]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/arm/mach-davinci/dma.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[net-next-2.6.git] / arch / arm / mach-davinci / dma.c
CommitLineData
a4768d22
KH
1/*
2 * EDMA3 support for DaVinci
3 *
4 * Copyright (C) 2006-2009 Texas Instruments.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20#include <linux/kernel.h>
a4768d22
KH
21#include <linux/init.h>
22#include <linux/module.h>
23#include <linux/interrupt.h>
24#include <linux/platform_device.h>
a4768d22 25#include <linux/io.h>
5a0e3ad6 26#include <linux/slab.h>
a4768d22 27
a4768d22 28#include <mach/edma.h>
a4768d22
KH
29
30/* Offsets matching "struct edmacc_param" */
31#define PARM_OPT 0x00
32#define PARM_SRC 0x04
33#define PARM_A_B_CNT 0x08
34#define PARM_DST 0x0c
35#define PARM_SRC_DST_BIDX 0x10
36#define PARM_LINK_BCNTRLD 0x14
37#define PARM_SRC_DST_CIDX 0x18
38#define PARM_CCNT 0x1c
39
40#define PARM_SIZE 0x20
41
42/* Offsets for EDMA CC global channel registers and their shadows */
43#define SH_ER 0x00 /* 64 bits */
44#define SH_ECR 0x08 /* 64 bits */
45#define SH_ESR 0x10 /* 64 bits */
46#define SH_CER 0x18 /* 64 bits */
47#define SH_EER 0x20 /* 64 bits */
48#define SH_EECR 0x28 /* 64 bits */
49#define SH_EESR 0x30 /* 64 bits */
50#define SH_SER 0x38 /* 64 bits */
51#define SH_SECR 0x40 /* 64 bits */
52#define SH_IER 0x50 /* 64 bits */
53#define SH_IECR 0x58 /* 64 bits */
54#define SH_IESR 0x60 /* 64 bits */
55#define SH_IPR 0x68 /* 64 bits */
56#define SH_ICR 0x70 /* 64 bits */
57#define SH_IEVAL 0x78
58#define SH_QER 0x80
59#define SH_QEER 0x84
60#define SH_QEECR 0x88
61#define SH_QEESR 0x8c
62#define SH_QSER 0x90
63#define SH_QSECR 0x94
64#define SH_SIZE 0x200
65
66/* Offsets for EDMA CC global registers */
67#define EDMA_REV 0x0000
68#define EDMA_CCCFG 0x0004
69#define EDMA_QCHMAP 0x0200 /* 8 registers */
70#define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
71#define EDMA_QDMAQNUM 0x0260
72#define EDMA_QUETCMAP 0x0280
73#define EDMA_QUEPRI 0x0284
74#define EDMA_EMR 0x0300 /* 64 bits */
75#define EDMA_EMCR 0x0308 /* 64 bits */
76#define EDMA_QEMR 0x0310
77#define EDMA_QEMCR 0x0314
78#define EDMA_CCERR 0x0318
79#define EDMA_CCERRCLR 0x031c
80#define EDMA_EEVAL 0x0320
81#define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
82#define EDMA_QRAE 0x0380 /* 4 registers */
83#define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
84#define EDMA_QSTAT 0x0600 /* 2 registers */
85#define EDMA_QWMTHRA 0x0620
86#define EDMA_QWMTHRB 0x0624
87#define EDMA_CCSTAT 0x0640
88
89#define EDMA_M 0x1000 /* global channel registers */
90#define EDMA_ECR 0x1008
91#define EDMA_ECRH 0x100C
92#define EDMA_SHADOW0 0x2000 /* 4 regions shadowing global channels */
93#define EDMA_PARM 0x4000 /* 128 param entries */
94
a4768d22
KH
95#define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
96
60902a2c
SR
97#define EDMA_DCHMAP 0x0100 /* 64 registers */
98#define CHMAP_EXIST BIT(24)
99
a4768d22
KH
100#define EDMA_MAX_DMACH 64
101#define EDMA_MAX_PARAMENTRY 512
60902a2c 102#define EDMA_MAX_CC 2
a4768d22
KH
103
104
105/*****************************************************************************/
106
60902a2c 107static void __iomem *edmacc_regs_base[EDMA_MAX_CC];
a4768d22 108
60902a2c 109static inline unsigned int edma_read(unsigned ctlr, int offset)
a4768d22 110{
60902a2c 111 return (unsigned int)__raw_readl(edmacc_regs_base[ctlr] + offset);
a4768d22
KH
112}
113
60902a2c 114static inline void edma_write(unsigned ctlr, int offset, int val)
a4768d22 115{
60902a2c 116 __raw_writel(val, edmacc_regs_base[ctlr] + offset);
a4768d22 117}
60902a2c
SR
118static inline void edma_modify(unsigned ctlr, int offset, unsigned and,
119 unsigned or)
a4768d22 120{
60902a2c 121 unsigned val = edma_read(ctlr, offset);
a4768d22
KH
122 val &= and;
123 val |= or;
60902a2c 124 edma_write(ctlr, offset, val);
a4768d22 125}
60902a2c 126static inline void edma_and(unsigned ctlr, int offset, unsigned and)
a4768d22 127{
60902a2c 128 unsigned val = edma_read(ctlr, offset);
a4768d22 129 val &= and;
60902a2c 130 edma_write(ctlr, offset, val);
a4768d22 131}
60902a2c 132static inline void edma_or(unsigned ctlr, int offset, unsigned or)
a4768d22 133{
60902a2c 134 unsigned val = edma_read(ctlr, offset);
a4768d22 135 val |= or;
60902a2c 136 edma_write(ctlr, offset, val);
a4768d22 137}
60902a2c 138static inline unsigned int edma_read_array(unsigned ctlr, int offset, int i)
a4768d22 139{
60902a2c 140 return edma_read(ctlr, offset + (i << 2));
a4768d22 141}
60902a2c
SR
142static inline void edma_write_array(unsigned ctlr, int offset, int i,
143 unsigned val)
a4768d22 144{
60902a2c 145 edma_write(ctlr, offset + (i << 2), val);
a4768d22 146}
60902a2c 147static inline void edma_modify_array(unsigned ctlr, int offset, int i,
a4768d22
KH
148 unsigned and, unsigned or)
149{
60902a2c 150 edma_modify(ctlr, offset + (i << 2), and, or);
a4768d22 151}
60902a2c 152static inline void edma_or_array(unsigned ctlr, int offset, int i, unsigned or)
a4768d22 153{
60902a2c 154 edma_or(ctlr, offset + (i << 2), or);
a4768d22 155}
60902a2c
SR
156static inline void edma_or_array2(unsigned ctlr, int offset, int i, int j,
157 unsigned or)
a4768d22 158{
60902a2c 159 edma_or(ctlr, offset + ((i*2 + j) << 2), or);
a4768d22 160}
60902a2c
SR
161static inline void edma_write_array2(unsigned ctlr, int offset, int i, int j,
162 unsigned val)
a4768d22 163{
60902a2c 164 edma_write(ctlr, offset + ((i*2 + j) << 2), val);
a4768d22 165}
60902a2c 166static inline unsigned int edma_shadow0_read(unsigned ctlr, int offset)
a4768d22 167{
60902a2c 168 return edma_read(ctlr, EDMA_SHADOW0 + offset);
a4768d22 169}
60902a2c
SR
170static inline unsigned int edma_shadow0_read_array(unsigned ctlr, int offset,
171 int i)
a4768d22 172{
60902a2c 173 return edma_read(ctlr, EDMA_SHADOW0 + offset + (i << 2));
a4768d22 174}
60902a2c 175static inline void edma_shadow0_write(unsigned ctlr, int offset, unsigned val)
a4768d22 176{
60902a2c 177 edma_write(ctlr, EDMA_SHADOW0 + offset, val);
a4768d22 178}
60902a2c
SR
179static inline void edma_shadow0_write_array(unsigned ctlr, int offset, int i,
180 unsigned val)
a4768d22 181{
60902a2c 182 edma_write(ctlr, EDMA_SHADOW0 + offset + (i << 2), val);
a4768d22 183}
60902a2c
SR
184static inline unsigned int edma_parm_read(unsigned ctlr, int offset,
185 int param_no)
a4768d22 186{
60902a2c 187 return edma_read(ctlr, EDMA_PARM + offset + (param_no << 5));
a4768d22 188}
60902a2c
SR
189static inline void edma_parm_write(unsigned ctlr, int offset, int param_no,
190 unsigned val)
a4768d22 191{
60902a2c 192 edma_write(ctlr, EDMA_PARM + offset + (param_no << 5), val);
a4768d22 193}
60902a2c 194static inline void edma_parm_modify(unsigned ctlr, int offset, int param_no,
a4768d22
KH
195 unsigned and, unsigned or)
196{
60902a2c 197 edma_modify(ctlr, EDMA_PARM + offset + (param_no << 5), and, or);
a4768d22 198}
60902a2c
SR
199static inline void edma_parm_and(unsigned ctlr, int offset, int param_no,
200 unsigned and)
a4768d22 201{
60902a2c 202 edma_and(ctlr, EDMA_PARM + offset + (param_no << 5), and);
a4768d22 203}
60902a2c
SR
204static inline void edma_parm_or(unsigned ctlr, int offset, int param_no,
205 unsigned or)
a4768d22 206{
60902a2c 207 edma_or(ctlr, EDMA_PARM + offset + (param_no << 5), or);
a4768d22
KH
208}
209
210/*****************************************************************************/
211
212/* actual number of DMA channels and slots on this silicon */
60902a2c
SR
213struct edma {
214 /* how many dma resources of each type */
215 unsigned num_channels;
216 unsigned num_region;
217 unsigned num_slots;
218 unsigned num_tc;
219 unsigned num_cc;
a0f0202e 220 enum dma_event_q default_queue;
60902a2c
SR
221
222 /* list of channels with no even trigger; terminated by "-1" */
223 const s8 *noevent;
224
225 /* The edma_inuse bit for each PaRAM slot is clear unless the
226 * channel is in use ... by ARM or DSP, for QDMA, or whatever.
