]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/arm/mm/mmu.c
ARM: 6400/1: at91: fix arch_gettimeoffset fallout
[net-next-2.6.git] / arch / arm / mm / mmu.c
CommitLineData
d111e8f9
RK
1/*
2 * linux/arch/arm/mm/mmu.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
ae8f1541 10#include <linux/module.h>
d111e8f9
RK
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/init.h>
d111e8f9
RK
14#include <linux/mman.h>
15#include <linux/nodemask.h>
2778f620 16#include <linux/memblock.h>
ceb683d3 17#include <linux/sort.h>
d111e8f9 18
0ba8b9b2 19#include <asm/cputype.h>
37efe642 20#include <asm/sections.h>
3f973e22 21#include <asm/cachetype.h>
d111e8f9
RK
22#include <asm/setup.h>
23#include <asm/sizes.h>
e616c591 24#include <asm/smp_plat.h>
d111e8f9 25#include <asm/tlb.h>
d73cd428 26#include <asm/highmem.h>
d111e8f9
RK
27
28#include <asm/mach/arch.h>
29#include <asm/mach/map.h>
30
31#include "mm.h"
32
33DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
34
d111e8f9
RK
35/*
36 * empty_zero_page is a special page that is used for
37 * zero-initialized data and COW.
38 */
39struct page *empty_zero_page;
3653f3ab 40EXPORT_SYMBOL(empty_zero_page);
d111e8f9
RK
41
42/*
43 * The pmd table for the upper-most set of pages.
44 */
45pmd_t *top_pmd;
46
ae8f1541
RK
47#define CPOLICY_UNCACHED 0
48#define CPOLICY_BUFFERED 1
49#define CPOLICY_WRITETHROUGH 2
50#define CPOLICY_WRITEBACK 3
51#define CPOLICY_WRITEALLOC 4
52
53static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
54static unsigned int ecc_mask __initdata = 0;
44b18693 55pgprot_t pgprot_user;
ae8f1541
RK
56pgprot_t pgprot_kernel;
57
44b18693 58EXPORT_SYMBOL(pgprot_user);
ae8f1541
RK
59EXPORT_SYMBOL(pgprot_kernel);
60
61struct cachepolicy {
62 const char policy[16];
63 unsigned int cr_mask;
64 unsigned int pmd;
65 unsigned int pte;
66};
67
68static struct cachepolicy cache_policies[] __initdata = {
69 {
70 .policy = "uncached",
71 .cr_mask = CR_W|CR_C,
72 .pmd = PMD_SECT_UNCACHED,
bb30f36f 73 .pte = L_PTE_MT_UNCACHED,
ae8f1541
RK
74 }, {
75 .policy = "buffered",
76 .cr_mask = CR_C,
77 .pmd = PMD_SECT_BUFFERED,
bb30f36f 78 .pte = L_PTE_MT_BUFFERABLE,
ae8f1541
RK
79 }, {
80 .policy = "writethrough",
81 .cr_mask = 0,
82 .pmd = PMD_SECT_WT,
bb30f36f 83 .pte = L_PTE_MT_WRITETHROUGH,
ae8f1541
RK
84 }, {
85 .policy = "writeback",
86 .cr_mask = 0,
87 .pmd = PMD_SECT_WB,
bb30f36f 88 .pte = L_PTE_MT_WRITEBACK,
ae8f1541
RK
89 }, {
90 .policy = "writealloc",
91 .cr_mask = 0,
92 .pmd = PMD_SECT_WBWA,
bb30f36f 93 .pte = L_PTE_MT_WRITEALLOC,
ae8f1541
RK
94 }
95};
96
97/*
6cbdc8c5 98 * These are useful for identifying cache coherency
ae8f1541
RK
99 * problems by allowing the cache or the cache and
100 * writebuffer to be turned off. (Note: the write
101 * buffer should not be on and the cache off).
102 */
2b0d8c25 103static int __init early_cachepolicy(char *p)
ae8f1541
RK
104{
105 int i;
106
107 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
108 int len = strlen(cache_policies[i].policy);
109
2b0d8c25 110 if (memcmp(p, cache_policies[i].policy, len) == 0) {
ae8f1541
RK
111 cachepolicy = i;
112 cr_alignment &= ~cache_policies[i].cr_mask;
113 cr_no_alignment &= ~cache_policies[i].cr_mask;
ae8f1541
RK
114 break;
115 }
116 }
117 if (i == ARRAY_SIZE(cache_policies))
118 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
4b46d641
RK
119 /*
120 * This restriction is partly to do with the way we boot; it is
121 * unpredictable to have memory mapped using two different sets of
122 * memory attributes (shared, type, and cache attribs). We can not
123 * change these attributes once the initial assembly has setup the
124 * page tables.
