]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/arm/mm/mmu.c
ARM: OMAP: Convert to use ->reserve method to reserve boot time memory
[net-next-2.6.git] / arch / arm / mm / mmu.c
CommitLineData
d111e8f9
RK
1/*
2 * linux/arch/arm/mm/mmu.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
ae8f1541 10#include <linux/module.h>
d111e8f9
RK
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/init.h>
14#include <linux/bootmem.h>
15#include <linux/mman.h>
16#include <linux/nodemask.h>
ceb683d3 17#include <linux/sort.h>
d111e8f9 18
0ba8b9b2 19#include <asm/cputype.h>
37efe642 20#include <asm/sections.h>
3f973e22 21#include <asm/cachetype.h>
d111e8f9
RK
22#include <asm/setup.h>
23#include <asm/sizes.h>
e616c591 24#include <asm/smp_plat.h>
d111e8f9 25#include <asm/tlb.h>
d73cd428 26#include <asm/highmem.h>
d111e8f9
RK
27
28#include <asm/mach/arch.h>
29#include <asm/mach/map.h>
30
31#include "mm.h"
32
33DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
34
d111e8f9
RK
35/*
36 * empty_zero_page is a special page that is used for
37 * zero-initialized data and COW.
38 */
39struct page *empty_zero_page;
3653f3ab 40EXPORT_SYMBOL(empty_zero_page);
d111e8f9
RK
41
42/*
43 * The pmd table for the upper-most set of pages.
44 */
45pmd_t *top_pmd;
46
ae8f1541
RK
47#define CPOLICY_UNCACHED 0
48#define CPOLICY_BUFFERED 1
49#define CPOLICY_WRITETHROUGH 2
50#define CPOLICY_WRITEBACK 3
51#define CPOLICY_WRITEALLOC 4
52
53static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
54static unsigned int ecc_mask __initdata = 0;
44b18693 55pgprot_t pgprot_user;
ae8f1541
RK
56pgprot_t pgprot_kernel;
57
44b18693 58EXPORT_SYMBOL(pgprot_user);
ae8f1541
RK
59EXPORT_SYMBOL(pgprot_kernel);
60
61struct cachepolicy {
62 const char policy[16];
63 unsigned int cr_mask;
64 unsigned int pmd;
65 unsigned int pte;
66};
67
68static struct cachepolicy cache_policies[] __initdata = {
69 {
70 .policy = "uncached",
71 .cr_mask = CR_W|CR_C,
72 .pmd = PMD_SECT_UNCACHED,
bb30f36f 73 .pte = L_PTE_MT_UNCACHED,
ae8f1541
RK
74 }, {
75 .policy = "buffered",
76 .cr_mask = CR_C,
77 .pmd = PMD_SECT_BUFFERED,
bb30f36f 78 .pte = L_PTE_MT_BUFFERABLE,
ae8f1541
RK
79 }, {
80 .policy = "writethrough",
81 .cr_mask = 0,
82 .pmd = PMD_SECT_WT,
bb30f36f 83 .pte = L_PTE_MT_WRITETHROUGH,
ae8f1541
RK
84 }, {
85 .policy = "writeback",
86 .cr_mask = 0,
87 .pmd = PMD_SECT_WB,
bb30f36f 88 .pte = L_PTE_MT_WRITEBACK,
ae8f1541
RK
89 }, {
90 .policy = "writealloc",
91 .cr_mask = 0,
92 .pmd = PMD_SECT_WBWA,
bb30f36f 93 .pte = L_PTE_MT_WRITEALLOC,
ae8f1541
RK
94 }
95};
96
97/*
6cbdc8c5 98 * These are useful for identifying cache coherency
ae8f1541
RK
99 * problems by allowing the cache or the cache and
100 * writebuffer to be turned off. (Note: the write
101 * buffer should not be on and the cache off).
102 */
2b0d8c25 103static int __init early_cachepolicy(char *p)
ae8f1541
RK
104{
105 int i;
106
107 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
108 int len = strlen(cache_policies[i].policy);
109
2b0d8c25 110 if (memcmp(p, cache_policies[i].policy, len) == 0) {
ae8f1541
RK
111 cachepolicy = i;
112 cr_alignment &= ~cache_policies[i].cr_mask;
113 cr_no_alignment &= ~cache_policies[i].cr_mask;
ae8f1541
RK
114 break;
115 }
116 }
117 if (i == ARRAY_SIZE(cache_policies))
118 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
4b46d641
RK
119 /*
120 * This restriction is partly to do with the way we boot; it is
121 * unpredictable to have memory mapped using two different sets of
122 * memory attributes (shared, type, and cache attribs). We can not
123 * change these attributes once the initial assembly has setup the
124 * page tables.
