533 } else {
534 /*
535 * No need to loop; pte's aren't interested in the
536 * individual L1 entries.
537 */
538 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
539 }
ae8f1541
RK
540}
541
4a56c1e4
RK
542static void __init create_36bit_mapping(struct map_desc *md,
543 const struct mem_type *type)
544{
545 unsigned long phys, addr, length, end;
546 pgd_t *pgd;
547
548 addr = md->virtual;
549 phys = (unsigned long)__pfn_to_phys(md->pfn);
550 length = PAGE_ALIGN(md->length);
551
552 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
553 printk(KERN_ERR "MM: CPU does not support supersection "
554 "mapping for 0x%08llx at 0x%08lx\n",
555 __pfn_to_phys((u64)md->pfn), addr);
556 return;
557 }
558
559 /* N.B. ARMv6 supersections are only defined to work with domain 0.
560 * Since domain assignments can in fact be arbitrary, the
561 * 'domain == 0' check below is required to insure that ARMv6
562 * supersections are only allocated for domain 0 regardless
563 * of the actual domain assignments in use.
564 */
565 if (type->domain) {
566 printk(KERN_ERR "MM: invalid domain in supersection "
567 "mapping for 0x%08llx at 0x%08lx\n",
568 __pfn_to_phys((u64)md->pfn), addr);
569 return;
570 }
571
572 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
573 printk(KERN_ERR "MM: cannot create mapping for "
574 "0x%08llx at 0x%08lx invalid alignment\n",
575 __pfn_to_phys((u64)md->pfn), addr);
576 return;
577 }
578
579 /*
580 * Shift bits [35:32] of address into bits [23:20] of PMD
581 * (See ARMv6 spec).
582 */
583 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
584
585 pgd = pgd_offset_k(addr);
586 end = addr + length;
587 do {
588 pmd_t *pmd = pmd_offset(pgd, addr);
589 int i;
590
591 for (i = 0; i < 16; i++)
592 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
593
594 addr += SUPERSECTION_SIZE;
595 phys += SUPERSECTION_SIZE;
596 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
597 } while (addr != end);
598}
599
ae8f1541
RK
600/*
601 * Create the page directory entries and any necessary
602 * page tables for the mapping specified by `md'. We
603 * are able to cope here with varying sizes and address
604 * offsets, and we take full advantage of sections and
605 * supersections.
606 */
a2227120 607static void __init create_mapping(struct map_desc *md)
ae8f1541 608{
24e6c699 609 unsigned long phys, addr, length, end;
d5c98176 610 const struct mem_type *type;
24e6c699 611 pgd_t *pgd;
ae8f1541
RK
612
613 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
614 printk(KERN_WARNING "BUG: not creating mapping for "
615 "0x%08llx at 0x%08lx in user region\n",
616 __pfn_to_phys((u64)md->pfn), md->virtual);
617 return;
618 }
619
620 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
621 md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
622 printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
623 "overlaps vmalloc space\n",
624 __pfn_to_phys((u64)md->pfn), md->virtual);
625 }
626
d5c98176 627 type = &mem_types[md->type];
ae8f1541
RK
628
629 /*
630 * Catch 36-bit addresses
631 */
4a56c1e4
RK
632 if (md->pfn >= 0x100000) {
633 create_36bit_mapping(md, type);
634 return;
ae8f1541
RK
635 }
636
7b9c7b4d 637 addr = md->virtual & PAGE_MASK;
24e6c699 638 phys = (unsigned long)__pfn_to_phys(md->pfn);
7b9c7b4d 639 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
ae8f1541 640
24e6c699 641 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
ae8f1541
RK
642 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
643 "be mapped using pages, ignoring.\n",
24e6c699 644 __pfn_to_phys(md->pfn), addr);
ae8f1541
RK
645 return;
646 }
647
24e6c699
RK
648 pgd = pgd_offset_k(addr);
649 end = addr + length;
650 do {
651 unsigned long next = pgd_addr_end(addr, end);
ae8f1541 652
24e6c699 653 alloc_init_section(pgd, addr, next, phys, type);
ae8f1541 654
24e6c699
RK
655 phys += next - addr;
656 addr = next;
657 } while (pgd++, addr != end);
ae8f1541
RK
658}
659
660/*
661 * Create the architecture specific mappings
662 */
663void __init iotable_init(struct map_desc *io_desc, int nr)
664{
665 int i;
666
667 for (i = 0; i < nr; i++)
668 create_mapping(io_desc + i);
669}
670
6c5da7ac
RK
671static unsigned long __initdata vmalloc_reserve = SZ_128M;
672
673/*
674 * vmalloc=size forces the vmalloc area to be exactly 'size'
675 * bytes. This can be used to increase (or decrease) the vmalloc
676 * area - the default is 128m.
