]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/arm/mm/dma-mapping.c
Merge branch 'fix/asoc' into for-linus
[net-next-2.6.git] / arch / arm / mm / dma-mapping.c
CommitLineData
1da177e4 1/*
0ddbccd1 2 * linux/arch/arm/mm/dma-mapping.c
1da177e4
LT
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12#include <linux/module.h>
13#include <linux/mm.h>
5a0e3ad6 14#include <linux/gfp.h>
1da177e4
LT
15#include <linux/errno.h>
16#include <linux/list.h>
17#include <linux/init.h>
18#include <linux/device.h>
19#include <linux/dma-mapping.h>
20
23759dc6 21#include <asm/memory.h>
43377453 22#include <asm/highmem.h>
1da177e4 23#include <asm/cacheflush.h>
1da177e4 24#include <asm/tlbflush.h>
37134cd5
KH
25#include <asm/sizes.h>
26
ab6494f0
CM
27static u64 get_coherent_dma_mask(struct device *dev)
28{
29 u64 mask = ISA_DMA_THRESHOLD;
30
31 if (dev) {
32 mask = dev->coherent_dma_mask;
33
34 /*
35 * Sanity check the DMA mask - it must be non-zero, and
36 * must be able to be satisfied by a DMA allocation.
37 */
38 if (mask == 0) {
39 dev_warn(dev, "coherent DMA mask is unset\n");
40 return 0;
41 }
42
43 if ((~mask) & ISA_DMA_THRESHOLD) {
44 dev_warn(dev, "coherent DMA mask %#llx is smaller "
45 "than system GFP_DMA mask %#llx\n",
46 mask, (unsigned long long)ISA_DMA_THRESHOLD);
47 return 0;
48 }
49 }
1da177e4 50
ab6494f0
CM
51 return mask;
52}
53
7a9a32a9
RK
54/*
55 * Allocate a DMA buffer for 'dev' of size 'size' using the
56 * specified gfp mask. Note that 'size' must be page aligned.
57 */
58static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
59{
60 unsigned long order = get_order(size);
61 struct page *page, *p, *e;
62 void *ptr;
63 u64 mask = get_coherent_dma_mask(dev);
64
65#ifdef CONFIG_DMA_API_DEBUG
66 u64 limit = (mask + 1) & ~mask;
67 if (limit && size >= limit) {
68 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
69 size, mask);
70 return NULL;
71 }
72#endif
73
74 if (!mask)
75 return NULL;
76
77 if (mask < 0xffffffffULL)
78 gfp |= GFP_DMA;
79
80 page = alloc_pages(gfp, order);
81 if (!page)
82 return NULL;
83
84 /*
85 * Now split the huge page and free the excess pages
86 */
87 split_page(page, order);
88 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
89 __free_page(p);
90
91 /*
92 * Ensure that the allocated pages are zeroed, and that any data
93 * lurking in the kernel direct-mapped region is invalidated.
94 */
95 ptr = page_address(page);
96 memset(ptr, 0, size);
97 dmac_flush_range(ptr, ptr + size);
98 outer_flush_range(__pa(ptr), __pa(ptr) + size);
99
100 return page;
101}
102
103/*
104 * Free a DMA buffer. 'size' must be page aligned.
105 */
106static void __dma_free_buffer(struct page *page, size_t size)
107{
108 struct page *e = page + (size >> PAGE_SHIFT);
109
110 while (page < e) {
111 __free_page(page);
112 page++;
113 }
114}
115
ab6494f0 116#ifdef CONFIG_MMU
a5e9d38b
CM
117/* Sanity check size */
118#if (CONSISTENT_DMA_SIZE % SZ_2M)
119#error "CONSISTENT_DMA_SIZE must be multiple of 2MiB"
120#endif
121
122#define CONSISTENT_OFFSET(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
123#define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PGDIR_SHIFT)
124#define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PGDIR_SHIFT)
125
1da177e4 126/*
37134cd5 127 * These are the page tables (2MB each) covering uncached, DMA consistent allocations
1da177e4 128 */
37134cd5 129static pte_t *consistent_pte[NUM_CONSISTENT_PTES];
1da177e4 130
13ccf3ad 131#include "vmregion.h"
1da177e4 132
13ccf3ad
RK
133static struct arm_vmregion_head consistent_head = {
134 .vm_lock = __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
1da177e4
LT
135 .vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
136 .vm_start = CONSISTENT_BASE,
137 .vm_end = CONSISTENT_END,
138};
139
1da177e4
LT
140#ifdef CONFIG_HUGETLB_PAGE
141#error ARM Coherent DMA allocator does not (yet) support huge TLB
142#endif
143
88c58f3b
RK
144/*
145 * Initialise the consistent memory allocation.