227 */
228 DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY);
a4768d22 229
f900d552
SR
230 /* The edma_unused bit for each channel is clear unless
231 * it is not being used on this platform. It uses a bit
232 * of SOC-specific initialization code.
60902a2c 233 */
f900d552 234 DECLARE_BITMAP(edma_unused, EDMA_MAX_DMACH);
a4768d22 235
60902a2c
SR
236 unsigned irq_res_start;
237 unsigned irq_res_end;
a4768d22 238
60902a2c
SR
239 struct dma_interrupt_data {
240 void (*callback)(unsigned channel, unsigned short ch_status,
241 void *data);
242 void *data;
243 } intr_data[EDMA_MAX_DMACH];
244};
245
246static struct edma *edma_info[EDMA_MAX_CC];
2d517508 247static int arch_num_cc;
a4768d22
KH
248
249/* dummy param set used to (re)initialize parameter RAM slots */
250static const struct edmacc_param dummy_paramset = {
251 .link_bcntrld = 0xffff,
252 .ccnt = 1,
253};
254
a4768d22
KH
255/*****************************************************************************/
256
60902a2c
SR
257static void map_dmach_queue(unsigned ctlr, unsigned ch_no,
258 enum dma_event_q queue_no)
a4768d22
KH
259{
260 int bit = (ch_no & 0x7) * 4;
261
262 /* default to low priority queue */
263 if (queue_no == EVENTQ_DEFAULT)
a0f0202e 264 queue_no = edma_info[ctlr]->default_queue;
a4768d22
KH
265
266 queue_no &= 7;
60902a2c 267 edma_modify_array(ctlr, EDMA_DMAQNUM, (ch_no >> 3),
a4768d22
KH
268 ~(0x7 << bit), queue_no << bit);
269}
270
60902a2c 271static void __init map_queue_tc(unsigned ctlr, int queue_no, int tc_no)
a4768d22
KH
272{
273 int bit = queue_no * 4;
60902a2c 274 edma_modify(ctlr, EDMA_QUETCMAP, ~(0x7 << bit), ((tc_no & 0x7) << bit));
a4768d22
KH
275}
276
60902a2c
SR
277static void __init assign_priority_to_queue(unsigned ctlr, int queue_no,
278 int priority)
a4768d22
KH
279{
280 int bit = queue_no * 4;
60902a2c
SR
281 edma_modify(ctlr, EDMA_QUEPRI, ~(0x7 << bit),
282 ((priority & 0x7) << bit));
283}
284
285/**
286 * map_dmach_param - Maps channel number to param entry number
287 *
288 * This maps the dma channel number to param entry numberter. In
289 * other words using the DMA channel mapping registers a param entry
290 * can be mapped to any channel
291 *
292 * Callers are responsible for ensuring the channel mapping logic is
293 * included in that particular EDMA variant (Eg : dm646x)
294 *
295 */
296static void __init map_dmach_param(unsigned ctlr)
297{
298 int i;
299 for (i = 0; i < EDMA_MAX_DMACH; i++)
300 edma_write_array(ctlr, EDMA_DCHMAP , i , (i << 5));
a4768d22
KH
301}
302
303static inline void
304setup_dma_interrupt(unsigned lch,
305 void (*callback)(unsigned channel, u16 ch_status, void *data),
306 void *data)
307{
60902a2c
SR
308 unsigned ctlr;
309
310 ctlr = EDMA_CTLR(lch);
311 lch = EDMA_CHAN_SLOT(lch);
312
a4768d22 313 if (!callback) {
60902a2c 314 edma_shadow0_write_array(ctlr, SH_IECR, lch >> 5,
a4768d22
KH
315 (1 << (lch & 0x1f)));
316 }
317
60902a2c
SR
318 edma_info[ctlr]->intr_data[lch].callback = callback;
319 edma_info[ctlr]->intr_data[lch].data = data;
a4768d22
KH
320
321 if (callback) {
60902a2c 322 edma_shadow0_write_array(ctlr, SH_ICR, lch >> 5,
a4768d22 323 (1 << (lch & 0x1f)));
60902a2c 324 edma_shadow0_write_array(ctlr, SH_IESR, lch >> 5,
a4768d22
KH
325 (1 << (lch & 0x1f)));
326 }
327}
328
60902a2c
SR
329static int irq2ctlr(int irq)
330{
331 if (irq >= edma_info[0]->irq_res_start &&
332 irq <= edma_info[0]->irq_res_end)
333 return 0;
334 else if (irq >= edma_info[1]->irq_res_start &&
335 irq <= edma_info[1]->irq_res_end)
336 return 1;
337
338 return -1;
339}
340
a4768d22
KH
341/******************************************************************************
342 *
343 * DMA interrupt handler
344 *
345 *****************************************************************************/
346static irqreturn_t dma_irq_handler(int irq, void *data)
347{
348 int i;
60902a2c 349 unsigned ctlr;
a4768d22
KH
350 unsigned int cnt = 0;
351
60902a2c
SR
352 ctlr = irq2ctlr(irq);
353
a4768d22
KH
354 dev_dbg(data, "dma_irq_handler\n");
355
60902a2c
SR
356 if ((edma_shadow0_read_array(ctlr, SH_IPR, 0) == 0)
357 && (edma_shadow0_read_array(ctlr, SH_IPR, 1) == 0))
a4768d22
KH
358 return IRQ_NONE;
359
360 while (1) {
361 int j;
60902a2c 362 if (edma_shadow0_read_array(ctlr, SH_IPR, 0))
a4768d22 363 j = 0;
60902a2c 364 else if (edma_shadow0_read_array(ctlr, SH_IPR, 1))
a4768d22
KH
365 j = 1;
366 else
367 break;
368 dev_dbg(data, "IPR%d %08x\n", j,
60902a2c 369 edma_shadow0_read_array(ctlr, SH_IPR, j));
a4768d22
KH
370 for (i = 0; i < 32; i++) {
371 int k = (j << 5) + i;
60902a2c
SR
372 if (edma_shadow0_read_array(ctlr, SH_IPR, j) &
373 (1 << i)) {
a4768d22 374 /* Clear the corresponding IPR bits */
60902a2c
SR
375 edma_shadow0_write_array(ctlr, SH_ICR, j,
376 (1 << i));
377 if (edma_info[ctlr]->intr_data[k].callback) {
378 edma_info[ctlr]->intr_data[k].callback(
379 k, DMA_COMPLETE,
380 edma_info[ctlr]->intr_data[k].