125 */
11179d8c
CM
126 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
127 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
128 cachepolicy = CPOLICY_WRITEBACK;
129 }
ae8f1541
RK
130 flush_cache_all();
131 set_cr(cr_alignment);
2b0d8c25 132 return 0;
ae8f1541 133}
2b0d8c25 134early_param("cachepolicy", early_cachepolicy);
ae8f1541 135
2b0d8c25 136static int __init early_nocache(char *__unused)
ae8f1541
RK
137{
138 char *p = "buffered";
139 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
140 early_cachepolicy(p);
141 return 0;
ae8f1541 142}
2b0d8c25 143early_param("nocache", early_nocache);
ae8f1541 144
2b0d8c25 145static int __init early_nowrite(char *__unused)
ae8f1541
RK
146{
147 char *p = "uncached";
148 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
149 early_cachepolicy(p);
150 return 0;
ae8f1541 151}
2b0d8c25 152early_param("nowb", early_nowrite);
ae8f1541 153
2b0d8c25 154static int __init early_ecc(char *p)
ae8f1541 155{
2b0d8c25 156 if (memcmp(p, "on", 2) == 0)
ae8f1541 157 ecc_mask = PMD_PROTECTION;
2b0d8c25 158 else if (memcmp(p, "off", 3) == 0)
ae8f1541 159 ecc_mask = 0;
2b0d8c25 160 return 0;
ae8f1541 161}
2b0d8c25 162early_param("ecc", early_ecc);
ae8f1541
RK
163
164static int __init noalign_setup(char *__unused)
165{
166 cr_alignment &= ~CR_A;
167 cr_no_alignment &= ~CR_A;
168 set_cr(cr_alignment);
169 return 1;
170}
171__setup("noalign", noalign_setup);
172
255d1f86
RK
173#ifndef CONFIG_SMP
174void adjust_cr(unsigned long mask, unsigned long set)
175{
176 unsigned long flags;
177
178 mask &= ~CR_A;
179
180 set &= mask;
181
182 local_irq_save(flags);
183
184 cr_no_alignment = (cr_no_alignment & ~mask) | set;
185 cr_alignment = (cr_alignment & ~mask) | set;
186
187 set_cr((get_cr() & ~mask) | set);
188
189 local_irq_restore(flags);
190}
191#endif
192
0af92bef 193#define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
b1cce6b1 194#define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
0af92bef 195
b29e9f5e 196static struct mem_type mem_types[] = {
0af92bef 197 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
bb30f36f
RK
198 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
199 L_PTE_SHARED,
0af92bef 200 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 201 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
0af92bef
RK
202 .domain = DOMAIN_IO,
203 },
204 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
bb30f36f 205 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
0af92bef 206 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 207 .prot_sect = PROT_SECT_DEVICE,
0af92bef
RK
208 .domain = DOMAIN_IO,
209 },
210 [MT_DEVICE_CACHED] = { /* ioremap_cached */
bb30f36f 211 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
0af92bef
RK
212 .prot_l1 = PMD_TYPE_TABLE,
213 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
214 .domain = DOMAIN_IO,
215 },
1ad77a87 216 [MT_DEVICE_WC] = { /* ioremap_wc */
bb30f36f 217 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
0af92bef 218 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 219 .prot_sect = PROT_SECT_DEVICE,
0af92bef 220 .domain = DOMAIN_IO,
ae8f1541 221 },
ebb4c658
RK
222 [MT_UNCACHED] = {
223 .prot_pte = PROT_PTE_DEVICE,
224 .prot_l1 = PMD_TYPE_TABLE,
225 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
226 .domain = DOMAIN_IO,
227 },
ae8f1541 228 [MT_CACHECLEAN] = {
9ef79635 229 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
ae8f1541
RK
230 .domain = DOMAIN_KERNEL,
231 },
232 [MT_MINICLEAN] = {
9ef79635 233 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
ae8f1541
RK
234 .domain = DOMAIN_KERNEL,
235 },
236 [MT_LOW_VECTORS] = {
237 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
238 L_PTE_EXEC,
239 .prot_l1 = PMD_TYPE_TABLE,
240 .domain = DOMAIN_USER,
241 },
242 [MT_HIGH_VECTORS] = {
243 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
244 L_PTE_USER | L_PTE_EXEC,
245 .prot_l1 = PMD_TYPE_TABLE,
246 .domain = DOMAIN_USER,
247 },
248 [MT_MEMORY] = {
9ef79635 249 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
ae8f1541
RK
250 .domain = DOMAIN_KERNEL,
251 },
252 [MT_ROM] = {
9ef79635 253 .prot_sect = PMD_TYPE_SECT,
ae8f1541
RK
254 .domain = DOMAIN_KERNEL,
255 },
e4707dd3
PW
256 [MT_MEMORY_NONCACHED] = {
257 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
258 .domain = DOMAIN_KERNEL,
259 },
cb9d7707
LW
260 [MT_MEMORY_DTCM] = {
261 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG |
262 L_PTE_DIRTY | L_PTE_WRITE,
263 .prot_l1 = PMD_TYPE_TABLE,
264 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
265 .domain = DOMAIN_KERNEL,
266 },
267 [MT_MEMORY_ITCM] = {
268 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
269 L_PTE_USER | L_PTE_EXEC,
270 .prot_l1 = PMD_TYPE_TABLE,
271 .domain = DOMAIN_IO,
272 },
ae8f1541
RK
273};
274
b29e9f5e
RK
275const struct mem_type *get_mem_type(unsigned int type)
276{
277 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
278}
69d3a84a 279EXPORT_SYMBOL(get_mem_type);
b29e9f5e 280
ae8f1541
RK
281/*
282 * Adjust the PMD section entries according to the CPU in use.