146 */
147static int __init consistent_init(void)
148{
149 int ret = 0;
150 pgd_t *pgd;
151 pmd_t *pmd;
152 pte_t *pte;
153 int i = 0;
154 u32 base = CONSISTENT_BASE;
155
156 do {
157 pgd = pgd_offset(&init_mm, base);
158 pmd = pmd_alloc(&init_mm, pgd, base);
159 if (!pmd) {
160 printk(KERN_ERR "%s: no pmd tables\n", __func__);
161 ret = -ENOMEM;
162 break;
163 }
164 WARN_ON(!pmd_none(*pmd));
165
166 pte = pte_alloc_kernel(pmd, base);
167 if (!pte) {
168 printk(KERN_ERR "%s: no pte tables\n", __func__);
169 ret = -ENOMEM;
170 break;
171 }
172
173 consistent_pte[i++] = pte;
174 base += (1 << PGDIR_SHIFT);
175 } while (base < CONSISTENT_END);
176
177 return ret;
178}
179
180core_initcall(consistent_init);
181
1da177e4 182static void *
31ebf944 183__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot)
1da177e4 184{
13ccf3ad 185 struct arm_vmregion *c;
5bc23d32
RK
186 size_t align;
187 int bit;
1da177e4 188
ebd7a845
RK
189 if (!consistent_pte[0]) {
190 printk(KERN_ERR "%s: not initialised\n", __func__);
191 dump_stack();
ebd7a845
RK
192 return NULL;
193 }
194
5bc23d32
RK
195 /*
196 * Align the virtual region allocation - maximum alignment is
197 * a section size, minimum is a page size. This helps reduce
198 * fragmentation of the DMA space, and also prevents allocations
199 * smaller than a section from crossing a section boundary.
200 */
201 bit = fls(size - 1) + 1;
202 if (bit > SECTION_SHIFT)
203 bit = SECTION_SHIFT;
204 align = 1 << bit;
205
1da177e4
LT
206 /*
207 * Allocate a virtual address in the consistent mapping region.
208 */
5bc23d32 209 c = arm_vmregion_alloc(&consistent_head, align, size,
1da177e4
LT
210 gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
211 if (c) {
37134cd5 212 pte_t *pte;
37134cd5
KH
213 int idx = CONSISTENT_PTE_INDEX(c->vm_start);
214 u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
1da177e4 215
37134cd5 216 pte = consistent_pte[idx] + off;
1da177e4
LT
217 c->vm_pages = page;
218
1da177e4
LT
219 do {
220 BUG_ON(!pte_none(*pte));
221
ad1ae2fe 222 set_pte_ext(pte, mk_pte(page, prot), 0);
1da177e4
LT
223 page++;
224 pte++;
37134cd5
KH
225 off++;
226 if (off >= PTRS_PER_PTE) {
227 off = 0;
228 pte = consistent_pte[++idx];
229 }
1da177e4
LT
230 } while (size -= PAGE_SIZE);
231
2be23c47
RK
232 dsb();
233
1da177e4
LT
234 return (void *)c->vm_start;
235 }
1da177e4
LT
236 return NULL;
237}
695ae0af
RK
238
239static void __dma_free_remap(void *cpu_addr, size_t size)
240{
241 struct arm_vmregion *c;
242 unsigned long addr;
243 pte_t *ptep;
244 int idx;
245 u32 off;
246
247 c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
248 if (!c) {
249 printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
250 __func__, cpu_addr);
251 dump_stack();
252 return;
253 }
254
255 if ((c->vm_end - c->vm_start) != size) {
256 printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
257 __func__, c->vm_end - c->vm_start, size);
258 dump_stack();
259 size = c->vm_end - c->vm_start;
260 }
261
262 idx = CONSISTENT_PTE_INDEX(c->vm_start);
263 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
264 ptep = consistent_pte[idx] + off;
265 addr = c->vm_start;
266 do {
267 pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
695ae0af
RK
268
269 ptep++;
270 addr += PAGE_SIZE;
271 off++;
272 if (off >= PTRS_PER_PTE) {
273 off = 0;
274 ptep = consistent_pte[++idx];
275 }
276
acaac256
RK
277 if (pte_none(pte) || !pte_present(pte))