677 */
2b0d8c25 678static int __init early_vmalloc(char *arg)
6c5da7ac 679{
2b0d8c25 680 vmalloc_reserve = memparse(arg, NULL);
6c5da7ac
RK
681
682 if (vmalloc_reserve < SZ_16M) {
683 vmalloc_reserve = SZ_16M;
684 printk(KERN_WARNING
685 "vmalloc area too small, limiting to %luMB\n",
686 vmalloc_reserve >> 20);
687 }
9210807c
NP
688
689 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
690 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
691 printk(KERN_WARNING
692 "vmalloc area is too big, limiting to %luMB\n",
693 vmalloc_reserve >> 20);
694 }
2b0d8c25 695 return 0;
6c5da7ac 696}
2b0d8c25 697early_param("vmalloc", early_vmalloc);
6c5da7ac
RK
698
699#define VMALLOC_MIN (void *)(VMALLOC_END - vmalloc_reserve)
700
4b5f32ce 701static void __init sanity_check_meminfo(void)
60296c71 702{
dde5828f 703 int i, j, highmem = 0;
60296c71 704
4b5f32ce 705 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
a1bbaec0
NP
706 struct membank *bank = &meminfo.bank[j];
707 *bank = meminfo.bank[i];
60296c71 708
a1bbaec0 709#ifdef CONFIG_HIGHMEM
dde5828f
RK
710 if (__va(bank->start) > VMALLOC_MIN ||
711 __va(bank->start) < (void *)PAGE_OFFSET)
712 highmem = 1;
713
714 bank->highmem = highmem;
715
a1bbaec0
NP
716 /*
717 * Split those memory banks which are partially overlapping
718 * the vmalloc area greatly simplifying things later.
719 */
720 if (__va(bank->start) < VMALLOC_MIN &&
721 bank->size > VMALLOC_MIN - __va(bank->start)) {
722 if (meminfo.nr_banks >= NR_BANKS) {
723 printk(KERN_CRIT "NR_BANKS too low, "
724 "ignoring high memory\n");
725 } else {
726 memmove(bank + 1, bank,
727 (meminfo.nr_banks - i) * sizeof(*bank));
728 meminfo.nr_banks++;
729 i++;
730 bank[1].size -= VMALLOC_MIN - __va(bank->start);
731 bank[1].start = __pa(VMALLOC_MIN - 1) + 1;
dde5828f 732 bank[1].highmem = highmem = 1;
a1bbaec0
NP
733 j++;
734 }
735 bank->size = VMALLOC_MIN - __va(bank->start);
736 }
737#else
041d785f
RK
738 bank->highmem = highmem;
739
a1bbaec0
NP
740 /*
741 * Check whether this memory bank would entirely overlap
742 * the vmalloc area.
743 */
3fd9825c 744 if (__va(bank->start) >= VMALLOC_MIN ||
f0bba9f9 745 __va(bank->start) < (void *)PAGE_OFFSET) {
a1bbaec0
NP
746 printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
747 "(vmalloc region overlap).\n",
748 bank->start, bank->start + bank->size - 1);
749 continue;
750 }
60296c71 751
a1bbaec0
NP
752 /*
753 * Check whether this memory bank would partially overlap
754 * the vmalloc area.