283 */
284static void __init build_mem_type_table(void)
285{
286 struct cachepolicy *cp;
287 unsigned int cr = get_cr();
bb30f36f 288 unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
ae8f1541
RK
289 int cpu_arch = cpu_architecture();
290 int i;
291
11179d8c 292 if (cpu_arch < CPU_ARCH_ARMv6) {
ae8f1541 293#if defined(CONFIG_CPU_DCACHE_DISABLE)
11179d8c
CM
294 if (cachepolicy > CPOLICY_BUFFERED)
295 cachepolicy = CPOLICY_BUFFERED;
ae8f1541 296#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
11179d8c
CM
297 if (cachepolicy > CPOLICY_WRITETHROUGH)
298 cachepolicy = CPOLICY_WRITETHROUGH;
ae8f1541 299#endif
11179d8c 300 }
ae8f1541
RK
301 if (cpu_arch < CPU_ARCH_ARMv5) {
302 if (cachepolicy >= CPOLICY_WRITEALLOC)
303 cachepolicy = CPOLICY_WRITEBACK;
304 ecc_mask = 0;
305 }
bb30f36f
RK
306#ifdef CONFIG_SMP
307 cachepolicy = CPOLICY_WRITEALLOC;
308#endif
ae8f1541 309
1ad77a87 310 /*
b1cce6b1
RK
311 * Strip out features not present on earlier architectures.
312 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
313 * without extended page tables don't have the 'Shared' bit.
1ad77a87 314 */
b1cce6b1
RK
315 if (cpu_arch < CPU_ARCH_ARMv5)
316 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
317 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
318 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
319 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
320 mem_types[i].prot_sect &= ~PMD_SECT_S;
ae8f1541
RK
321
322 /*
b1cce6b1
RK
323 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
324 * "update-able on write" bit on ARM610). However, Xscale and
325 * Xscale3 require this bit to be cleared.
ae8f1541 326 */
b1cce6b1 327 if (cpu_is_xscale() || cpu_is_xsc3()) {
9ef79635 328 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541 329 mem_types[i].prot_sect &= ~PMD_BIT4;
9ef79635
RK
330 mem_types[i].prot_l1 &= ~PMD_BIT4;
331 }
332 } else if (cpu_arch < CPU_ARCH_ARMv6) {
333 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541
RK
334 if (mem_types[i].prot_l1)
335 mem_types[i].prot_l1 |= PMD_BIT4;
9ef79635
RK
336 if (mem_types[i].prot_sect)
337 mem_types[i].prot_sect |= PMD_BIT4;
338 }
339 }
ae8f1541 340
b1cce6b1
RK
341 /*
342 * Mark the device areas according to the CPU/architecture.
343 */
344 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
345 if (!cpu_is_xsc3()) {
346 /*
347 * Mark device regions on ARMv6+ as execute-never
348 * to prevent speculative instruction fetches.
349 */
350 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
351 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
352 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
353 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
354 }
355 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
356 /*
357 * For ARMv7 with TEX remapping,
358 * - shared device is SXCB=1100
359 * - nonshared device is SXCB=0100
360 * - write combine device mem is SXCB=0001
361 * (Uncached Normal memory)
362 */
363 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
364 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
365 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
366 } else if (cpu_is_xsc3()) {
367 /*
368 * For Xscale3,
369 * - shared device is TEXCB=00101
370 * - nonshared device is TEXCB=01000
371 * - write combine device mem is TEXCB=00100
372 * (Inner/Outer Uncacheable in xsc3 parlance)
373 */
374 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
375 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
376 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
377 } else {
378 /*
379 * For ARMv6 and ARMv7 without TEX remapping,
380 * - shared device is TEXCB=00001
381 * - nonshared device is TEXCB=01000
382 * - write combine device mem is TEXCB=00100
383 * (Uncached Normal in ARMv6 parlance).