125 */
11179d8c
CM
126 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
127 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
128 cachepolicy = CPOLICY_WRITEBACK;
129 }
ae8f1541
RK
130 flush_cache_all();
131 set_cr(cr_alignment);
2b0d8c25 132 return 0;
ae8f1541 133}
2b0d8c25 134early_param("cachepolicy", early_cachepolicy);
ae8f1541 135
2b0d8c25 136static int __init early_nocache(char *__unused)
ae8f1541
RK
137{
138 char *p = "buffered";
139 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
140 early_cachepolicy(p);
141 return 0;
ae8f1541 142}
2b0d8c25 143early_param("nocache", early_nocache);
ae8f1541 144
2b0d8c25 145static int __init early_nowrite(char *__unused)
ae8f1541
RK
146{
147 char *p = "uncached";
148 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
149 early_cachepolicy(p);
150 return 0;
ae8f1541 151}
2b0d8c25 152early_param("nowb", early_nowrite);
ae8f1541 153
2b0d8c25 154static int __init early_ecc(char *p)
ae8f1541 155{
2b0d8c25 156 if (memcmp(p, "on", 2) == 0)
ae8f1541 157 ecc_mask = PMD_PROTECTION;
2b0d8c25 158 else if (memcmp(p, "off", 3) == 0)
ae8f1541 159 ecc_mask = 0;
2b0d8c25 160 return 0;
ae8f1541 161}
2b0d8c25 162early_param("ecc", early_ecc);
ae8f1541
RK
163
164static int __init noalign_setup(char *__unused)
165{
166 cr_alignment &= ~CR_A;
167 cr_no_alignment &= ~CR_A;
168 set_cr(cr_alignment);
169 return 1;
170}
171__setup("noalign", noalign_setup);
172
255d1f86
RK
173#ifndef CONFIG_SMP
174void adjust_cr(unsigned long mask, unsigned long set)
175{
176 unsigned long flags;
177
178 mask &= ~CR_A;
179
180 set &= mask;
181
182 local_irq_save(flags);
183
184 cr_no_alignment = (cr_no_alignment & ~mask) | set;
185 cr_alignment = (cr_alignment & ~mask) | set;
186
187 set_cr((get_cr() & ~mask) | set);
188
189 local_irq_restore(flags);
190}
191#endif
192
0af92bef 193#define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
b1cce6b1 194#define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
0af92bef 195
b29e9f5e 196static struct mem_type mem_types[] = {
0af92bef 197 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
bb30f36f
RK
198 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
199 L_PTE_SHARED,
0af92bef 200 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 201 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
0af92bef
RK
202 .domain = DOMAIN_IO,
203 },
204 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
bb30f36f 205 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
0af92bef 206 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 207 .prot_sect = PROT_SECT_DEVICE,
0af92bef
RK
208 .domain = DOMAIN_IO,
209 },
210 [MT_DEVICE_CACHED] = { /* ioremap_cached */
bb30f36f 211 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
0af92bef
RK
212 .prot_l1 = PMD_TYPE_TABLE,
213 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
214 .domain = DOMAIN_IO,
215 },
1ad77a87 216 [MT_DEVICE_WC] = { /* ioremap_wc */
bb30f36f 217 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
0af92bef 218 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 219 .prot_sect = PROT_SECT_DEVICE,
0af92bef 220 .domain = DOMAIN_IO,
ae8f1541 221 },
ebb4c658
RK
222 [MT_UNCACHED] = {
223 .prot_pte = PROT_PTE_DEVICE,
224 .prot_l1 = PMD_TYPE_TABLE,
225 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
226 .domain = DOMAIN_IO,
227 },
ae8f1541 228 [MT_CACHECLEAN] = {
9ef79635 229 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
ae8f1541
RK
230 .domain = DOMAIN_KERNEL,
231 },
232 [MT_MINICLEAN] = {
9ef79635 233 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
ae8f1541
RK
234 .domain = DOMAIN_KERNEL,
235 },
236 [MT_LOW_VECTORS] = {
237 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
238 L_PTE_EXEC,
239 .prot_l1 = PMD_TYPE_TABLE,
240 .domain = DOMAIN_USER,
241 },
242 [MT_HIGH_VECTORS] = {
243 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
244 L_PTE_USER | L_PTE_EXEC,
245 .prot_l1 = PMD_TYPE_TABLE,
246 .domain = DOMAIN_USER,
247 },
248 [MT_MEMORY] = {
9ef79635 249 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
ae8f1541
RK
250 .domain = DOMAIN_KERNEL,
251 },
252 [MT_ROM] = {
9ef79635 253 .prot_sect = PMD_TYPE_SECT,
ae8f1541
RK
254 .domain = DOMAIN_KERNEL,
255 },
e4707dd3
PW
256 [MT_MEMORY_NONCACHED] = {
257 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
258 .domain = DOMAIN_KERNEL,
259 },
ae8f1541
RK
260};
261
b29e9f5e
RK
262const struct mem_type *get_mem_type(unsigned int type)
263{
264 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
265}
69d3a84a 266EXPORT_SYMBOL(get_mem_type);
b29e9f5e 267
ae8f1541
RK
268/*
269 * Adjust the PMD section entries according to the CPU in use.