278 printk(KERN_CRIT "%s: bad page in kernel page table\n",
279 __func__);
695ae0af
RK
280 } while (size -= PAGE_SIZE);
281
282 flush_tlb_kernel_range(c->vm_start, c->vm_end);
283
284 arm_vmregion_free(&consistent_head, c);
285}
286
ab6494f0 287#else /* !CONFIG_MMU */
695ae0af 288
31ebf944
RK
289#define __dma_alloc_remap(page, size, gfp, prot) page_address(page)
290#define __dma_free_remap(addr, size) do { } while (0)
291
292#endif /* CONFIG_MMU */
293
ab6494f0
CM
294static void *
295__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
296 pgprot_t prot)
297{
04da5694 298 struct page *page;
31ebf944 299 void *addr;
ab6494f0 300
04da5694
RK
301 *handle = ~0;
302 size = PAGE_ALIGN(size);
ab6494f0 303
04da5694
RK
304 page = __dma_alloc_buffer(dev, size, gfp);
305 if (!page)
306 return NULL;
ab6494f0 307
31ebf944
RK
308 if (!arch_is_coherent())
309 addr = __dma_alloc_remap(page, size, gfp, prot);
310 else
311 addr = page_address(page);
695ae0af 312
31ebf944
RK
313 if (addr)
314 *handle = page_to_dma(dev, page);
695ae0af 315
31ebf944
RK
316 return addr;
317}
1da177e4
LT
318
319/*
320 * Allocate DMA-coherent memory space and return both the kernel remapped
321 * virtual and bus address for that space.
322 */
323void *
f9e3214a 324dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
1da177e4 325{
1fe53268
DES
326 void *memory;
327
328 if (dma_alloc_from_coherent(dev, size, handle, &memory))
329 return memory;
330
1da177e4 331 return __dma_alloc(dev, size, handle, gfp,
26a26d32 332 pgprot_dmacoherent(pgprot_kernel));
1da177e4
LT
333}
334EXPORT_SYMBOL(dma_alloc_coherent);
335
336/*
337 * Allocate a writecombining region, in much the same way as
338 * dma_alloc_coherent above.
339 */
340void *
f9e3214a 341dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
1da177e4
LT
342{
343 return __dma_alloc(dev, size, handle, gfp,
344 pgprot_writecombine(pgprot_kernel));
345}
346EXPORT_SYMBOL(dma_alloc_writecombine);
347
348static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
349 void *cpu_addr, dma_addr_t dma_addr, size_t size)
350{
ab6494f0
CM
351 int ret = -ENXIO;
352#ifdef CONFIG_MMU
13ccf3ad
RK
353 unsigned long user_size, kern_size;
354 struct arm_vmregion *c;
1da177e4
LT
355
356 user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
357
13ccf3ad 358 c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
1da177e4
LT
359 if (c) {
360 unsigned long off = vma->vm_pgoff;
361
362 kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
363
364 if (off < kern_size &&
365 user_size <= (kern_size - off)) {
1da177e4
LT
366 ret = remap_pfn_range(vma, vma->vm_start,
367 page_to_pfn(c->vm_pages) + off,
368 user_size << PAGE_SHIFT,
369 vma->vm_page_prot);
370 }
371 }
ab6494f0 372#endif /* CONFIG_MMU */
1da177e4
LT
373
374 return ret;
375}
376
377int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
378 void *cpu_addr, dma_addr_t dma_addr, size_t size)
379{
26a26d32 380 vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot);
1da177e4
LT
381 return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
382}
383EXPORT_SYMBOL(dma_mmap_coherent);
384
385int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
386 void *cpu_addr, dma_addr_t dma_addr, size_t size)
387{
388 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
389 return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
390}
391EXPORT_SYMBOL(dma_mmap_writecombine);
392
393/*
394 * free a page as defined by the above mapping.