381 data);
a4768d22
KH
382 }
383 }
384 }
385 cnt++;
386 if (cnt > 10)
387 break;
388 }
60902a2c 389 edma_shadow0_write(ctlr, SH_IEVAL, 1);
a4768d22
KH
390 return IRQ_HANDLED;
391}
392
393/******************************************************************************
394 *
395 * DMA error interrupt handler
396 *
397 *****************************************************************************/
398static irqreturn_t dma_ccerr_handler(int irq, void *data)
399{
400 int i;
60902a2c 401 unsigned ctlr;
a4768d22
KH
402 unsigned int cnt = 0;
403
60902a2c
SR
404 ctlr = irq2ctlr(irq);
405
a4768d22
KH
406 dev_dbg(data, "dma_ccerr_handler\n");
407
60902a2c
SR
408 if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
409 (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
410 (edma_read(ctlr, EDMA_QEMR) == 0) &&
411 (edma_read(ctlr, EDMA_CCERR) == 0))
a4768d22
KH
412 return IRQ_NONE;
413
414 while (1) {
415 int j = -1;
60902a2c 416 if (edma_read_array(ctlr, EDMA_EMR, 0))
a4768d22 417 j = 0;
60902a2c 418 else if (edma_read_array(ctlr, EDMA_EMR, 1))
a4768d22
KH
419 j = 1;
420 if (j >= 0) {
421 dev_dbg(data, "EMR%d %08x\n", j,
60902a2c 422 edma_read_array(ctlr, EDMA_EMR, j));
a4768d22
KH
423 for (i = 0; i < 32; i++) {
424 int k = (j << 5) + i;
60902a2c
SR
425 if (edma_read_array(ctlr, EDMA_EMR, j) &
426 (1 << i)) {
a4768d22 427 /* Clear the corresponding EMR bits */
60902a2c
SR
428 edma_write_array(ctlr, EDMA_EMCR, j,
429 1 << i);
a4768d22 430 /* Clear any SER */
60902a2c
SR
431 edma_shadow0_write_array(ctlr, SH_SECR,
432 j, (1 << i));
433 if (edma_info[ctlr]->intr_data[k].
434 callback) {
435 edma_info[ctlr]->intr_data[k].
436 callback(k,
437 DMA_CC_ERROR,
438 edma_info[ctlr]->intr_data
439 [k].data);
a4768d22
KH
440 }
441 }
442 }
60902a2c 443 } else if (edma_read(ctlr, EDMA_QEMR)) {
a4768d22 444 dev_dbg(data, "QEMR %02x\n",
60902a2c 445 edma_read(ctlr, EDMA_QEMR));
a4768d22 446 for (i = 0; i < 8; i++) {
60902a2c 447 if (edma_read(ctlr, EDMA_QEMR) & (1 << i)) {
a4768d22 448 /* Clear the corresponding IPR bits */
60902a2c
SR
449 edma_write(ctlr, EDMA_QEMCR, 1 << i);
450 edma_shadow0_write(ctlr, SH_QSECR,
451 (1 << i));
a4768d22
KH
452
453 /* NOTE: not reported!! */
454 }
455 }
60902a2c 456 } else if (edma_read(ctlr, EDMA_CCERR)) {
a4768d22 457 dev_dbg(data, "CCERR %08x\n",
60902a2c 458 edma_read(ctlr, EDMA_CCERR));
a4768d22
KH
459 /* FIXME: CCERR.BIT(16) ignored! much better
460 * to just write CCERRCLR with CCERR value...
461 */
462 for (i = 0; i < 8; i++) {
60902a2c 463 if (edma_read(ctlr, EDMA_CCERR) & (1 << i)) {
a4768d22 464 /* Clear the corresponding IPR bits */
60902a2c 465 edma_write(ctlr, EDMA_CCERRCLR, 1 << i);
a4768d22
KH
466
467 /* NOTE: not reported!! */
468 }
469 }
470 }
60902a2c
SR
471 if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0)
472 && (edma_read_array(ctlr, EDMA_EMR, 1) == 0)
473 && (edma_read(ctlr, EDMA_QEMR) == 0)
474 && (edma_read(ctlr, EDMA_CCERR) == 0)) {
a4768d22
KH
475 break;
476 }
477 cnt++;
478 if (cnt > 10)
479 break;
480 }
60902a2c 481 edma_write(ctlr, EDMA_EEVAL, 1);
a4768d22
KH
482 return IRQ_HANDLED;
483}
484
485/******************************************************************************
486 *
487 * Transfer controller error interrupt handlers
488 *
489 *****************************************************************************/
490
491#define tc_errs_handled false /* disabled as long as they're NOPs */
492
493static irqreturn_t dma_tc0err_handler(int irq, void *data)
494{
495 dev_dbg(data, "dma_tc0err_handler\n");
496 return IRQ_HANDLED;
497}
498
499static irqreturn_t dma_tc1err_handler(int irq, void *data)
500{
501 dev_dbg(data, "dma_tc1err_handler\n");
502 return IRQ_HANDLED;
503}
504
134ce221
SP
505static int reserve_contiguous_slots(int ctlr, unsigned int id,
506 unsigned int num_slots,
507 unsigned int start_slot)
213765d7
SP
508{
509 int i, j;
134ce221
SP
510 unsigned int count = num_slots;
511 int stop_slot = start_slot;
cc93fc3f 512 DECLARE_BITMAP(tmp_inuse, EDMA_MAX_PARAMENTRY);
213765d7 513
134ce221 514 for (i = start_slot; i < edma_info[ctlr]->num_slots; ++i) {
213765d7 515 j = EDMA_CHAN_SLOT(i);
cc93fc3f
SP
516 if (!test_and_set_bit(j, edma_info[ctlr]->edma_inuse)) {
517 /* Record our current beginning slot */
134ce221
SP
518 if (count == num_slots)
519 stop_slot = i;
cc93fc3f 520
213765d7 521 count--;
cc93fc3f
SP
522 set_bit(j, tmp_inuse);
523
213765d7
SP
524 if (count == 0)
525 break;
cc93fc3f
SP
526 } else {
527 clear_bit(j, tmp_inuse);
528
529 if (id == EDMA_CONT_PARAMS_FIXED_EXACT) {
134ce221 530 stop_slot = i;
cc93fc3f
SP
531 break;
532 } else
134ce221 533 count = num_slots;
cc93fc3f 534 }
213765d7
SP
535 }
536
537 /*
538 * We have to clear any bits that we set
134ce221
SP
539 * if we run out parameter RAM slots, i.e we do find a set
540 * of contiguous parameter RAM slots but do not find the exact number
541 * requested as we may reach the total number of parameter RAM slots
213765d7 542 */
cc93fc3f 543 if (i == edma_info[ctlr]->num_slots)
134ce221 544 stop_slot = i;
cc93fc3f 545
134ce221 546 for (j = start_slot; j < stop_slot; j++)
cc93fc3f 547 if (test_bit(j, tmp_inuse))
213765d7
SP
548 clear_bit(j, edma_info[ctlr]->edma_inuse);
549
cc93fc3f 550 if (count)
213765d7 551 return -EBUSY;
213765d7 552
134ce221 553 for (j = i - num_slots + 1; j <= i; ++j)
213765d7
SP
554 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(j),
555 &dummy_paramset, PARM_SIZE);
556
134ce221 557 return EDMA_CTLR_CHAN(ctlr, i - num_slots + 1);
213765d7
SP
558}
559
f900d552
SR
560static int prepare_unused_channel_list(struct device *dev, void *data)
561{
562 struct platform_device *pdev = to_platform_device(dev);
563 int i, ctlr;
564
565 for (i = 0; i < pdev->num_resources; i++) {
566 if ((pdev->resource[i].flags & IORESOURCE_DMA) &&
567 (int)pdev->resource[i].start >= 0) {
568 ctlr = EDMA_CTLR(pdev->resource[i].start);
569 clear_bit(EDMA_CHAN_SLOT(pdev->resource[i].start),
570 edma_info[ctlr]->edma_unused);
571 }
572 }
573
574 return 0;
575}
576
a4768d22
KH
577/*-----------------------------------------------------------------------*/
578
f900d552
SR
579static bool unused_chan_list_done;
580
a4768d22
KH
581/* Resource alloc/free: dma channels, parameter RAM slots */
582
583/**
584 * edma_alloc_channel - allocate DMA channel and paired parameter RAM
585 * @channel: specific channel to allocate; negative for "any unmapped channel"
586 * @callback: optional; to be issued on DMA completion or errors
587 * @data: passed to callback
588 * @eventq_no: an EVENTQ_* constant, used to choose which Transfer
589 * Controller (TC) executes requests using this channel. Use
590 * EVENTQ_DEFAULT unless you really need a high priority queue.