384 */
385 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
386 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
387 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
388 }
389 } else {
390 /*
391 * On others, write combining is "Uncached/Buffered"
392 */
393 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
394 }
395
396 /*
397 * Now deal with the memory-type mappings
398 */
ae8f1541 399 cp = &cache_policies[cachepolicy];
bb30f36f
RK
400 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
401
402#ifndef CONFIG_SMP
403 /*
404 * Only use write-through for non-SMP systems
405 */
406 if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
407 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
408#endif
ae8f1541
RK
409
410 /*
411 * Enable CPU-specific coherency if supported.
412 * (Only available on XSC3 at the moment.)
413 */
b1cce6b1
RK
414 if (arch_is_coherent() && cpu_is_xsc3())
415 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
ae8f1541
RK
416
417 /*
418 * ARMv6 and above have extended page tables.
419 */
420 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
ae8f1541
RK
421 /*
422 * Mark cache clean areas and XIP ROM read only
423 * from SVC mode and no access from userspace.
424 */
425 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
426 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
427 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
428
ae8f1541
RK
429#ifdef CONFIG_SMP
430 /*
431 * Mark memory with the "shared" attribute for SMP systems
432 */
433 user_pgprot |= L_PTE_SHARED;
434 kern_pgprot |= L_PTE_SHARED;
bb30f36f 435 vecs_pgprot |= L_PTE_SHARED;
85b3cce8
RK
436 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
437 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
438 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
439 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
ae8f1541 440 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
e4707dd3 441 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
ae8f1541
RK
442#endif
443 }
444
e4707dd3
PW
445 /*
446 * Non-cacheable Normal - intended for memory areas that must
447 * not cause dirty cache line writebacks when used
448 */
449 if (cpu_arch >= CPU_ARCH_ARMv6) {
450 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
451 /* Non-cacheable Normal is XCB = 001 */
452 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
453 PMD_SECT_BUFFERED;
454 } else {
455 /* For both ARMv6 and non-TEX-remapping ARMv7 */
456 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
457 PMD_SECT_TEX(1);
458 }
459 } else {
460 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
461 }
462
ae8f1541
RK
463 for (i = 0; i < 16; i++) {
464 unsigned long v = pgprot_val(protection_map[i]);
bb30f36f 465 protection_map[i] = __pgprot(v | user_pgprot);
ae8f1541
RK
466 }
467
bb30f36f
RK
468 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
469 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
ae8f1541 470
44b18693 471 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
ae8f1541 472 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
6dc995a3 473 L_PTE_DIRTY | L_PTE_WRITE | kern_pgprot);
ae8f1541
RK
474
475 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
476 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
477 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
478 mem_types[MT_ROM].prot_sect |= cp->pmd;
479
480 switch (cp->pmd) {
481 case PMD_SECT_WT:
482 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
483 break;
484 case PMD_SECT_WB:
485 case PMD_SECT_WBWA:
486 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
487 break;
488 }
489 printk("Memory policy: ECC %sabled, Data cache %s\n",
490 ecc_mask ? "en" : "dis", cp->policy);
2497f0a8
RK
491
492 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
493 struct mem_type *t = &mem_types[i];
494 if (t->prot_l1)
495 t->prot_l1 |= PMD_DOMAIN(t->domain);
496 if (t->prot_sect)
497 t->prot_sect |= PMD_DOMAIN(t->domain);
498 }
ae8f1541
RK
499}
500
501#define vectors_base() (vectors_high() ? 0xffff0000 : 0)
502
3abe9d33
RK
503static void __init *early_alloc(unsigned long sz)
504{
2778f620
RK
505 void *ptr = __va(memblock_alloc(sz, sz));
506 memset(ptr, 0, sz);
507 return ptr;
3abe9d33
RK
508}
509
4bb2e27d 510static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
ae8f1541 511{
24e6c699 512 if (pmd_none(*pmd)) {
4bb2e27d
RK
513 pte_t *pte = early_alloc(2 * PTRS_PER_PTE * sizeof(pte_t));
514 __pmd_populate(pmd, __pa(pte) | prot);
24e6c699 515 }
4bb2e27d
RK
516 BUG_ON(pmd_bad(*pmd));
517 return pte_offset_kernel(pmd, addr);
518}
ae8f1541 519
4bb2e27d
RK
520static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
521 unsigned long end, unsigned long pfn,
522 const struct mem_type *type)
523{
524 pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
24e6c699 525 do {
40d192b6 526 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
24e6c699
RK
527 pfn++;
528 } while (pte++, addr += PAGE_SIZE, addr != end);
ae8f1541
RK
529}
530
24e6c699
RK
531static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
532 unsigned long end, unsigned long phys,
533 const struct mem_type *type)
ae8f1541 534{
24e6c699 535 pmd_t *pmd = pmd_offset(pgd, addr);
ae8f1541 536
24e6c699
RK
537 /*
538 * Try a section mapping - end, addr and phys must all be aligned
539 * to a section boundary. Note that PMDs refer to the individual
540 * L1 entries, whereas PGDs refer to a group of L1 entries making
541 * up one logical pointer to an L2 table.