5edf71ae 395 * Must not be called with IRQs disabled.
1da177e4
LT
396 */
397void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
398{
5edf71ae
RK
399 WARN_ON(irqs_disabled());
400
1fe53268
DES
401 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
402 return;
403
3e82d012
RK
404 size = PAGE_ALIGN(size);
405
695ae0af
RK
406 if (!arch_is_coherent())
407 __dma_free_remap(cpu_addr, size);
7a9a32a9
RK
408
409 __dma_free_buffer(dma_to_page(dev, handle), size);
1da177e4
LT
410}
411EXPORT_SYMBOL(dma_free_coherent);
412
1da177e4
LT
413/*
414 * Make an area consistent for devices.
105ef9a0
DW
415 * Note: Drivers should NOT use this function directly, as it will break
416 * platforms with CONFIG_DMABOUNCE.
417 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
1da177e4 418 */
4ea0d737
RK
419void ___dma_single_cpu_to_dev(const void *kaddr, size_t size,
420 enum dma_data_direction dir)
421{
2ffe2da3
RK
422 unsigned long paddr;
423
a9c9147e
RK
424 BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
425
426 dmac_map_area(kaddr, size, dir);
2ffe2da3
RK
427
428 paddr = __pa(kaddr);
429 if (dir == DMA_FROM_DEVICE) {
430 outer_inv_range(paddr, paddr + size);
431 } else {
432 outer_clean_range(paddr, paddr + size);
433 }
434 /* FIXME: non-speculating: flush on bidirectional mappings? */
4ea0d737
RK
435}
436EXPORT_SYMBOL(___dma_single_cpu_to_dev);
437
438void ___dma_single_dev_to_cpu(const void *kaddr, size_t size,
439 enum dma_data_direction dir)
440{
a9c9147e
RK
441 BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
442
2ffe2da3
RK
443 /* FIXME: non-speculating: not required */
444 /* don't bother invalidating if DMA to device */
445 if (dir != DMA_TO_DEVICE) {
446 unsigned long paddr = __pa(kaddr);
447 outer_inv_range(paddr, paddr + size);
448 }
449
a9c9147e 450 dmac_unmap_area(kaddr, size, dir);
4ea0d737
RK
451}
452EXPORT_SYMBOL(___dma_single_dev_to_cpu);
afd1a321 453
4ea0d737 454static void dma_cache_maint_page(struct page *page, unsigned long offset,
a9c9147e
RK
455 size_t size, enum dma_data_direction dir,
456 void (*op)(const void *, size_t, int))
43377453
NP
457{
458 /*
459 * A single sg entry may refer to multiple physically contiguous
460 * pages. But we still need to process highmem pages individually.
461 * If highmem is not configured then the bulk of this loop gets
462 * optimized out.
463 */
464 size_t left = size;
465 do {
466 size_t len = left;
93f1d629
RK
467 void *vaddr;
468
469 if (PageHighMem(page)) {
470 if (len + offset > PAGE_SIZE) {
471 if (offset >= PAGE_SIZE) {
472 page += offset / PAGE_SIZE;
473 offset %= PAGE_SIZE;
474 }
475 len = PAGE_SIZE - offset;
476 }
477 vaddr = kmap_high_get(page);
478 if (vaddr) {
479 vaddr += offset;
a9c9147e 480 op(vaddr, len, dir);
93f1d629 481 kunmap_high(page);
7e5a69e8
NP
482 } else if (cache_is_vipt()) {
483 pte_t saved_pte;
484 vaddr = kmap_high_l1_vipt(page, &saved_pte);
485 op(vaddr + offset, len, dir);
486 kunmap_high_l1_vipt(page, saved_pte);
43377453 487 }
93f1d629
RK
488 } else {
489 vaddr = page_address(page) + offset;
a9c9147e 490 op(vaddr, len, dir);
43377453 491 }
43377453
NP
492 offset = 0;
493 page++;
494 left -= len;
495 } while (left);
496}
4ea0d737
RK
497
498void ___dma_page_cpu_to_dev(struct page *page, unsigned long off,
499 size_t size, enum dma_data_direction dir)
500{
65af191a 501 unsigned long paddr;
65af191a 502
a9c9147e 503 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
65af191a
RK
504
505 paddr = page_to_phys(page) + off;
2ffe2da3
RK
506 if (dir == DMA_FROM_DEVICE) {
507 outer_inv_range(paddr, paddr + size);
508 } else {
509 outer_clean_range(paddr, paddr + size);
510 }
511 /* FIXME: non-speculating: flush on bidirectional mappings? */
4ea0d737
RK
512}
513EXPORT_SYMBOL(___dma_page_cpu_to_dev);
514
515void ___dma_page_dev_to_cpu(struct page *page, unsigned long off,