591 *
592 * This allocates a DMA channel and its associated parameter RAM slot.
593 * The parameter RAM is initialized to hold a dummy transfer.
594 *
595 * Normal use is to pass a specific channel number as @channel, to make
596 * use of hardware events mapped to that channel. When the channel will
597 * be used only for software triggering or event chaining, channels not
598 * mapped to hardware events (or mapped to unused events) are preferable.
599 *
600 * DMA transfers start from a channel using edma_start(), or by
601 * chaining. When the transfer described in that channel's parameter RAM
602 * slot completes, that slot's data may be reloaded through a link.
603 *
604 * DMA errors are only reported to the @callback associated with the
605 * channel driving that transfer, but transfer completion callbacks can
606 * be sent to another channel under control of the TCC field in
607 * the option word of the transfer's parameter RAM set. Drivers must not
608 * use DMA transfer completion callbacks for channels they did not allocate.
609 * (The same applies to TCC codes used in transfer chaining.)
610 *
611 * Returns the number of the channel, else negative errno.
612 */
613int edma_alloc_channel(int channel,
614 void (*callback)(unsigned channel, u16 ch_status, void *data),
615 void *data,
616 enum dma_event_q eventq_no)
617{
447f18f1 618 unsigned i, done = 0, ctlr = 0;
f900d552
SR
619 int ret = 0;
620
621 if (!unused_chan_list_done) {
622 /*
623 * Scan all the platform devices to find out the EDMA channels
624 * used and clear them in the unused list, making the rest
625 * available for ARM usage.
626 */
627 ret = bus_for_each_dev(&platform_bus_type, NULL, NULL,
628 prepare_unused_channel_list);
629 if (ret < 0)
630 return ret;
631
632 unused_chan_list_done = true;
633 }
60902a2c
SR
634
635 if (channel >= 0) {
636 ctlr = EDMA_CTLR(channel);
637 channel = EDMA_CHAN_SLOT(channel);
638 }
639
a4768d22 640 if (channel < 0) {
2d517508 641 for (i = 0; i < arch_num_cc; i++) {
60902a2c
SR
642 channel = 0;
643 for (;;) {
644 channel = find_next_bit(edma_info[i]->
f900d552 645 edma_unused,
60902a2c
SR
646 edma_info[i]->num_channels,
647 channel);
648 if (channel == edma_info[i]->num_channels)
447f18f1 649 break;
60902a2c
SR
650 if (!test_and_set_bit(channel,
651 edma_info[i]->edma_inuse)) {
652 done = 1;
653 ctlr = i;
654 break;
655 }
656 channel++;
657 }
658 if (done)
a4768d22 659 break;
a4768d22 660 }
447f18f1
SR
661 if (!done)
662 return -ENOMEM;
60902a2c 663 } else if (channel >= edma_info[ctlr]->num_channels) {
a4768d22 664 return -EINVAL;
60902a2c 665 } else if (test_and_set_bit(channel, edma_info[ctlr]->edma_inuse)) {
a4768d22
KH
666 return -EBUSY;
667 }
668
669 /* ensure access through shadow region 0 */
60902a2c 670 edma_or_array2(ctlr, EDMA_DRAE, 0, channel >> 5, 1 << (channel & 0x1f));
a4768d22
KH
671
672 /* ensure no events are pending */
60902a2c
SR
673 edma_stop(EDMA_CTLR_CHAN(ctlr, channel));
674 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
a4768d22
KH
675 &dummy_paramset, PARM_SIZE);
676
677 if (callback)
60902a2c
SR
678 setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr, channel),
679 callback, data);
a4768d22 680
60902a2c 681 map_dmach_queue(ctlr, channel, eventq_no);
a4768d22 682
0e6cb8d2 683 return EDMA_CTLR_CHAN(ctlr, channel);
a4768d22
KH
684}
685EXPORT_SYMBOL(edma_alloc_channel);
686
687
688/**
689 * edma_free_channel - deallocate DMA channel
690 * @channel: dma channel returned from edma_alloc_channel()
691 *
692 * This deallocates the DMA channel and associated parameter RAM slot
693 * allocated by edma_alloc_channel().
694 *
695 * Callers are responsible for ensuring the channel is inactive, and
696 * will not be reactivated by linking, chaining, or software calls to
697 * edma_start().
698 */
699void edma_free_channel(unsigned channel)
700{
60902a2c
SR
701 unsigned ctlr;
702
703 ctlr = EDMA_CTLR(channel);
704 channel = EDMA_CHAN_SLOT(channel);
705
706 if (channel >= edma_info[ctlr]->num_channels)
a4768d22
KH
707 return;
708
709 setup_dma_interrupt(channel, NULL, NULL);
710 /* REVISIT should probably take out of shadow region 0 */
711
60902a2c 712 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
a4768d22 713 &dummy_paramset, PARM_SIZE);
60902a2c 714 clear_bit(channel, edma_info[ctlr]->edma_inuse);
a4768d22
KH
715}
716EXPORT_SYMBOL(edma_free_channel);
717
718/**
719 * edma_alloc_slot - allocate DMA parameter RAM
720 * @slot: specific slot to allocate; negative for "any unused slot"
721 *
722 * This allocates a parameter RAM slot, initializing it to hold a
723 * dummy transfer. Slots allocated using this routine have not been
724 * mapped to a hardware DMA channel, and will normally be used by
725 * linking to them from a slot associated with a DMA channel.
726 *
727 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
728 * slots may be allocated on behalf of DSP firmware.
729 *
730 * Returns the number of the slot, else negative errno.
731 */
60902a2c 732int edma_alloc_slot(unsigned ctlr, int slot)
a4768d22 733{
60902a2c
SR
734 if (slot >= 0)
735 slot = EDMA_CHAN_SLOT(slot);
736
a4768d22 737 if (slot < 0) {
60902a2c 738 slot = edma_info[ctlr]->num_channels;
a4768d22 739 for (;;) {
60902a2c
SR
740 slot = find_next_zero_bit(edma_info[ctlr]->edma_inuse,
741 edma_info[ctlr]->num_slots, slot);
742 if (slot == edma_info[ctlr]->num_slots)
a4768d22 743 return -ENOMEM;
60902a2c
SR
744 if (!test_and_set_bit(slot,
745 edma_info[ctlr]->edma_inuse))
a4768d22
KH
746 break;
747 }
60902a2c
SR
748 } else if (slot < edma_info[ctlr]->num_channels ||
749 slot >= edma_info[ctlr]->num_slots) {
a4768d22 750 return -EINVAL;
60902a2c 751 } else if (test_and_set_bit(slot, edma_info[ctlr]->edma_inuse)) {
a4768d22
KH
752 return -EBUSY;
753 }
754
60902a2c 755 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
a4768d22
KH
756 &dummy_paramset, PARM_SIZE);
757
60902a2c 758 return EDMA_CTLR_CHAN(ctlr, slot);
a4768d22
KH
759}
760EXPORT_SYMBOL(edma_alloc_slot);
761
762/**
763 * edma_free_slot - deallocate DMA parameter RAM
764 * @slot: parameter RAM slot returned from edma_alloc_slot()
765 *
766 * This deallocates the parameter RAM slot allocated by edma_alloc_slot().
767 * Callers are responsible for ensuring the slot is inactive, and will
768 * not be activated.