542 */
543 if (((addr | end | phys) & ~SECTION_MASK) == 0) {
544 pmd_t *p = pmd;
ae8f1541 545
24e6c699
RK
546 if (addr & SECTION_SIZE)
547 pmd++;
548
549 do {
550 *pmd = __pmd(phys | type->prot_sect);
551 phys += SECTION_SIZE;
552 } while (pmd++, addr += SECTION_SIZE, addr != end);
ae8f1541 553
24e6c699
RK
554 flush_pmd_entry(p);
555 } else {
556 /*
557 * No need to loop; pte's aren't interested in the
558 * individual L1 entries.
559 */
560 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
561 }
ae8f1541
RK
562}
563
4a56c1e4
RK
564static void __init create_36bit_mapping(struct map_desc *md,
565 const struct mem_type *type)
566{
567 unsigned long phys, addr, length, end;
568 pgd_t *pgd;
569
570 addr = md->virtual;
571 phys = (unsigned long)__pfn_to_phys(md->pfn);
572 length = PAGE_ALIGN(md->length);
573
574 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
575 printk(KERN_ERR "MM: CPU does not support supersection "
576 "mapping for 0x%08llx at 0x%08lx\n",
577 __pfn_to_phys((u64)md->pfn), addr);
578 return;
579 }
580
581 /* N.B. ARMv6 supersections are only defined to work with domain 0.
582 * Since domain assignments can in fact be arbitrary, the
583 * 'domain == 0' check below is required to insure that ARMv6
584 * supersections are only allocated for domain 0 regardless
585 * of the actual domain assignments in use.
586 */
587 if (type->domain) {
588 printk(KERN_ERR "MM: invalid domain in supersection "
589 "mapping for 0x%08llx at 0x%08lx\n",
590 __pfn_to_phys((u64)md->pfn), addr);
591 return;
592 }
593
594 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
595 printk(KERN_ERR "MM: cannot create mapping for "
596 "0x%08llx at 0x%08lx invalid alignment\n",
597 __pfn_to_phys((u64)md->pfn), addr);
598 return;
599 }
600
601 /*
602 * Shift bits [35:32] of address into bits [23:20] of PMD
603 * (See ARMv6 spec).
604 */
605 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
606
607 pgd = pgd_offset_k(addr);
608 end = addr + length;
609 do {
610 pmd_t *pmd = pmd_offset(pgd, addr);
611 int i;
612
613 for (i = 0; i < 16; i++)
614 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
615
616 addr += SUPERSECTION_SIZE;
617 phys += SUPERSECTION_SIZE;
618 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
619 } while (addr != end);
620}
621
ae8f1541
RK
622/*
623 * Create the page directory entries and any necessary
624 * page tables for the mapping specified by `md'. We
625 * are able to cope here with varying sizes and address
626 * offsets, and we take full advantage of sections and
627 * supersections.
628 */
a2227120 629static void __init create_mapping(struct map_desc *md)
ae8f1541 630{
24e6c699 631 unsigned long phys, addr, length, end;
d5c98176 632 const struct mem_type *type;
24e6c699 633 pgd_t *pgd;
ae8f1541
RK
634
635 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
636 printk(KERN_WARNING "BUG: not creating mapping for "
637 "0x%08llx at 0x%08lx in user region\n",
638 __pfn_to_phys((u64)md->pfn), md->virtual);
639 return;
640 }
641
642 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
643 md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
644 printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
645 "overlaps vmalloc space\n",
646 __pfn_to_phys((u64)md->pfn), md->virtual);
647 }
648
d5c98176 649 type = &mem_types[md->type];
ae8f1541
RK
650
651 /*
652 * Catch 36-bit addresses
653 */
4a56c1e4
RK
654 if (md->pfn >= 0x100000) {
655 create_36bit_mapping(md, type);
656 return;
ae8f1541
RK
657 }
658
7b9c7b4d 659 addr = md->virtual & PAGE_MASK;
24e6c699 660 phys = (unsigned long)__pfn_to_phys(md->pfn);
7b9c7b4d 661 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
ae8f1541 662
24e6c699 663 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
ae8f1541
RK
664 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
665 "be mapped using pages, ignoring.\n",
24e6c699 666 __pfn_to_phys(md->pfn), addr);
ae8f1541
RK
667 return;
668 }
669
24e6c699
RK
670 pgd = pgd_offset_k(addr);
671 end = addr + length;
672 do {
673 unsigned long next = pgd_addr_end(addr, end);
ae8f1541 674
24e6c699 675 alloc_init_section(pgd, addr, next, phys, type);
ae8f1541 676
24e6c699
RK
677 phys += next - addr;
678 addr = next;
679 } while (pgd++, addr != end);
ae8f1541
RK
680}
681
682/*
683 * Create the architecture specific mappings
684 */
685void __init iotable_init(struct map_desc *io_desc, int nr)
686{
687 int i;
688
689 for (i = 0; i < nr; i++)
690 create_mapping(io_desc + i);
691}
692
79612395 693static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
6c5da7ac
RK
694
695/*
696 * vmalloc=size forces the vmalloc area to be exactly 'size'
697 * bytes. This can be used to increase (or decrease) the vmalloc
698 * area - the default is 128m.