270 */
271static void __init build_mem_type_table(void)
272{
273 struct cachepolicy *cp;
274 unsigned int cr = get_cr();
bb30f36f 275 unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
ae8f1541
RK
276 int cpu_arch = cpu_architecture();
277 int i;
278
11179d8c 279 if (cpu_arch < CPU_ARCH_ARMv6) {
ae8f1541 280#if defined(CONFIG_CPU_DCACHE_DISABLE)
11179d8c
CM
281 if (cachepolicy > CPOLICY_BUFFERED)
282 cachepolicy = CPOLICY_BUFFERED;
ae8f1541 283#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
11179d8c
CM
284 if (cachepolicy > CPOLICY_WRITETHROUGH)
285 cachepolicy = CPOLICY_WRITETHROUGH;
ae8f1541 286#endif
11179d8c 287 }
ae8f1541
RK
288 if (cpu_arch < CPU_ARCH_ARMv5) {
289 if (cachepolicy >= CPOLICY_WRITEALLOC)
290 cachepolicy = CPOLICY_WRITEBACK;
291 ecc_mask = 0;
292 }
bb30f36f
RK
293#ifdef CONFIG_SMP
294 cachepolicy = CPOLICY_WRITEALLOC;
295#endif
ae8f1541 296
1ad77a87 297 /*
b1cce6b1
RK
298 * Strip out features not present on earlier architectures.
299 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
300 * without extended page tables don't have the 'Shared' bit.
1ad77a87 301 */
b1cce6b1
RK
302 if (cpu_arch < CPU_ARCH_ARMv5)
303 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
304 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
305 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
306 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
307 mem_types[i].prot_sect &= ~PMD_SECT_S;
ae8f1541
RK
308
309 /*
b1cce6b1
RK
310 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
311 * "update-able on write" bit on ARM610). However, Xscale and
312 * Xscale3 require this bit to be cleared.
ae8f1541 313 */
b1cce6b1 314 if (cpu_is_xscale() || cpu_is_xsc3()) {
9ef79635 315 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541 316 mem_types[i].prot_sect &= ~PMD_BIT4;
9ef79635
RK
317 mem_types[i].prot_l1 &= ~PMD_BIT4;
318 }
319 } else if (cpu_arch < CPU_ARCH_ARMv6) {
320 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541
RK
321 if (mem_types[i].prot_l1)
322 mem_types[i].prot_l1 |= PMD_BIT4;
9ef79635
RK
323 if (mem_types[i].prot_sect)
324 mem_types[i].prot_sect |= PMD_BIT4;
325 }
326 }
ae8f1541 327
b1cce6b1
RK
328 /*
329 * Mark the device areas according to the CPU/architecture.
330 */
331 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
332 if (!cpu_is_xsc3()) {
333 /*
334 * Mark device regions on ARMv6+ as execute-never
335 * to prevent speculative instruction fetches.
336 */
337 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
338 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
339 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
340 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
341 }
342 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
343 /*
344 * For ARMv7 with TEX remapping,
345 * - shared device is SXCB=1100
346 * - nonshared device is SXCB=0100
347 * - write combine device mem is SXCB=0001
348 * (Uncached Normal memory)
349 */
350 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
351 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
352 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
353 } else if (cpu_is_xsc3()) {
354 /*
355 * For Xscale3,
356 * - shared device is TEXCB=00101
357 * - nonshared device is TEXCB=01000
358 * - write combine device mem is TEXCB=00100
359 * (Inner/Outer Uncacheable in xsc3 parlance)
360 */
361 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
362 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
363 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
364 } else {
365 /*
366 * For ARMv6 and ARMv7 without TEX remapping,
367 * - shared device is TEXCB=00001
368 * - nonshared device is TEXCB=01000
369 * - write combine device mem is TEXCB=00100
370 * (Uncached Normal in ARMv6 parlance).