769 */
770void edma_free_slot(unsigned slot)
771{
60902a2c
SR
772 unsigned ctlr;
773
774 ctlr = EDMA_CTLR(slot);
775 slot = EDMA_CHAN_SLOT(slot);
776
777 if (slot < edma_info[ctlr]->num_channels ||
778 slot >= edma_info[ctlr]->num_slots)
a4768d22
KH
779 return;
780
60902a2c 781 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
a4768d22 782 &dummy_paramset, PARM_SIZE);
60902a2c 783 clear_bit(slot, edma_info[ctlr]->edma_inuse);
a4768d22
KH
784}
785EXPORT_SYMBOL(edma_free_slot);
786
213765d7
SP
787
788/**
789 * edma_alloc_cont_slots- alloc contiguous parameter RAM slots
790 * The API will return the starting point of a set of
134ce221 791 * contiguous parameter RAM slots that have been requested
213765d7
SP
792 *
793 * @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT
794 * or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
134ce221
SP
795 * @count: number of contiguous Paramter RAM slots
796 * @slot - the start value of Parameter RAM slot that should be passed if id
213765d7
SP
797 * is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
798 *
799 * If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of
134ce221
SP
800 * contiguous Parameter RAM slots from parameter RAM 64 in the case of
801 * DaVinci SOCs and 32 in the case of DA8xx SOCs.
213765d7
SP
802 *
803 * If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a
134ce221 804 * set of contiguous parameter RAM slots from the "slot" that is passed as an
213765d7
SP
805 * argument to the API.
806 *
807 * If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries
134ce221 808 * starts looking for a set of contiguous parameter RAMs from the "slot"
213765d7 809 * that is passed as an argument to the API. On failure the API will try to
134ce221
SP
810 * find a set of contiguous Parameter RAM slots from the remaining Parameter
811 * RAM slots
213765d7
SP
812 */
813int edma_alloc_cont_slots(unsigned ctlr, unsigned int id, int slot, int count)
814{
815 /*
816 * The start slot requested should be greater than
817 * the number of channels and lesser than the total number
818 * of slots
819 */
6b0cf4e9
SP
820 if ((id != EDMA_CONT_PARAMS_ANY) &&
821 (slot < edma_info[ctlr]->num_channels ||
822 slot >= edma_info[ctlr]->num_slots))
213765d7
SP
823 return -EINVAL;
824
825 /*
134ce221 826 * The number of parameter RAM slots requested cannot be less than 1
213765d7
SP
827 * and cannot be more than the number of slots minus the number of
828 * channels
829 */
830 if (count < 1 || count >
831 (edma_info[ctlr]->num_slots - edma_info[ctlr]->num_channels))
832 return -EINVAL;
833
834 switch (id) {
835 case EDMA_CONT_PARAMS_ANY:
134ce221 836 return reserve_contiguous_slots(ctlr, id, count,
213765d7
SP
837 edma_info[ctlr]->num_channels);
838 case EDMA_CONT_PARAMS_FIXED_EXACT:
839 case EDMA_CONT_PARAMS_FIXED_NOT_EXACT:
134ce221 840 return reserve_contiguous_slots(ctlr, id, count, slot);
213765d7
SP
841 default:
842 return -EINVAL;
843 }
844
845}
846EXPORT_SYMBOL(edma_alloc_cont_slots);
847
848/**
134ce221
SP
849 * edma_free_cont_slots - deallocate DMA parameter RAM slots
850 * @slot: first parameter RAM of a set of parameter RAM slots to be freed
851 * @count: the number of contiguous parameter RAM slots to be freed
213765d7
SP
852 *
853 * This deallocates the parameter RAM slots allocated by
854 * edma_alloc_cont_slots.
855 * Callers/applications need to keep track of sets of contiguous
134ce221 856 * parameter RAM slots that have been allocated using the edma_alloc_cont_slots
213765d7
SP
857 * API.
858 * Callers are responsible for ensuring the slots are inactive, and will
859 * not be activated.
860 */
861int edma_free_cont_slots(unsigned slot, int count)
862{
51c99e04 863 unsigned ctlr, slot_to_free;
213765d7
SP
864 int i;
865
866 ctlr = EDMA_CTLR(slot);
867 slot = EDMA_CHAN_SLOT(slot);
868
869 if (slot < edma_info[ctlr]->num_channels ||
870 slot >= edma_info[ctlr]->num_slots ||
871 count < 1)
872 return -EINVAL;
873
874 for (i = slot; i < slot + count; ++i) {
875 ctlr = EDMA_CTLR(i);
51c99e04 876 slot_to_free = EDMA_CHAN_SLOT(i);
213765d7 877
51c99e04 878 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot_to_free),
213765d7 879 &dummy_paramset, PARM_SIZE);
51c99e04 880 clear_bit(slot_to_free, edma_info[ctlr]->edma_inuse);
213765d7
SP
881 }
882
883 return 0;
884}
885EXPORT_SYMBOL(edma_free_cont_slots);
886
a4768d22
KH
887/*-----------------------------------------------------------------------*/
888
889/* Parameter RAM operations (i) -- read/write partial slots */
890
891/**
892 * edma_set_src - set initial DMA source address in parameter RAM slot
893 * @slot: parameter RAM slot being configured
894 * @src_port: physical address of source (memory, controller FIFO, etc)
895 * @addressMode: INCR, except in very rare cases
896 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
897 * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
898 *
899 * Note that the source address is modified during the DMA transfer
900 * according to edma_set_src_index().
901 */
902void edma_set_src(unsigned slot, dma_addr_t src_port,
903 enum address_mode mode, enum fifo_width width)
904{
60902a2c
SR
905 unsigned ctlr;
906
907 ctlr = EDMA_CTLR(slot);
908 slot = EDMA_CHAN_SLOT(slot);
909
910 if (slot < edma_info[ctlr]->num_slots) {
911 unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
a4768d22
KH
912
913 if (mode) {
914 /* set SAM and program FWID */
915 i = (i & ~(EDMA_FWID)) | (SAM | ((width & 0x7) << 8));
916 } else {
917 /* clear SAM */
918 i &= ~SAM;
919 }
60902a2c 920 edma_parm_write(ctlr, PARM_OPT, slot, i);
a4768d22
KH
921
922 /* set the source port address
923 in source register of param structure */
60902a2c 924 edma_parm_write(ctlr, PARM_SRC, slot, src_port);
a4768d22
KH
925 }
926}
927EXPORT_SYMBOL(edma_set_src);
928
929/**
930 * edma_set_dest - set initial DMA destination address in parameter RAM slot
931 * @slot: parameter RAM slot being configured
932 * @dest_port: physical address of destination (memory, controller FIFO, etc)
933 * @addressMode: INCR, except in very rare cases
934 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
935 * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
936 *
937 * Note that the destination address is modified during the DMA transfer
938 * according to edma_set_dest_index().
939 */
940void edma_set_dest(unsigned slot, dma_addr_t dest_port,
941 enum address_mode mode, enum fifo_width width)
942{
60902a2c
SR
943 unsigned ctlr;
944
945 ctlr = EDMA_CTLR(slot);
946 slot = EDMA_CHAN_SLOT(slot);
947
948 if (slot < edma_info[ctlr]->num_slots) {
949 unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
a4768d22
KH
950
951 if (mode) {
952 /* set DAM and program FWID */
953 i = (i & ~(EDMA_FWID)) | (DAM | ((width & 0x7) << 8));
954 } else {
955 /* clear DAM */
956 i &= ~DAM;
957 }
60902a2c 958 edma_parm_write(ctlr, PARM_OPT, slot, i);
a4768d22
KH
959 /* set the destination port address
960 in dest register of param structure */
60902a2c 961 edma_parm_write(ctlr, PARM_DST, slot, dest_port);
a4768d22
KH
962 }
963}
964EXPORT_SYMBOL(edma_set_dest);
965
966/**
967 * edma_get_position - returns the current transfer points
968 * @slot: parameter RAM slot being examined
969 * @src: pointer to source port position
970 * @dst: pointer to destination port position
971 *
972 * Returns current source and destination addresses for a particular
973 * parameter RAM slot. Its channel should not be active when this is called.