755 */
756 if (__va(bank->start + bank->size) > VMALLOC_MIN ||
757 __va(bank->start + bank->size) < __va(bank->start)) {
758 unsigned long newsize = VMALLOC_MIN - __va(bank->start);
759 printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
760 "to -%.8lx (vmalloc region overlap).\n",
761 bank->start, bank->start + bank->size - 1,
762 bank->start + newsize - 1);
763 bank->size = newsize;
764 }
765#endif
766 j++;
60296c71 767 }
e616c591
RK
768#ifdef CONFIG_HIGHMEM
769 if (highmem) {
770 const char *reason = NULL;
771
772 if (cache_is_vipt_aliasing()) {
773 /*
774 * Interactions between kmap and other mappings
775 * make highmem support with aliasing VIPT caches
776 * rather difficult.
777 */
778 reason = "with VIPT aliasing cache";
779#ifdef CONFIG_SMP
780 } else if (tlb_ops_need_broadcast()) {
781 /*
782 * kmap_high needs to occasionally flush TLB entries,
783 * however, if the TLB entries need to be broadcast
784 * we may deadlock:
785 * kmap_high(irqs off)->flush_all_zero_pkmaps->
786 * flush_tlb_kernel_range->smp_call_function_many
787 * (must not be called with irqs off)
788 */
789 reason = "without hardware TLB ops broadcasting";
790#endif
791 }
792 if (reason) {
793 printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
794 reason);
795 while (j > 0 && meminfo.bank[j - 1].highmem)
796 j--;
797 }
798 }
799#endif
4b5f32ce 800 meminfo.nr_banks = j;
60296c71
LB
801}
802
4b5f32ce 803static inline void prepare_page_table(void)
d111e8f9
RK
804{
805 unsigned long addr;
806
807 /*
808 * Clear out all the mappings below the kernel image.
809 */
ab4f2ee1 810 for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
d111e8f9
RK
811 pmd_clear(pmd_off_k(addr));
812
813#ifdef CONFIG_XIP_KERNEL
814 /* The XIP kernel is mapped in the module area -- skip over it */
37efe642 815 addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
d111e8f9
RK
816#endif
817 for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
818 pmd_clear(pmd_off_k(addr));
819
820 /*
821 * Clear out all the kernel space mappings, except for the first
822 * memory bank, up to the end of the vmalloc region.
823 */
4b5f32ce 824 for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
d111e8f9
RK
825 addr < VMALLOC_END; addr += PGDIR_SIZE)
826 pmd_clear(pmd_off_k(addr));
827}
828
829/*
830 * Reserve the various regions of node 0
831 */
832void __init reserve_node_zero(pg_data_t *pgdat)
833{
834 unsigned long res_size = 0;
835
836 /*
837 * Register the kernel text and data with bootmem.
838 * Note that this can only be in node 0.
839 */
840#ifdef CONFIG_XIP_KERNEL
37efe642 841 reserve_bootmem_node(pgdat, __pa(_data), _end - _data,
72a7fe39 842 BOOTMEM_DEFAULT);
d111e8f9 843#else
37efe642 844 reserve_bootmem_node(pgdat, __pa(_stext), _end - _stext,
72a7fe39 845 BOOTMEM_DEFAULT);
d111e8f9
RK
846#endif
847
848 /*
849 * Reserve the page tables. These are already in use,
850 * and can only be in node 0.
851 */
852 reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
72a7fe39 853 PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
d111e8f9
RK
854
855 /*
856 * Hmm... This should go elsewhere, but we really really need to
857 * stop things allocating the low memory; ideally we need a better
858 * implementation of GFP_DMA which does not assume that DMA-able
859 * memory starts at zero.
860 */
861 if (machine_is_integrator() || machine_is_cintegrator())
862 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
863
864 /*
865 * These should likewise go elsewhere. They pre-reserve the
866 * screen memory region at the start of main system memory.