699 */
2b0d8c25 700static int __init early_vmalloc(char *arg)
6c5da7ac 701{
79612395 702 unsigned long vmalloc_reserve = memparse(arg, NULL);
6c5da7ac
RK
703
704 if (vmalloc_reserve < SZ_16M) {
705 vmalloc_reserve = SZ_16M;
706 printk(KERN_WARNING
707 "vmalloc area too small, limiting to %luMB\n",
708 vmalloc_reserve >> 20);
709 }
9210807c
NP
710
711 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
712 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
713 printk(KERN_WARNING
714 "vmalloc area is too big, limiting to %luMB\n",
715 vmalloc_reserve >> 20);
716 }
79612395
RK
717
718 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
2b0d8c25 719 return 0;
6c5da7ac 720}
2b0d8c25 721early_param("vmalloc", early_vmalloc);
6c5da7ac 722
2778f620
RK
723phys_addr_t lowmem_end_addr;
724
4b5f32ce 725static void __init sanity_check_meminfo(void)
60296c71 726{
dde5828f 727 int i, j, highmem = 0;
60296c71 728
2778f620
RK
729 lowmem_end_addr = __pa(vmalloc_min - 1) + 1;
730
4b5f32ce 731 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
a1bbaec0
NP
732 struct membank *bank = &meminfo.bank[j];
733 *bank = meminfo.bank[i];
60296c71 734
a1bbaec0 735#ifdef CONFIG_HIGHMEM
79612395 736 if (__va(bank->start) > vmalloc_min ||
dde5828f
RK
737 __va(bank->start) < (void *)PAGE_OFFSET)
738 highmem = 1;
739
740 bank->highmem = highmem;
741
a1bbaec0
NP
742 /*
743 * Split those memory banks which are partially overlapping
744 * the vmalloc area greatly simplifying things later.
745 */
79612395
RK
746 if (__va(bank->start) < vmalloc_min &&
747 bank->size > vmalloc_min - __va(bank->start)) {
a1bbaec0
NP
748 if (meminfo.nr_banks >= NR_BANKS) {
749 printk(KERN_CRIT "NR_BANKS too low, "
750 "ignoring high memory\n");
751 } else {
752 memmove(bank + 1, bank,
753 (meminfo.nr_banks - i) * sizeof(*bank));
754 meminfo.nr_banks++;
755 i++;
79612395
RK
756 bank[1].size -= vmalloc_min - __va(bank->start);
757 bank[1].start = __pa(vmalloc_min - 1) + 1;
dde5828f 758 bank[1].highmem = highmem = 1;
a1bbaec0
NP
759 j++;
760 }
79612395 761 bank->size = vmalloc_min - __va(bank->start);
a1bbaec0
NP
762 }
763#else
041d785f
RK
764 bank->highmem = highmem;
765
a1bbaec0
NP
766 /*
767 * Check whether this memory bank would entirely overlap
768 * the vmalloc area.
769 */
79612395 770 if (__va(bank->start) >= vmalloc_min ||
f0bba9f9 771 __va(bank->start) < (void *)PAGE_OFFSET) {
a1bbaec0
NP
772 printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
773 "(vmalloc region overlap).\n",
774 bank->start, bank->start + bank->size - 1);
775 continue;
776 }
60296c71 777
a1bbaec0
NP
778 /*
779 * Check whether this memory bank would partially overlap
780 * the vmalloc area.