371 */
372 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
373 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
374 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
375 }
376 } else {
377 /*
378 * On others, write combining is "Uncached/Buffered"
379 */
380 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
381 }
382
383 /*
384 * Now deal with the memory-type mappings
385 */
ae8f1541 386 cp = &cache_policies[cachepolicy];
bb30f36f
RK
387 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
388
389#ifndef CONFIG_SMP
390 /*
391 * Only use write-through for non-SMP systems
392 */
393 if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
394 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
395#endif
ae8f1541
RK
396
397 /*
398 * Enable CPU-specific coherency if supported.
399 * (Only available on XSC3 at the moment.)
400 */
b1cce6b1
RK
401 if (arch_is_coherent() && cpu_is_xsc3())
402 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
ae8f1541
RK
403
404 /*
405 * ARMv6 and above have extended page tables.
406 */
407 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
ae8f1541
RK
408 /*
409 * Mark cache clean areas and XIP ROM read only
410 * from SVC mode and no access from userspace.
411 */
412 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
413 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
414 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
415
ae8f1541
RK
416#ifdef CONFIG_SMP
417 /*
418 * Mark memory with the "shared" attribute for SMP systems
419 */
420 user_pgprot |= L_PTE_SHARED;
421 kern_pgprot |= L_PTE_SHARED;
bb30f36f 422 vecs_pgprot |= L_PTE_SHARED;
85b3cce8
RK
423 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
424 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
425 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
426 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
ae8f1541 427 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
e4707dd3 428 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
ae8f1541
RK
429#endif
430 }
431
e4707dd3
PW
432 /*
433 * Non-cacheable Normal - intended for memory areas that must
434 * not cause dirty cache line writebacks when used
435 */
436 if (cpu_arch >= CPU_ARCH_ARMv6) {
437 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
438 /* Non-cacheable Normal is XCB = 001 */
439 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
440 PMD_SECT_BUFFERED;
441 } else {
442 /* For both ARMv6 and non-TEX-remapping ARMv7 */
443 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
444 PMD_SECT_TEX(1);
445 }
446 } else {
447 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
448 }
449
ae8f1541
RK
450 for (i = 0; i < 16; i++) {
451 unsigned long v = pgprot_val(protection_map[i]);
bb30f36f 452 protection_map[i] = __pgprot(v | user_pgprot);
ae8f1541
RK
453 }
454
bb30f36f
RK
455 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
456 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
ae8f1541 457
44b18693 458 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
ae8f1541 459 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
6dc995a3 460 L_PTE_DIRTY | L_PTE_WRITE | kern_pgprot);
ae8f1541
RK
461
462 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
463 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
464 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
465 mem_types[MT_ROM].prot_sect |= cp->pmd;
466
467 switch (cp->pmd) {
468 case PMD_SECT_WT:
469 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
470 break;
471 case PMD_SECT_WB:
472 case PMD_SECT_WBWA:
473 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
474 break;
475 }
476 printk("Memory policy: ECC %sabled, Data cache %s\n",
477 ecc_mask ? "en" : "dis", cp->policy);
2497f0a8
RK
478
479 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
480 struct mem_type *t = &mem_types[i];
481 if (t->prot_l1)
482 t->prot_l1 |= PMD_DOMAIN(t->domain);
483 if (t->prot_sect)
484 t->prot_sect |= PMD_DOMAIN(t->domain);
485 }
ae8f1541
RK
486}
487
488#define vectors_base() (vectors_high() ? 0xffff0000 : 0)
489
24e6c699
RK
490static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
491 unsigned long end, unsigned long pfn,
492 const struct mem_type *type)
ae8f1541 493{
24e6c699 494 pte_t *pte;
ae8f1541 495
24e6c699
RK
496 if (pmd_none(*pmd)) {
497 pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
498 __pmd_populate(pmd, __pa(pte) | type->prot_l1);
499 }
ae8f1541 500
24e6c699
RK
501 pte = pte_offset_kernel(pmd, addr);
502 do {
40d192b6 503 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
24e6c699
RK
504 pfn++;
505 } while (pte++, addr += PAGE_SIZE, addr != end);
ae8f1541
RK
506}
507
24e6c699
RK
508static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
509 unsigned long end, unsigned long phys,
510 const struct mem_type *type)
ae8f1541 511{
24e6c699 512 pmd_t *pmd = pmd_offset(pgd, addr);
ae8f1541 513
24e6c699
RK
514 /*
515 * Try a section mapping - end, addr and phys must all be aligned
516 * to a section boundary. Note that PMDs refer to the individual
517 * L1 entries, whereas PGDs refer to a group of L1 entries making
518 * up one logical pointer to an L2 table.