867 */
868 if (machine_is_edb7211())
869 res_size = 0x00020000;
870 if (machine_is_p720t())
871 res_size = 0x00014000;
872
0741b7d2 873 /* H1940, RX3715 and RX1950 need to reserve this for suspend */
bbf6f280 874
0741b7d2
VK
875 if (machine_is_h1940() || machine_is_rx3715()
876 || machine_is_rx1950()) {
72a7fe39
BW
877 reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
878 BOOTMEM_DEFAULT);
879 reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
880 BOOTMEM_DEFAULT);
9073341c
BD
881 }
882
81854f82
MV
883 if (machine_is_palmld() || machine_is_palmtx()) {
884 reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
885 BOOTMEM_EXCLUSIVE);
886 reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
887 BOOTMEM_EXCLUSIVE);
888 }
889
d0a92fd3 890 if (machine_is_treo680() || machine_is_centro()) {
e6c3f4b8
TSC
891 reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
892 BOOTMEM_EXCLUSIVE);
893 reserve_bootmem_node(pgdat, 0xa2000000, 0x1000,
894 BOOTMEM_EXCLUSIVE);
895 }
896
81854f82
MV
897 if (machine_is_palmt5())
898 reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
899 BOOTMEM_EXCLUSIVE);
900
d98aac75
LW
901 /*
902 * U300 - This platform family can share physical memory
903 * between two ARM cpus, one running Linux and the other
904 * running another OS.
905 */
906 if (machine_is_u300()) {
907#ifdef CONFIG_MACH_U300_SINGLE_RAM
908#if ((CONFIG_MACH_U300_ACCESS_MEM_SIZE & 1) == 1) && \
909 CONFIG_MACH_U300_2MB_ALIGNMENT_FIX
910 res_size = 0x00100000;
911#endif
912#endif
913 }
914
d111e8f9
RK
915#ifdef CONFIG_SA1111
916 /*
917 * Because of the SA1111 DMA bug, we want to preserve our
918 * precious DMA-able memory...
919 */
920 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
921#endif
922 if (res_size)
72a7fe39
BW
923 reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
924 BOOTMEM_DEFAULT);
d111e8f9
RK
925}
926
927/*
928 * Set up device the mappings. Since we clear out the page tables for all
929 * mappings above VMALLOC_END, we will remove any debug device mappings.
930 * This means you have to be careful how you debug this function, or any
931 * called function. This means you can't use any function or debugging
932 * method which may touch any device, otherwise the kernel _will_ crash.
933 */
934static void __init devicemaps_init(struct machine_desc *mdesc)
935{
936 struct map_desc map;
937 unsigned long addr;
938 void *vectors;
939
940 /*
941 * Allocate the vector page early.
942 */
943 vectors = alloc_bootmem_low_pages(PAGE_SIZE);
d111e8f9
RK
944
945 for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
946 pmd_clear(pmd_off_k(addr));
947
948 /*
949 * Map the kernel if it is XIP.
950 * It is always first in the modulearea.
951 */
952#ifdef CONFIG_XIP_KERNEL
953 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
ab4f2ee1 954 map.virtual = MODULES_VADDR;
37efe642 955 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
d111e8f9
RK
956 map.type = MT_ROM;
957 create_mapping(&map);
958#endif
959
960 /*
961 * Map the cache flushing regions.
962 */
963#ifdef FLUSH_BASE
964 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
965 map.virtual = FLUSH_BASE;
966 map.length = SZ_1M;
967 map.type = MT_CACHECLEAN;
968 create_mapping(&map);
969#endif
970#ifdef FLUSH_BASE_MINICACHE
971 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
972 map.virtual = FLUSH_BASE_MINICACHE;
973 map.length = SZ_1M;
974 map.type = MT_MINICLEAN;
975 create_mapping(&map);
976#endif
977
978 /*
979 * Create a mapping for the machine vectors at the high-vectors
980 * location (0xffff0000). If we aren't using high-vectors, also
981 * create a mapping at the low-vectors virtual address.
982 */
983 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
984 map.virtual = 0xffff0000;
985 map.length = PAGE_SIZE;
986 map.type = MT_HIGH_VECTORS;
987 create_mapping(&map);
988
989 if (!vectors_high()) {
990 map.virtual = 0;
991 map.type = MT_LOW_VECTORS;
992 create_mapping(&map);
993 }
994
995 /*
996 * Ask the machine support to map in the statically mapped devices.
997 */
998 if (mdesc->map_io)
999 mdesc->map_io();
1000
1001 /*
1002 * Finally flush the caches and tlb to ensure that we're in a
1003 * consistent state wrt the writebuffer. This also ensures that
1004 * any write-allocated cache lines in the vector page are written
1005 * back. After this point, we can start to touch devices again.