781 */
79612395 782 if (__va(bank->start + bank->size) > vmalloc_min ||
a1bbaec0 783 __va(bank->start + bank->size) < __va(bank->start)) {
79612395 784 unsigned long newsize = vmalloc_min - __va(bank->start);
a1bbaec0
NP
785 printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
786 "to -%.8lx (vmalloc region overlap).\n",
787 bank->start, bank->start + bank->size - 1,
788 bank->start + newsize - 1);
789 bank->size = newsize;
790 }
791#endif
792 j++;
60296c71 793 }
e616c591
RK
794#ifdef CONFIG_HIGHMEM
795 if (highmem) {
796 const char *reason = NULL;
797
798 if (cache_is_vipt_aliasing()) {
799 /*
800 * Interactions between kmap and other mappings
801 * make highmem support with aliasing VIPT caches
802 * rather difficult.
803 */
804 reason = "with VIPT aliasing cache";
805#ifdef CONFIG_SMP
806 } else if (tlb_ops_need_broadcast()) {
807 /*
808 * kmap_high needs to occasionally flush TLB entries,
809 * however, if the TLB entries need to be broadcast
810 * we may deadlock:
811 * kmap_high(irqs off)->flush_all_zero_pkmaps->
812 * flush_tlb_kernel_range->smp_call_function_many
813 * (must not be called with irqs off)
814 */
815 reason = "without hardware TLB ops broadcasting";
816#endif
817 }
818 if (reason) {
819 printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
820 reason);
821 while (j > 0 && meminfo.bank[j - 1].highmem)
822 j--;
823 }
824 }
825#endif
4b5f32ce 826 meminfo.nr_banks = j;
60296c71
LB
827}
828
4b5f32ce 829static inline void prepare_page_table(void)
d111e8f9
RK
830{
831 unsigned long addr;
832
833 /*
834 * Clear out all the mappings below the kernel image.
835 */
ab4f2ee1 836 for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
d111e8f9
RK
837 pmd_clear(pmd_off_k(addr));
838
839#ifdef CONFIG_XIP_KERNEL
840 /* The XIP kernel is mapped in the module area -- skip over it */
37efe642 841 addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
d111e8f9
RK
842#endif
843 for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
844 pmd_clear(pmd_off_k(addr));
845
846 /*
847 * Clear out all the kernel space mappings, except for the first
848 * memory bank, up to the end of the vmalloc region.
849 */
4b5f32ce 850 for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
d111e8f9
RK
851 addr < VMALLOC_END; addr += PGDIR_SIZE)
852 pmd_clear(pmd_off_k(addr));
853}
854
855/*
2778f620 856 * Reserve the special regions of memory
d111e8f9 857 */
2778f620 858void __init arm_mm_memblock_reserve(void)
d111e8f9 859{
d111e8f9
RK
860 /*
861 * Reserve the page tables. These are already in use,
862 * and can only be in node 0.
863 */
2778f620 864 memblock_reserve(__pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t));
d111e8f9 865
d111e8f9
RK
866#ifdef CONFIG_SA1111
867 /*
868 * Because of the SA1111 DMA bug, we want to preserve our
869 * precious DMA-able memory...
870 */
2778f620 871 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
d111e8f9 872#endif
d111e8f9
RK
873}
874
875/*
876 * Set up device the mappings. Since we clear out the page tables for all
877 * mappings above VMALLOC_END, we will remove any debug device mappings.
878 * This means you have to be careful how you debug this function, or any
879 * called function. This means you can't use any function or debugging
880 * method which may touch any device, otherwise the kernel _will_ crash.
881 */
882static void __init devicemaps_init(struct machine_desc *mdesc)
883{
884 struct map_desc map;
885 unsigned long addr;
886 void *vectors;
887
888 /*
889 * Allocate the vector page early.
890 */
3abe9d33 891 vectors = early_alloc(PAGE_SIZE);
d111e8f9
RK
892
893 for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
894 pmd_clear(pmd_off_k(addr));
895
896 /*
897 * Map the kernel if it is XIP.
898 * It is always first in the modulearea.
899 */
900#ifdef CONFIG_XIP_KERNEL
901 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
ab4f2ee1 902 map.virtual = MODULES_VADDR;
37efe642 903 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
d111e8f9
RK
904 map.type = MT_ROM;
905 create_mapping(&map);
906#endif
907
908 /*
909 * Map the cache flushing regions.
910 */
911#ifdef FLUSH_BASE
912 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
913 map.virtual = FLUSH_BASE;
914 map.length = SZ_1M;
915 map.type = MT_CACHECLEAN;
916 create_mapping(&map);
917#endif
918#ifdef FLUSH_BASE_MINICACHE
919 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
920 map.virtual = FLUSH_BASE_MINICACHE;
921 map.length = SZ_1M;
922 map.type = MT_MINICLEAN;
923 create_mapping(&map);
924#endif
925
926 /*
927 * Create a mapping for the machine vectors at the high-vectors
928 * location (0xffff0000). If we aren't using high-vectors, also
929 * create a mapping at the low-vectors virtual address.