974 */
975void edma_get_position(unsigned slot, dma_addr_t *src, dma_addr_t *dst)
976{
977 struct edmacc_param temp;
60902a2c
SR
978 unsigned ctlr;
979
980 ctlr = EDMA_CTLR(slot);
981 slot = EDMA_CHAN_SLOT(slot);
a4768d22 982
60902a2c 983 edma_read_slot(EDMA_CTLR_CHAN(ctlr, slot), &temp);
a4768d22
KH
984 if (src != NULL)
985 *src = temp.src;
986 if (dst != NULL)
987 *dst = temp.dst;
988}
989EXPORT_SYMBOL(edma_get_position);
990
991/**
992 * edma_set_src_index - configure DMA source address indexing
993 * @slot: parameter RAM slot being configured
994 * @src_bidx: byte offset between source arrays in a frame
995 * @src_cidx: byte offset between source frames in a block
996 *
997 * Offsets are specified to support either contiguous or discontiguous
998 * memory transfers, or repeated access to a hardware register, as needed.
999 * When accessing hardware registers, both offsets are normally zero.
1000 */
1001void edma_set_src_index(unsigned slot, s16 src_bidx, s16 src_cidx)
1002{
60902a2c
SR
1003 unsigned ctlr;
1004
1005 ctlr = EDMA_CTLR(slot);
1006 slot = EDMA_CHAN_SLOT(slot);
1007
1008 if (slot < edma_info[ctlr]->num_slots) {
1009 edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
a4768d22 1010 0xffff0000, src_bidx);
60902a2c 1011 edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
a4768d22
KH
1012 0xffff0000, src_cidx);
1013 }
1014}
1015EXPORT_SYMBOL(edma_set_src_index);
1016
1017/**
1018 * edma_set_dest_index - configure DMA destination address indexing
1019 * @slot: parameter RAM slot being configured
1020 * @dest_bidx: byte offset between destination arrays in a frame
1021 * @dest_cidx: byte offset between destination frames in a block
1022 *
1023 * Offsets are specified to support either contiguous or discontiguous
1024 * memory transfers, or repeated access to a hardware register, as needed.
1025 * When accessing hardware registers, both offsets are normally zero.
1026 */
1027void edma_set_dest_index(unsigned slot, s16 dest_bidx, s16 dest_cidx)
1028{
60902a2c
SR
1029 unsigned ctlr;
1030
1031 ctlr = EDMA_CTLR(slot);
1032 slot = EDMA_CHAN_SLOT(slot);
1033
1034 if (slot < edma_info[ctlr]->num_slots) {
1035 edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
a4768d22 1036 0x0000ffff, dest_bidx << 16);
60902a2c 1037 edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
a4768d22
KH
1038 0x0000ffff, dest_cidx << 16);
1039 }
1040}
1041EXPORT_SYMBOL(edma_set_dest_index);
1042
1043/**
1044 * edma_set_transfer_params - configure DMA transfer parameters
1045 * @slot: parameter RAM slot being configured
1046 * @acnt: how many bytes per array (at least one)
1047 * @bcnt: how many arrays per frame (at least one)
1048 * @ccnt: how many frames per block (at least one)
1049 * @bcnt_rld: used only for A-Synchronized transfers; this specifies
1050 * the value to reload into bcnt when it decrements to zero
1051 * @sync_mode: ASYNC or ABSYNC
1052 *
1053 * See the EDMA3 documentation to understand how to configure and link
1054 * transfers using the fields in PaRAM slots. If you are not doing it
1055 * all at once with edma_write_slot(), you will use this routine
1056 * plus two calls each for source and destination, setting the initial
1057 * address and saying how to index that address.
1058 *
1059 * An example of an A-Synchronized transfer is a serial link using a
1060 * single word shift register. In that case, @acnt would be equal to
1061 * that word size; the serial controller issues a DMA synchronization
1062 * event to transfer each word, and memory access by the DMA transfer
1063 * controller will be word-at-a-time.
1064 *
1065 * An example of an AB-Synchronized transfer is a device using a FIFO.
1066 * In that case, @acnt equals the FIFO width and @bcnt equals its depth.
1067 * The controller with the FIFO issues DMA synchronization events when
1068 * the FIFO threshold is reached, and the DMA transfer controller will
1069 * transfer one frame to (or from) the FIFO. It will probably use
1070 * efficient burst modes to access memory.
1071 */
1072void edma_set_transfer_params(unsigned slot,
1073 u16 acnt, u16 bcnt, u16 ccnt,
1074 u16 bcnt_rld, enum sync_dimension sync_mode)
1075{
60902a2c
SR
1076 unsigned ctlr;
1077
1078 ctlr = EDMA_CTLR(slot);
1079 slot = EDMA_CHAN_SLOT(slot);
1080
1081 if (slot < edma_info[ctlr]->num_slots) {
1082 edma_parm_modify(ctlr, PARM_LINK_BCNTRLD, slot,
a4768d22
KH
1083 0x0000ffff, bcnt_rld << 16);
1084 if (sync_mode == ASYNC)
60902a2c 1085 edma_parm_and(ctlr, PARM_OPT, slot, ~SYNCDIM);
a4768d22 1086 else
60902a2c 1087 edma_parm_or(ctlr, PARM_OPT, slot, SYNCDIM);
a4768d22 1088 /* Set the acount, bcount, ccount registers */
60902a2c
SR
1089 edma_parm_write(ctlr, PARM_A_B_CNT, slot, (bcnt << 16) | acnt);
1090 edma_parm_write(ctlr, PARM_CCNT, slot, ccnt);
a4768d22
KH
1091 }
1092}
1093EXPORT_SYMBOL(edma_set_transfer_params);
1094
1095/**
1096 * edma_link - link one parameter RAM slot to another
1097 * @from: parameter RAM slot originating the link
1098 * @to: parameter RAM slot which is the link target
1099 *
1100 * The originating slot should not be part of any active DMA transfer.
1101 */
1102void edma_link(unsigned from, unsigned to)
1103{
60902a2c
SR
1104 unsigned ctlr_from, ctlr_to;
1105
1106 ctlr_from = EDMA_CTLR(from);
1107 from = EDMA_CHAN_SLOT(from);
1108 ctlr_to = EDMA_CTLR(to);
1109 to = EDMA_CHAN_SLOT(to);
1110
1111 if (from >= edma_info[ctlr_from]->num_slots)
a4768d22 1112 return;
60902a2c 1113 if (to >= edma_info[ctlr_to]->num_slots)
a4768d22 1114 return;
60902a2c
SR
1115 edma_parm_modify(ctlr_from, PARM_LINK_BCNTRLD, from, 0xffff0000,
1116 PARM_OFFSET(to));
a4768d22
KH
1117}
1118EXPORT_SYMBOL(edma_link);
1119
1120/**
1121 * edma_unlink - cut link from one parameter RAM slot
1122 * @from: parameter RAM slot originating the link
1123 *
1124 * The originating slot should not be part of any active DMA transfer.
1125 * Its link is set to 0xffff.
1126 */
1127void edma_unlink(unsigned from)
1128{
60902a2c
SR
1129 unsigned ctlr;
1130
1131 ctlr = EDMA_CTLR(from);
1132 from = EDMA_CHAN_SLOT(from);
1133
1134 if (from >= edma_info[ctlr]->num_slots)
a4768d22 1135 return;
60902a2c 1136 edma_parm_or(ctlr, PARM_LINK_BCNTRLD, from, 0xffff);
a4768d22
KH
1137}
1138EXPORT_SYMBOL(edma_unlink);
1139
1140/*-----------------------------------------------------------------------*/
1141
1142/* Parameter RAM operations (ii) -- read/write whole parameter sets */
1143
1144/**
1145 * edma_write_slot - write parameter RAM data for slot
1146 * @slot: number of parameter RAM slot being modified
1147 * @param: data to be written into parameter RAM slot
1148 *
1149 * Use this to assign all parameters of a transfer at once. This
1150 * allows more efficient setup of transfers than issuing multiple
1151 * calls to set up those parameters in small pieces, and provides
1152 * complete control over all transfer options.