516 size_t size, enum dma_data_direction dir)
517{
2ffe2da3
RK
518 unsigned long paddr = page_to_phys(page) + off;
519
520 /* FIXME: non-speculating: not required */
521 /* don't bother invalidating if DMA to device */
522 if (dir != DMA_TO_DEVICE)
523 outer_inv_range(paddr, paddr + size);
524
a9c9147e 525 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
4ea0d737
RK
526}
527EXPORT_SYMBOL(___dma_page_dev_to_cpu);
43377453 528
afd1a321
RK
529/**
530 * dma_map_sg - map a set of SG buffers for streaming mode DMA
531 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
532 * @sg: list of buffers
533 * @nents: number of buffers to map
534 * @dir: DMA transfer direction
535 *
536 * Map a set of buffers described by scatterlist in streaming mode for DMA.
537 * This is the scatter-gather version of the dma_map_single interface.
538 * Here the scatter gather list elements are each tagged with the
539 * appropriate dma address and length. They are obtained via
540 * sg_dma_{address,length}.
541 *
542 * Device ownership issues as mentioned for dma_map_single are the same
543 * here.
544 */
545int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
546 enum dma_data_direction dir)
547{
548 struct scatterlist *s;
01135d92 549 int i, j;
afd1a321
RK
550
551 for_each_sg(sg, s, nents, i) {
01135d92
RK
552 s->dma_address = dma_map_page(dev, sg_page(s), s->offset,
553 s->length, dir);
554 if (dma_mapping_error(dev, s->dma_address))
555 goto bad_mapping;
afd1a321 556 }
afd1a321 557 return nents;
01135d92
RK
558
559 bad_mapping:
560 for_each_sg(sg, s, i, j)
561 dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
562 return 0;
afd1a321
RK
563}
564EXPORT_SYMBOL(dma_map_sg);
565
566/**
567 * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
568 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
569 * @sg: list of buffers
570 * @nents: number of buffers to unmap (returned from dma_map_sg)
571 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
572 *
573 * Unmap a set of streaming mode DMA translations. Again, CPU access
574 * rules concerning calls here are the same as for dma_unmap_single().
575 */
576void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
577 enum dma_data_direction dir)
578{
01135d92
RK
579 struct scatterlist *s;
580 int i;
581
582 for_each_sg(sg, s, nents, i)
583 dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
afd1a321
RK
584}
585EXPORT_SYMBOL(dma_unmap_sg);
586
587/**
588 * dma_sync_sg_for_cpu
589 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
590 * @sg: list of buffers
591 * @nents: number of buffers to map (returned from dma_map_sg)
592 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
593 */
594void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
595 int nents, enum dma_data_direction dir)
596{
597 struct scatterlist *s;
598 int i;
599
600 for_each_sg(sg, s, nents, i) {
18eabe23
RK
601 if (!dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
602 sg_dma_len(s), dir))
603 continue;
604
605 __dma_page_dev_to_cpu(sg_page(s), s->offset,
606 s->length, dir);
afd1a321
RK
607 }
608}
609EXPORT_SYMBOL(dma_sync_sg_for_cpu);
610
611/**
612 * dma_sync_sg_for_device
613 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
614 * @sg: list of buffers
615 * @nents: number of buffers to map (returned from dma_map_sg)
616 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
617 */
618void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
619 int nents, enum dma_data_direction dir)
620{
621 struct scatterlist *s;
622 int i;
623
624 for_each_sg(sg, s, nents, i) {
2638b4db
RK
625 if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
626 sg_dma_len(s), dir))
627 continue;
628
18eabe23
RK
629 __dma_page_cpu_to_dev(sg_page(s), s->offset,
630 s->length, dir);
afd1a321
RK
631 }
632}
633EXPORT_SYMBOL(dma_sync_sg_for_device);