519 */
520 if (((addr | end | phys) & ~SECTION_MASK) == 0) {
521 pmd_t *p = pmd;
ae8f1541 522
24e6c699
RK
523 if (addr & SECTION_SIZE)
524 pmd++;
525
526 do {
527 *pmd = __pmd(phys | type->prot_sect);
528 phys += SECTION_SIZE;
529 } while (pmd++, addr += SECTION_SIZE, addr != end);
ae8f1541 530
24e6c699
RK
531 flush_pmd_entry(p);
532 } else {
533 /*
534 * No need to loop; pte's aren't interested in the
535 * individual L1 entries.
536 */
537 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
538 }
ae8f1541
RK
539}
540
4a56c1e4
RK
541static void __init create_36bit_mapping(struct map_desc *md,
542 const struct mem_type *type)
543{
544 unsigned long phys, addr, length, end;
545 pgd_t *pgd;
546
547 addr = md->virtual;
548 phys = (unsigned long)__pfn_to_phys(md->pfn);
549 length = PAGE_ALIGN(md->length);
550
551 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
552 printk(KERN_ERR "MM: CPU does not support supersection "
553 "mapping for 0x%08llx at 0x%08lx\n",
554 __pfn_to_phys((u64)md->pfn), addr);
555 return;
556 }
557
558 /* N.B. ARMv6 supersections are only defined to work with domain 0.
559 * Since domain assignments can in fact be arbitrary, the
560 * 'domain == 0' check below is required to insure that ARMv6
561 * supersections are only allocated for domain 0 regardless
562 * of the actual domain assignments in use.
563 */
564 if (type->domain) {
565 printk(KERN_ERR "MM: invalid domain in supersection "
566 "mapping for 0x%08llx at 0x%08lx\n",
567 __pfn_to_phys((u64)md->pfn), addr);
568 return;
569 }
570
571 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
572 printk(KERN_ERR "MM: cannot create mapping for "
573 "0x%08llx at 0x%08lx invalid alignment\n",
574 __pfn_to_phys((u64)md->pfn), addr);
575 return;
576 }
577
578 /*
579 * Shift bits [35:32] of address into bits [23:20] of PMD
580 * (See ARMv6 spec).
581 */
582 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
583
584 pgd = pgd_offset_k(addr);
585 end = addr + length;
586 do {
587 pmd_t *pmd = pmd_offset(pgd, addr);
588 int i;
589
590 for (i = 0; i < 16; i++)
591 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
592
593 addr += SUPERSECTION_SIZE;
594 phys += SUPERSECTION_SIZE;
595 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
596 } while (addr != end);
597}
598
ae8f1541
RK
599/*
600 * Create the page directory entries and any necessary
601 * page tables for the mapping specified by `md'. We
602 * are able to cope here with varying sizes and address
603 * offsets, and we take full advantage of sections and
604 * supersections.
605 */
a2227120 606static void __init create_mapping(struct map_desc *md)
ae8f1541 607{
24e6c699 608 unsigned long phys, addr, length, end;
d5c98176 609 const struct mem_type *type;
24e6c699 610 pgd_t *pgd;
ae8f1541
RK
611
612 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
613 printk(KERN_WARNING "BUG: not creating mapping for "
614 "0x%08llx at 0x%08lx in user region\n",
615 __pfn_to_phys((u64)md->pfn), md->virtual);
616 return;
617 }
618
619 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
620 md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
621 printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
622 "overlaps vmalloc space\n",
623 __pfn_to_phys((u64)md->pfn), md->virtual);
624 }
625
d5c98176 626 type = &mem_types[md->type];
ae8f1541
RK
627
628 /*
629 * Catch 36-bit addresses
630 */
4a56c1e4
RK
631 if (md->pfn >= 0x100000) {
632 create_36bit_mapping(md, type);
633 return;
ae8f1541
RK
634 }
635
7b9c7b4d 636 addr = md->virtual & PAGE_MASK;
24e6c699 637 phys = (unsigned long)__pfn_to_phys(md->pfn);
7b9c7b4d 638 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
ae8f1541 639
24e6c699 640 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
ae8f1541
RK
641 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
642 "be mapped using pages, ignoring.\n",
24e6c699 643 __pfn_to_phys(md->pfn), addr);
ae8f1541
RK
644 return;
645 }
646
24e6c699
RK
647 pgd = pgd_offset_k(addr);
648 end = addr + length;
649 do {
650 unsigned long next = pgd_addr_end(addr, end);
ae8f1541 651
24e6c699 652 alloc_init_section(pgd, addr, next, phys, type);
ae8f1541 653
24e6c699
RK
654 phys += next - addr;
655 addr = next;
656 } while (pgd++, addr != end);
ae8f1541
RK
657}
658
659/*
660 * Create the architecture specific mappings
661 */
662void __init iotable_init(struct map_desc *io_desc, int nr)
663{
664 int i;
665
666 for (i = 0; i < nr; i++)
667 create_mapping(io_desc + i);
668}
669
79612395 670static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
6c5da7ac
RK
671
672/*
673 * vmalloc=size forces the vmalloc area to be exactly 'size'
674 * bytes. This can be used to increase (or decrease) the vmalloc
675 * area - the default is 128m.