930 */
931 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
932 map.virtual = 0xffff0000;
933 map.length = PAGE_SIZE;
934 map.type = MT_HIGH_VECTORS;
935 create_mapping(&map);
936
937 if (!vectors_high()) {
938 map.virtual = 0;
939 map.type = MT_LOW_VECTORS;
940 create_mapping(&map);
941 }
942
943 /*
944 * Ask the machine support to map in the statically mapped devices.
945 */
946 if (mdesc->map_io)
947 mdesc->map_io();
948
949 /*
950 * Finally flush the caches and tlb to ensure that we're in a
951 * consistent state wrt the writebuffer. This also ensures that
952 * any write-allocated cache lines in the vector page are written
953 * back. After this point, we can start to touch devices again.
954 */
955 local_flush_tlb_all();
956 flush_cache_all();
957}
958
d73cd428
NP
959static void __init kmap_init(void)
960{
961#ifdef CONFIG_HIGHMEM
4bb2e27d
RK
962 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
963 PKMAP_BASE, _PAGE_KERNEL_TABLE);
d73cd428
NP
964#endif
965}
966
a2227120
RK
967static inline void map_memory_bank(struct membank *bank)
968{
969 struct map_desc map;
970
971 map.pfn = bank_pfn_start(bank);
972 map.virtual = __phys_to_virt(bank_phys_start(bank));
973 map.length = bank_phys_size(bank);
974 map.type = MT_MEMORY;
975
976 create_mapping(&map);
977}
978
979static void __init map_lowmem(void)
980{
981 struct meminfo *mi = &meminfo;
982 int i;
983
984 /* Map all the lowmem memory banks. */
985 for (i = 0; i < mi->nr_banks; i++) {
986 struct membank *bank = &mi->bank[i];
987
988 if (!bank->highmem)
989 map_memory_bank(bank);
990 }
991}
992
ceb683d3
RK
993static int __init meminfo_cmp(const void *_a, const void *_b)
994{
995 const struct membank *a = _a, *b = _b;
996 long cmp = bank_pfn_start(a) - bank_pfn_start(b);
997 return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
998}
999
d111e8f9
RK
1000/*
1001 * paging_init() sets up the page tables, initialises the zone memory
1002 * maps, and sets up the zero page, bad page and bad page tables.
1003 */
4b5f32ce 1004void __init paging_init(struct machine_desc *mdesc)
d111e8f9
RK
1005{
1006 void *zero_page;
1007
ceb683d3
RK
1008 sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]), meminfo_cmp, NULL);
1009
d111e8f9 1010 build_mem_type_table();
4b5f32ce
NP
1011 sanity_check_meminfo();
1012 prepare_page_table();
a2227120 1013 map_lowmem();
d111e8f9 1014 devicemaps_init(mdesc);
d73cd428 1015 kmap_init();
d111e8f9
RK
1016
1017 top_pmd = pmd_off_k(0xffff0000);
1018
3abe9d33
RK
1019 /* allocate the zero page. */
1020 zero_page = early_alloc(PAGE_SIZE);
2778f620 1021
8d717a52 1022 bootmem_init();
2778f620 1023
d111e8f9 1024 empty_zero_page = virt_to_page(zero_page);
421fe93c 1025 __flush_dcache_page(NULL, empty_zero_page);
d111e8f9 1026}
ae8f1541
RK
1027
1028/*
1029 * In order to soft-boot, we need to insert a 1:1 mapping in place of
1030 * the user-mode pages. This will then ensure that we have predictable
1031 * results when turning the mmu off
1032 */
1033void setup_mm_for_reboot(char mode)
1034{
1035 unsigned long base_pmdval;
1036 pgd_t *pgd;
1037 int i;
1038
3f2d4f56
MW
1039 /*
1040 * We need to access to user-mode page tables here. For kernel threads
1041 * we don't have any user-mode mappings so we use the context that we
1042 * "borrowed".
1043 */
1044 pgd = current->active_mm->pgd;
ae8f1541
RK
1045
1046 base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
1047 if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
1048 base_pmdval |= PMD_BIT4;
1049
1050 for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
1051 unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
1052 pmd_t *pmd;
1053
1054 pmd = pmd_off(pgd, i << PGDIR_SHIFT);
1055 pmd[0] = __pmd(pmdval);
1056 pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
1057 flush_pmd_entry(pmd);
1058 }
ad3e6c0b
TL
1059
1060 local_flush_tlb_all();
ae8f1541 1061}