1153 */
1154void edma_write_slot(unsigned slot, const struct edmacc_param *param)
1155{
60902a2c
SR
1156 unsigned ctlr;
1157
1158 ctlr = EDMA_CTLR(slot);
1159 slot = EDMA_CHAN_SLOT(slot);
1160
1161 if (slot >= edma_info[ctlr]->num_slots)
a4768d22 1162 return;
60902a2c
SR
1163 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot), param,
1164 PARM_SIZE);
a4768d22
KH
1165}
1166EXPORT_SYMBOL(edma_write_slot);
1167
1168/**
1169 * edma_read_slot - read parameter RAM data from slot
1170 * @slot: number of parameter RAM slot being copied
1171 * @param: where to store copy of parameter RAM data
1172 *
1173 * Use this to read data from a parameter RAM slot, perhaps to
1174 * save them as a template for later reuse.
1175 */
1176void edma_read_slot(unsigned slot, struct edmacc_param *param)
1177{
60902a2c
SR
1178 unsigned ctlr;
1179
1180 ctlr = EDMA_CTLR(slot);
1181 slot = EDMA_CHAN_SLOT(slot);
1182
1183 if (slot >= edma_info[ctlr]->num_slots)
a4768d22 1184 return;
60902a2c
SR
1185 memcpy_fromio(param, edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
1186 PARM_SIZE);
a4768d22
KH
1187}
1188EXPORT_SYMBOL(edma_read_slot);
1189
1190/*-----------------------------------------------------------------------*/
1191
1192/* Various EDMA channel control operations */
1193
1194/**
1195 * edma_pause - pause dma on a channel
1196 * @channel: on which edma_start() has been called
1197 *
1198 * This temporarily disables EDMA hardware events on the specified channel,
1199 * preventing them from triggering new transfers on its behalf
1200 */
1201void edma_pause(unsigned channel)
1202{
60902a2c
SR
1203 unsigned ctlr;
1204
1205 ctlr = EDMA_CTLR(channel);
1206 channel = EDMA_CHAN_SLOT(channel);
1207
1208 if (channel < edma_info[ctlr]->num_channels) {
a4768d22
KH
1209 unsigned int mask = (1 << (channel & 0x1f));
1210
60902a2c 1211 edma_shadow0_write_array(ctlr, SH_EECR, channel >> 5, mask);
a4768d22
KH
1212 }
1213}
1214EXPORT_SYMBOL(edma_pause);
1215
1216/**
1217 * edma_resume - resumes dma on a paused channel
1218 * @channel: on which edma_pause() has been called
1219 *
1220 * This re-enables EDMA hardware events on the specified channel.
1221 */
1222void edma_resume(unsigned channel)
1223{
60902a2c
SR
1224 unsigned ctlr;
1225
1226 ctlr = EDMA_CTLR(channel);
1227 channel = EDMA_CHAN_SLOT(channel);
1228
1229 if (channel < edma_info[ctlr]->num_channels) {
a4768d22
KH
1230 unsigned int mask = (1 << (channel & 0x1f));
1231
60902a2c 1232 edma_shadow0_write_array(ctlr, SH_EESR, channel >> 5, mask);
a4768d22
KH
1233 }
1234}
1235EXPORT_SYMBOL(edma_resume);
1236
1237/**
1238 * edma_start - start dma on a channel
1239 * @channel: channel being activated
1240 *
1241 * Channels with event associations will be triggered by their hardware
1242 * events, and channels without such associations will be triggered by
1243 * software. (At this writing there is no interface for using software
1244 * triggers except with channels that don't support hardware triggers.)
1245 *
1246 * Returns zero on success, else negative errno.
1247 */
1248int edma_start(unsigned channel)
1249{
60902a2c
SR
1250 unsigned ctlr;
1251
1252 ctlr = EDMA_CTLR(channel);
1253 channel = EDMA_CHAN_SLOT(channel);
1254
1255 if (channel < edma_info[ctlr]->num_channels) {
a4768d22
KH
1256 int j = channel >> 5;
1257 unsigned int mask = (1 << (channel & 0x1f));
1258
1259 /* EDMA channels without event association */
f900d552 1260 if (test_bit(channel, edma_info[ctlr]->edma_unused)) {
a4768d22 1261 pr_debug("EDMA: ESR%d %08x\n", j,
60902a2c
SR
1262 edma_shadow0_read_array(ctlr, SH_ESR, j));
1263 edma_shadow0_write_array(ctlr, SH_ESR, j, mask);
a4768d22
KH
1264 return 0;
1265 }
1266
1267 /* EDMA channel with event association */
1268 pr_debug("EDMA: ER%d %08x\n", j,
60902a2c 1269 edma_shadow0_read_array(ctlr, SH_ER, j));
a4768d22 1270 /* Clear any pending error */
60902a2c 1271 edma_write_array(ctlr, EDMA_EMCR, j, mask);
a4768d22 1272 /* Clear any SER */
60902a2c
SR
1273 edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1274 edma_shadow0_write_array(ctlr, SH_EESR, j, mask);
a4768d22 1275 pr_debug("EDMA: EER%d %08x\n", j,
60902a2c 1276 edma_shadow0_read_array(ctlr, SH_EER, j));
a4768d22
KH
1277 return 0;
1278 }
1279
1280 return -EINVAL;
1281}
1282EXPORT_SYMBOL(edma_start);
1283
1284/**
1285 * edma_stop - stops dma on the channel passed
1286 * @channel: channel being deactivated
1287 *
1288 * When @lch is a channel, any active transfer is paused and
1289 * all pending hardware events are cleared. The current transfer
1290 * may not be resumed, and the channel's Parameter RAM should be
1291 * reinitialized before being reused.
1292 */
1293void edma_stop(unsigned channel)
1294{
60902a2c
SR
1295 unsigned ctlr;
1296
1297 ctlr = EDMA_CTLR(channel);
1298 channel = EDMA_CHAN_SLOT(channel);
1299
1300 if (channel < edma_info[ctlr]->num_channels) {
a4768d22
KH
1301 int j = channel >> 5;
1302 unsigned int mask = (1 << (channel & 0x1f));
1303
60902a2c
SR
1304 edma_shadow0_write_array(ctlr, SH_EECR, j, mask);
1305 edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
1306 edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1307 edma_write_array(ctlr, EDMA_EMCR, j, mask);
a4768d22
KH
1308
1309 pr_debug("EDMA: EER%d %08x\n", j,
60902a2c 1310 edma_shadow0_read_array(ctlr, SH_EER, j));
a4768d22
KH
1311
1312 /* REVISIT: consider guarding against inappropriate event
1313 * chaining by overwriting with dummy_paramset.
1314 */
1315 }
1316}
1317EXPORT_SYMBOL(edma_stop);
1318
1319/******************************************************************************
1320 *
1321 * It cleans ParamEntry qand bring back EDMA to initial state if media has
1322 * been removed before EDMA has finished.It is usedful for removable media.
1323 * Arguments:
1324 * ch_no - channel no
1325 *
1326 * Return: zero on success, or corresponding error no on failure
1327 *
1328 * FIXME this should not be needed ... edma_stop() should suffice.