676 */
2b0d8c25 677static int __init early_vmalloc(char *arg)
6c5da7ac 678{
79612395 679 unsigned long vmalloc_reserve = memparse(arg, NULL);
6c5da7ac
RK
680
681 if (vmalloc_reserve < SZ_16M) {
682 vmalloc_reserve = SZ_16M;
683 printk(KERN_WARNING
684 "vmalloc area too small, limiting to %luMB\n",
685 vmalloc_reserve >> 20);
686 }
9210807c
NP
687
688 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
689 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
690 printk(KERN_WARNING
691 "vmalloc area is too big, limiting to %luMB\n",
692 vmalloc_reserve >> 20);
693 }
79612395
RK
694
695 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
2b0d8c25 696 return 0;
6c5da7ac 697}
2b0d8c25 698early_param("vmalloc", early_vmalloc);
6c5da7ac 699
4b5f32ce 700static void __init sanity_check_meminfo(void)
60296c71 701{
dde5828f 702 int i, j, highmem = 0;
60296c71 703
4b5f32ce 704 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
a1bbaec0
NP
705 struct membank *bank = &meminfo.bank[j];
706 *bank = meminfo.bank[i];
60296c71 707
a1bbaec0 708#ifdef CONFIG_HIGHMEM
79612395 709 if (__va(bank->start) > vmalloc_min ||
dde5828f
RK
710 __va(bank->start) < (void *)PAGE_OFFSET)
711 highmem = 1;
712
713 bank->highmem = highmem;
714
a1bbaec0
NP
715 /*
716 * Split those memory banks which are partially overlapping
717 * the vmalloc area greatly simplifying things later.
718 */
79612395
RK
719 if (__va(bank->start) < vmalloc_min &&
720 bank->size > vmalloc_min - __va(bank->start)) {
a1bbaec0
NP
721 if (meminfo.nr_banks >= NR_BANKS) {
722 printk(KERN_CRIT "NR_BANKS too low, "
723 "ignoring high memory\n");
724 } else {
725 memmove(bank + 1, bank,
726 (meminfo.nr_banks - i) * sizeof(*bank));
727 meminfo.nr_banks++;
728 i++;
79612395
RK
729 bank[1].size -= vmalloc_min - __va(bank->start);
730 bank[1].start = __pa(vmalloc_min - 1) + 1;
dde5828f 731 bank[1].highmem = highmem = 1;
a1bbaec0
NP
732 j++;
733 }
79612395 734 bank->size = vmalloc_min - __va(bank->start);
a1bbaec0
NP
735 }
736#else
041d785f
RK
737 bank->highmem = highmem;
738
a1bbaec0
NP
739 /*
740 * Check whether this memory bank would entirely overlap
741 * the vmalloc area.
742 */
79612395 743 if (__va(bank->start) >= vmalloc_min ||
f0bba9f9 744 __va(bank->start) < (void *)PAGE_OFFSET) {
a1bbaec0
NP
745 printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
746 "(vmalloc region overlap).\n",
747 bank->start, bank->start + bank->size - 1);
748 continue;
749 }
60296c71 750
a1bbaec0
NP
751 /*
752 * Check whether this memory bank would partially overlap
753 * the vmalloc area.
754 */
79612395 755 if (__va(bank->start + bank->size) > vmalloc_min ||
a1bbaec0 756 __va(bank->start + bank->size) < __va(bank->start)) {
79612395 757 unsigned long newsize = vmalloc_min - __va(bank->start);
a1bbaec0
NP
758 printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
759 "to -%.8lx (vmalloc region overlap).\n",
760 bank->start, bank->start + bank->size - 1,
761 bank->start + newsize - 1);
762 bank->size = newsize;
763 }
764#endif
765 j++;
60296c71 766 }
e616c591
RK
767#ifdef CONFIG_HIGHMEM
768 if (highmem) {
769 const char *reason = NULL;
770
771 if (cache_is_vipt_aliasing()) {
772 /*
773 * Interactions between kmap and other mappings
774 * make highmem support with aliasing VIPT caches
775 * rather difficult.