1006 */
1007 local_flush_tlb_all();
1008 flush_cache_all();
1009}
1010
d73cd428
NP
1011static void __init kmap_init(void)
1012{
1013#ifdef CONFIG_HIGHMEM
1014 pmd_t *pmd = pmd_off_k(PKMAP_BASE);
1015 pte_t *pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
1016 BUG_ON(!pmd_none(*pmd) || !pte);
1017 __pmd_populate(pmd, __pa(pte) | _PAGE_KERNEL_TABLE);
1018 pkmap_page_table = pte + PTRS_PER_PTE;
1019#endif
1020}
1021
a2227120
RK
1022static inline void map_memory_bank(struct membank *bank)
1023{
1024 struct map_desc map;
1025
1026 map.pfn = bank_pfn_start(bank);
1027 map.virtual = __phys_to_virt(bank_phys_start(bank));
1028 map.length = bank_phys_size(bank);
1029 map.type = MT_MEMORY;
1030
1031 create_mapping(&map);
1032}
1033
1034static void __init map_lowmem(void)
1035{
1036 struct meminfo *mi = &meminfo;
1037 int i;
1038
1039 /* Map all the lowmem memory banks. */
1040 for (i = 0; i < mi->nr_banks; i++) {
1041 struct membank *bank = &mi->bank[i];
1042
1043 if (!bank->highmem)
1044 map_memory_bank(bank);
1045 }
1046}
1047
ceb683d3
RK
1048static int __init meminfo_cmp(const void *_a, const void *_b)
1049{
1050 const struct membank *a = _a, *b = _b;
1051 long cmp = bank_pfn_start(a) - bank_pfn_start(b);
1052 return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
1053}
1054
d111e8f9
RK
1055/*
1056 * paging_init() sets up the page tables, initialises the zone memory
1057 * maps, and sets up the zero page, bad page and bad page tables.
1058 */
4b5f32ce 1059void __init paging_init(struct machine_desc *mdesc)
d111e8f9
RK
1060{
1061 void *zero_page;
1062
ceb683d3
RK
1063 sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]), meminfo_cmp, NULL);
1064
d111e8f9 1065 build_mem_type_table();
4b5f32ce
NP
1066 sanity_check_meminfo();
1067 prepare_page_table();
a2227120 1068 map_lowmem();
4b5f32ce 1069 bootmem_init();
d111e8f9 1070 devicemaps_init(mdesc);
d73cd428 1071 kmap_init();
d111e8f9
RK
1072
1073 top_pmd = pmd_off_k(0xffff0000);
1074
1075 /*
6ce1b871
JL
1076 * allocate the zero page. Note that this always succeeds and
1077 * returns a zeroed result.
d111e8f9
RK
1078 */
1079 zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
d111e8f9 1080 empty_zero_page = virt_to_page(zero_page);
421fe93c 1081 __flush_dcache_page(NULL, empty_zero_page);
d111e8f9 1082}
ae8f1541
RK
1083
1084/*
1085 * In order to soft-boot, we need to insert a 1:1 mapping in place of
1086 * the user-mode pages. This will then ensure that we have predictable
1087 * results when turning the mmu off
1088 */
1089void setup_mm_for_reboot(char mode)
1090{
1091 unsigned long base_pmdval;
1092 pgd_t *pgd;
1093 int i;
1094
3f2d4f56
MW
1095 /*
1096 * We need to access to user-mode page tables here. For kernel threads
1097 * we don't have any user-mode mappings so we use the context that we
1098 * "borrowed".
1099 */
1100 pgd = current->active_mm->pgd;
ae8f1541
RK
1101
1102 base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
1103 if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
1104 base_pmdval |= PMD_BIT4;
1105
1106 for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
1107 unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
1108 pmd_t *pmd;
1109
1110 pmd = pmd_off(pgd, i << PGDIR_SHIFT);
1111 pmd[0] = __pmd(pmdval);
1112 pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
1113 flush_pmd_entry(pmd);
1114 }
ad3e6c0b
TL
1115
1116 local_flush_tlb_all();
ae8f1541 1117}