1329 *
1330 *****************************************************************************/
1331
1332void edma_clean_channel(unsigned channel)
1333{
60902a2c
SR
1334 unsigned ctlr;
1335
1336 ctlr = EDMA_CTLR(channel);
1337 channel = EDMA_CHAN_SLOT(channel);
1338
1339 if (channel < edma_info[ctlr]->num_channels) {
a4768d22
KH
1340 int j = (channel >> 5);
1341 unsigned int mask = 1 << (channel & 0x1f);
1342
1343 pr_debug("EDMA: EMR%d %08x\n", j,
60902a2c
SR
1344 edma_read_array(ctlr, EDMA_EMR, j));
1345 edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
a4768d22 1346 /* Clear the corresponding EMR bits */
60902a2c 1347 edma_write_array(ctlr, EDMA_EMCR, j, mask);
a4768d22 1348 /* Clear any SER */
60902a2c
SR
1349 edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1350 edma_write(ctlr, EDMA_CCERRCLR, (1 << 16) | 0x3);
a4768d22
KH
1351 }
1352}
1353EXPORT_SYMBOL(edma_clean_channel);
1354
1355/*
1356 * edma_clear_event - clear an outstanding event on the DMA channel
1357 * Arguments:
1358 * channel - channel number
1359 */
1360void edma_clear_event(unsigned channel)
1361{
60902a2c
SR
1362 unsigned ctlr;
1363
1364 ctlr = EDMA_CTLR(channel);
1365 channel = EDMA_CHAN_SLOT(channel);
1366
1367 if (channel >= edma_info[ctlr]->num_channels)
a4768d22
KH
1368 return;
1369 if (channel < 32)
60902a2c 1370 edma_write(ctlr, EDMA_ECR, 1 << channel);
a4768d22 1371 else
60902a2c 1372 edma_write(ctlr, EDMA_ECRH, 1 << (channel - 32));
a4768d22
KH
1373}
1374EXPORT_SYMBOL(edma_clear_event);
1375
1376/*-----------------------------------------------------------------------*/
1377
1378static int __init edma_probe(struct platform_device *pdev)
1379{
1380 struct edma_soc_info *info = pdev->dev.platform_data;
60902a2c
SR
1381 const s8 (*queue_priority_mapping)[2];
1382 const s8 (*queue_tc_mapping)[2];
1383 int i, j, found = 0;
1384 int status = -1;
60902a2c
SR
1385 int irq[EDMA_MAX_CC] = {0, 0};
1386 int err_irq[EDMA_MAX_CC] = {0, 0};
1387 struct resource *r[EDMA_MAX_CC] = {NULL};
1388 resource_size_t len[EDMA_MAX_CC];
1389 char res_name[10];
1390 char irq_name[10];
a4768d22
KH
1391
1392 if (!info)
1393 return -ENODEV;
1394
60902a2c
SR
1395 for (j = 0; j < EDMA_MAX_CC; j++) {
1396 sprintf(res_name, "edma_cc%d", j);
1397 r[j] = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1398 res_name);
1399 if (!r[j]) {
1400 if (found)
1401 break;
1402 else
1403 return -ENODEV;
1404 } else
1405 found = 1;
1406
1407 len[j] = resource_size(r[j]);
1408
1409 r[j] = request_mem_region(r[j]->start, len[j],
1410 dev_name(&pdev->dev));
1411 if (!r[j]) {
1412 status = -EBUSY;
1413 goto fail1;
1414 }
a4768d22 1415
60902a2c
SR
1416 edmacc_regs_base[j] = ioremap(r[j]->start, len[j]);
1417 if (!edmacc_regs_base[j]) {
1418 status = -EBUSY;
1419 goto fail1;
1420 }
a4768d22 1421
60902a2c
SR
1422 edma_info[j] = kmalloc(sizeof(struct edma), GFP_KERNEL);
1423 if (!edma_info[j]) {
1424 status = -ENOMEM;
1425 goto fail1;
1426 }
1427 memset(edma_info[j], 0, sizeof(struct edma));
1428
1429 edma_info[j]->num_channels = min_t(unsigned, info[j].n_channel,
1430 EDMA_MAX_DMACH);
1431 edma_info[j]->num_slots = min_t(unsigned, info[j].n_slot,
1432 EDMA_MAX_PARAMENTRY);
1433 edma_info[j]->num_cc = min_t(unsigned, info[j].n_cc,
1434 EDMA_MAX_CC);
1435
a0f0202e
SP
1436 edma_info[j]->default_queue = info[j].default_queue;
1437 if (!edma_info[j]->default_queue)
1438 edma_info[j]->default_queue = EVENTQ_1;
1439
60902a2c
SR
1440 dev_dbg(&pdev->dev, "DMA REG BASE ADDR=%p\n",
1441 edmacc_regs_base[j]);
1442
1443 for (i = 0; i < edma_info[j]->num_slots; i++)
1444 memcpy_toio(edmacc_regs_base[j] + PARM_OFFSET(i),
1445 &dummy_paramset, PARM_SIZE);
1446
f900d552
SR
1447 /* Mark all channels as unused */
1448 memset(edma_info[j]->edma_unused, 0xff,
1449 sizeof(edma_info[j]->edma_unused));
a4768d22 1450
60902a2c
SR
1451 sprintf(irq_name, "edma%d", j);
1452 irq[j] = platform_get_irq_byname(pdev, irq_name);
1453 edma_info[j]->irq_res_start = irq[j];
1454 status = request_irq(irq[j], dma_irq_handler, 0, "edma",
1455 &pdev->dev);
1456 if (status < 0) {
1457 dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
1458 irq[j], status);
1459 goto fail;
1460 }
a4768d22 1461
60902a2c
SR
1462 sprintf(irq_name, "edma%d_err", j);
1463 err_irq[j] = platform_get_irq_byname(pdev, irq_name);
1464 edma_info[j]->irq_res_end = err_irq[j];
1465 status = request_irq(err_irq[j], dma_ccerr_handler, 0,
1466 "edma_error", &pdev->dev);
1467 if (status < 0) {
1468 dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
1469 err_irq[j], status);
1470 goto fail;
1471 }
a4768d22 1472
60902a2c
SR
1473 /* Everything lives on transfer controller 1 until otherwise
1474 * specified. This way, long transfers on the low priority queue
1475 * started by the codec engine will not cause audio defects.
1476 */
1477 for (i = 0; i < edma_info[j]->num_channels; i++)
1478 map_dmach_queue(j, i, EVENTQ_1);
a4768d22 1479
60902a2c
SR
1480 queue_tc_mapping = info[j].queue_tc_mapping;
1481 queue_priority_mapping = info[j].queue_priority_mapping;
a4768d22 1482
60902a2c
SR
1483 /* Event queue to TC mapping */
1484 for (i = 0; queue_tc_mapping[i][0] != -1; i++)
1485 map_queue_tc(j, queue_tc_mapping[i][0],
1486 queue_tc_mapping[i][1]);
a4768d22 1487
60902a2c
SR
1488 /* Event queue priority mapping */
1489 for (i = 0; queue_priority_mapping[i][0] != -1; i++)
1490 assign_priority_to_queue(j,
1491 queue_priority_mapping[i][0],
1492 queue_priority_mapping[i][1]);
1493
1494 /* Map the channel to param entry if channel mapping logic
1495 * exist
1496 */
1497 if (edma_read(j, EDMA_CCCFG) & CHMAP_EXIST)
1498 map_dmach_param(j);
a4768d22 1499
60902a2c
SR
1500 for (i = 0; i < info[j].n_region; i++) {
1501 edma_write_array2(j, EDMA_DRAE, i, 0, 0x0);
1502 edma_write_array2(j, EDMA_DRAE, i, 1, 0x0);
1503 edma_write_array(j, EDMA_QRAE, i, 0x0);
1504 }
2d517508 1505 arch_num_cc++;
a4768d22
KH
1506 }
1507
1508 if (tc_errs_handled) {
1509 status = request_irq(IRQ_TCERRINT0, dma_tc0err_handler, 0,
1510 "edma_tc0", &pdev->dev);
1511 if (status < 0) {
1512 dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
1513 IRQ_TCERRINT0, status);
1514 return status;
1515 }
1516 status = request_irq(IRQ_TCERRINT, dma_tc1err_handler, 0,
1517 "edma_tc1", &pdev->dev);
1518 if (status < 0) {
1519 dev_dbg(&pdev->dev, "request_irq %d --> %d\n",
1520 IRQ_TCERRINT, status);
1521 return status;
1522 }
1523 }
1524
a4768d22
KH
1525 return 0;
1526
1527fail:
60902a2c
SR
1528 for (i = 0; i < EDMA_MAX_CC; i++) {
1529 if (err_irq[i])
1530 free_irq(err_irq[i], &pdev->dev);
1531 if (irq[i])
1532 free_irq(irq[i], &pdev->dev);
1533 }
a4768d22 1534fail1:
60902a2c
SR
1535 for (i = 0; i < EDMA_MAX_CC; i++) {
1536 if (r[i])
1537 release_mem_region(r[i]->start, len[i]);
1538 if (edmacc_regs_base[i])
1539 iounmap(edmacc_regs_base[i]);
1540 kfree(edma_info[i]);
1541 }
a4768d22
KH
1542 return status;
1543}
1544
1545
1546static struct platform_driver edma_driver = {
1547 .driver.name = "edma",
1548};
1549
1550static int __init edma_init(void)
1551{
1552 return platform_driver_probe(&edma_driver, edma_probe);
1553}
1554arch_initcall(edma_init);
1555