776 */
777 reason = "with VIPT aliasing cache";
778#ifdef CONFIG_SMP
779 } else if (tlb_ops_need_broadcast()) {
780 /*
781 * kmap_high needs to occasionally flush TLB entries,
782 * however, if the TLB entries need to be broadcast
783 * we may deadlock:
784 * kmap_high(irqs off)->flush_all_zero_pkmaps->
785 * flush_tlb_kernel_range->smp_call_function_many
786 * (must not be called with irqs off)
787 */
788 reason = "without hardware TLB ops broadcasting";
789#endif
790 }
791 if (reason) {
792 printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
793 reason);
794 while (j > 0 && meminfo.bank[j - 1].highmem)
795 j--;
796 }
797 }
798#endif
4b5f32ce 799 meminfo.nr_banks = j;
60296c71
LB
800}
801
4b5f32ce 802static inline void prepare_page_table(void)
d111e8f9
RK
803{
804 unsigned long addr;
805
806 /*
807 * Clear out all the mappings below the kernel image.
808 */
ab4f2ee1 809 for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
d111e8f9
RK
810 pmd_clear(pmd_off_k(addr));
811
812#ifdef CONFIG_XIP_KERNEL
813 /* The XIP kernel is mapped in the module area -- skip over it */
37efe642 814 addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
d111e8f9
RK
815#endif
816 for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
817 pmd_clear(pmd_off_k(addr));
818
819 /*
820 * Clear out all the kernel space mappings, except for the first
821 * memory bank, up to the end of the vmalloc region.
822 */
4b5f32ce 823 for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
d111e8f9
RK
824 addr < VMALLOC_END; addr += PGDIR_SIZE)
825 pmd_clear(pmd_off_k(addr));
826}
827
828/*
be370302 829 * Reserve the various regions
d111e8f9 830 */
be370302 831void __init reserve_special_regions(void)
d111e8f9 832{
d111e8f9
RK
833 /*
834 * Register the kernel text and data with bootmem.
835 * Note that this can only be in node 0.
836 */
837#ifdef CONFIG_XIP_KERNEL
be370302 838 reserve_bootmem(__pa(_data), _end - _data, BOOTMEM_DEFAULT);
d111e8f9 839#else
be370302 840 reserve_bootmem(__pa(_stext), _end - _stext, BOOTMEM_DEFAULT);
d111e8f9
RK
841#endif
842
843 /*
844 * Reserve the page tables. These are already in use,
845 * and can only be in node 0.
846 */
be370302
RK
847 reserve_bootmem(__pa(swapper_pg_dir),
848 PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
d111e8f9 849
d111e8f9
RK
850#ifdef CONFIG_SA1111
851 /*
852 * Because of the SA1111 DMA bug, we want to preserve our
853 * precious DMA-able memory...
854 */
98c672cf
RK
855 reserve_bootmem(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET,
856 BOOTMEM_DEFAULT);
d111e8f9 857#endif
d111e8f9
RK
858}
859
860/*
861 * Set up device the mappings. Since we clear out the page tables for all
862 * mappings above VMALLOC_END, we will remove any debug device mappings.
863 * This means you have to be careful how you debug this function, or any
864 * called function. This means you can't use any function or debugging
865 * method which may touch any device, otherwise the kernel _will_ crash.
866 */
867static void __init devicemaps_init(struct machine_desc *mdesc)
868{
869 struct map_desc map;
870 unsigned long addr;
871 void *vectors;
872
873 /*
874 * Allocate the vector page early.
875 */
876 vectors = alloc_bootmem_low_pages(PAGE_SIZE);
d111e8f9
RK
877
878 for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
879 pmd_clear(pmd_off_k(addr));
880
881 /*
882 * Map the kernel if it is XIP.
883 * It is always first in the modulearea.
884 */
885#ifdef CONFIG_XIP_KERNEL
886 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
ab4f2ee1 887 map.virtual = MODULES_VADDR;
37efe642 888 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
d111e8f9
RK
889 map.type = MT_ROM;
890 create_mapping(&map);
891#endif
892
893 /*
894 * Map the cache flushing regions.
895 */
896#ifdef FLUSH_BASE
897 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
898 map.virtual = FLUSH_BASE;
899 map.length = SZ_1M;
900 map.type = MT_CACHECLEAN;
901 create_mapping(&map);
902#endif
903#ifdef FLUSH_BASE_MINICACHE
904 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
905 map.virtual = FLUSH_BASE_MINICACHE;
906 map.length = SZ_1M;
907 map.type = MT_MINICLEAN;
908 create_mapping(&map);
909#endif
910
911 /*
912 * Create a mapping for the machine vectors at the high-vectors
913 * location (0xffff0000). If we aren't using high-vectors, also
914 * create a mapping at the low-vectors virtual address.
915 */
916 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
917 map.virtual = 0xffff0000;
918 map.length = PAGE_SIZE;
919 map.type = MT_HIGH_VECTORS;
920 create_mapping(&map);
921
922 if (!vectors_high()) {
923 map.virtual = 0;
924 map.type = MT_LOW_VECTORS;
925 create_mapping(&map);
926 }
927
928 /*
929 * Ask the machine support to map in the statically mapped devices.
930 */
931 if (mdesc->map_io)
932 mdesc->map_io();
933
934 /*
935 * Finally flush the caches and tlb to ensure that we're in a
936 * consistent state wrt the writebuffer. This also ensures that
937 * any write-allocated cache lines in the vector page are written
938 * back. After this point, we can start to touch devices again.
939 */
940 local_flush_tlb_all();
941 flush_cache_all();
942}
943
d73cd428
NP
944static void __init kmap_init(void)
945{
946#ifdef CONFIG_HIGHMEM
947 pmd_t *pmd = pmd_off_k(PKMAP_BASE);
948 pte_t *pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
949 BUG_ON(!pmd_none(*pmd) || !pte);
950 __pmd_populate(pmd, __pa(pte) | _PAGE_KERNEL_TABLE);
951 pkmap_page_table = pte + PTRS_PER_PTE;
952#endif
953}
954
a2227120
RK
955static inline void map_memory_bank(struct membank *bank)
956{
957 struct map_desc map;
958
959 map.pfn = bank_pfn_start(bank);
960 map.virtual = __phys_to_virt(bank_phys_start(bank));
961 map.length = bank_phys_size(bank);
962 map.type = MT_MEMORY;
963
964 create_mapping(&map);
965}
966
967static void __init map_lowmem(void)
968{
969 struct meminfo *mi = &meminfo;
970 int i;
971
972 /* Map all the lowmem memory banks. */
973 for (i = 0; i < mi->nr_banks; i++) {
974 struct membank *bank = &mi->bank[i];
975
976 if (!bank->highmem)
977 map_memory_bank(bank);
978 }
979}
980
ceb683d3
RK
981static int __init meminfo_cmp(const void *_a, const void *_b)
982{
983 const struct membank *a = _a, *b = _b;
984 long cmp = bank_pfn_start(a) - bank_pfn_start(b);
985 return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
986}
987
d111e8f9
RK
988/*
989 * paging_init() sets up the page tables, initialises the zone memory
990 * maps, and sets up the zero page, bad page and bad page tables.
991 */
4b5f32ce 992void __init paging_init(struct machine_desc *mdesc)
d111e8f9
RK
993{
994 void *zero_page;
995
ceb683d3
RK
996 sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]), meminfo_cmp, NULL);
997
d111e8f9 998 build_mem_type_table();
4b5f32ce
NP
999 sanity_check_meminfo();
1000 prepare_page_table();
a2227120 1001 map_lowmem();
98c672cf 1002 bootmem_init(mdesc);
d111e8f9 1003 devicemaps_init(mdesc);
d73cd428 1004 kmap_init();
d111e8f9
RK
1005
1006 top_pmd = pmd_off_k(0xffff0000);
1007
1008 /*
6ce1b871
JL
1009 * allocate the zero page. Note that this always succeeds and
1010 * returns a zeroed result.
d111e8f9
RK
1011 */
1012 zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
d111e8f9 1013 empty_zero_page = virt_to_page(zero_page);
421fe93c 1014 __flush_dcache_page(NULL, empty_zero_page);
d111e8f9 1015}
ae8f1541
RK
1016
1017/*
1018 * In order to soft-boot, we need to insert a 1:1 mapping in place of
1019 * the user-mode pages. This will then ensure that we have predictable
1020 * results when turning the mmu off
1021 */
1022void setup_mm_for_reboot(char mode)
1023{
1024 unsigned long base_pmdval;
1025 pgd_t *pgd;
1026 int i;
1027
3f2d4f56
MW
1028 /*
1029 * We need to access to user-mode page tables here. For kernel threads
1030 * we don't have any user-mode mappings so we use the context that we
1031 * "borrowed".
1032 */
1033 pgd = current->active_mm->pgd;
ae8f1541
RK
1034
1035 base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
1036 if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
1037 base_pmdval |= PMD_BIT4;
1038
1039 for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
1040 unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
1041 pmd_t *pmd;
1042
1043 pmd = pmd_off(pgd, i << PGDIR_SHIFT);
1044 pmd[0] = __pmd(pmdval);
1045 pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
1046 flush_pmd_entry(pmd);
1047 }
ad3e6c0b
TL
1048
1049 local_flush_tlb_all();
ae8f1541 1050}