]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/alpha/kernel/time.c
alpha: implement HW performance events on the EV67 and later CPUs
[net-next-2.6.git] / arch / alpha / kernel / time.c
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/alpha/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992, 1995, 1999, 2000 Linus Torvalds
5 *
6 * This file contains the PC-specific time handling details:
7 * reading the RTC at bootup, etc..
8 * 1994-07-02 Alan Modra
9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10 * 1995-03-26 Markus Kuhn
11 * fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
12 * precision CMOS clock update
13 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
14 * "A Kernel Model for Precision Timekeeping" by Dave Mills
15 * 1997-01-09 Adrian Sun
16 * use interval timer if CONFIG_RTC=y
17 * 1997-10-29 John Bowman (bowman@math.ualberta.ca)
18 * fixed tick loss calculation in timer_interrupt
19 * (round system clock to nearest tick instead of truncating)
20 * fixed algorithm in time_init for getting time from CMOS clock
21 * 1999-04-16 Thorsten Kranzkowski (dl8bcu@gmx.net)
22 * fixed algorithm in do_gettimeofday() for calculating the precise time
23 * from processor cycle counter (now taking lost_ticks into account)
24 * 2000-08-13 Jan-Benedict Glaw <jbglaw@lug-owl.de>
25 * Fixed time_init to be aware of epoches != 1900. This prevents
26 * booting up in 2048 for me;) Code is stolen from rtc.c.
27 * 2003-06-03 R. Scott Bailey <scott.bailey@eds.com>
28 * Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
29 */
1da177e4
LT
30#include <linux/errno.h>
31#include <linux/module.h>
32#include <linux/sched.h>
33#include <linux/kernel.h>
34#include <linux/param.h>
35#include <linux/string.h>
36#include <linux/mm.h>
37#include <linux/delay.h>
38#include <linux/ioport.h>
39#include <linux/irq.h>
40#include <linux/interrupt.h>
41#include <linux/init.h>
42#include <linux/bcd.h>
43#include <linux/profile.h>
979f8671 44#include <linux/perf_event.h>
1da177e4
LT
45
46#include <asm/uaccess.h>
47#include <asm/io.h>
48#include <asm/hwrpb.h>
49#include <asm/8253pit.h>
5f7dc5d7 50#include <asm/rtc.h>
1da177e4
LT
51
52#include <linux/mc146818rtc.h>
53#include <linux/time.h>
54#include <linux/timex.h>
9ce34c8f 55#include <linux/clocksource.h>
1da177e4
LT
56
57#include "proto.h"
58#include "irq_impl.h"
59
1da177e4
LT
60static int set_rtc_mmss(unsigned long);
61
62DEFINE_SPINLOCK(rtc_lock);
cff52daf 63EXPORT_SYMBOL(rtc_lock);
1da177e4
LT
64
65#define TICK_SIZE (tick_nsec / 1000)
66
67/*
68 * Shift amount by which scaled_ticks_per_cycle is scaled. Shifting
69 * by 48 gives us 16 bits for HZ while keeping the accuracy good even
70 * for large CPU clock rates.
71 */
72#define FIX_SHIFT 48
73
74/* lump static variables together for more efficient access: */
75static struct {
76 /* cycle counter last time it got invoked */
77 __u32 last_time;
78 /* ticks/cycle * 2^48 */
79 unsigned long scaled_ticks_per_cycle;
1da177e4
LT
80 /* partial unused tick */
81 unsigned long partial_tick;
82} state;
83
84unsigned long est_cycle_freq;
85
979f8671
MC
86#ifdef CONFIG_PERF_EVENTS
87
88DEFINE_PER_CPU(u8, perf_event_pending);
89
90#define set_perf_event_pending_flag() __get_cpu_var(perf_event_pending) = 1
91#define test_perf_event_pending() __get_cpu_var(perf_event_pending)
92#define clear_perf_event_pending() __get_cpu_var(perf_event_pending) = 0
93
94void set_perf_event_pending(void)
95{
96 set_perf_event_pending_flag();
97}
98
99#else /* CONFIG_PERF_EVENTS */
100
101#define test_perf_event_pending() 0
102#define clear_perf_event_pending()
103
104#endif /* CONFIG_PERF_EVENTS */
105
1da177e4
LT
106
107static inline __u32 rpcc(void)
108{
109 __u32 result;
110 asm volatile ("rpcc %0" : "=r"(result));
111 return result;
112}
113
1e871be1
JS
114int update_persistent_clock(struct timespec now)
115{
116 return set_rtc_mmss(now.tv_sec);
117}
118
119void read_persistent_clock(struct timespec *ts)
120{
121 unsigned int year, mon, day, hour, min, sec, epoch;
122
123 sec = CMOS_READ(RTC_SECONDS);
124 min = CMOS_READ(RTC_MINUTES);
125 hour = CMOS_READ(RTC_HOURS);
126 day = CMOS_READ(RTC_DAY_OF_MONTH);
127 mon = CMOS_READ(RTC_MONTH);
128 year = CMOS_READ(RTC_YEAR);
129
130 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
131 sec = bcd2bin(sec);
132 min = bcd2bin(min);
133 hour = bcd2bin(hour);
134 day = bcd2bin(day);
135 mon = bcd2bin(mon);
136 year = bcd2bin(year);
137 }
138
139 /* PC-like is standard; used for year >= 70 */
140 epoch = 1900;
141 if (year < 20)
142 epoch = 2000;
143 else if (year >= 20 && year < 48)
144 /* NT epoch */
145 epoch = 1980;
146 else if (year >= 48 && year < 70)
147 /* Digital UNIX epoch */
148 epoch = 1952;
149
150 printk(KERN_INFO "Using epoch = %d\n", epoch);
151
152 if ((year += epoch) < 1970)
153 year += 100;
154
155 ts->tv_sec = mktime(year, mon, day, hour, min, sec);
156}
157
158
159
1da177e4
LT
160/*
161 * timer_interrupt() needs to keep up the real-time clock,
162 * as well as call the "do_timer()" routine every clocktick
163 */
8774cb81 164irqreturn_t timer_interrupt(int irq, void *dev)
1da177e4
LT
165{
166 unsigned long delta;
167 __u32 now;
168 long nticks;
169
170#ifndef CONFIG_SMP
171 /* Not SMP, do kernel PC profiling here. */
8774cb81 172 profile_tick(CPU_PROFILING);
1da177e4
LT
173#endif
174
175 write_seqlock(&xtime_lock);
176
177 /*
178 * Calculate how many ticks have passed since the last update,
179 * including any previous partial leftover. Save any resulting
180 * fraction for the next pass.
181 */
182 now = rpcc();
183 delta = now - state.last_time;
184 state.last_time = now;
185 delta = delta * state.scaled_ticks_per_cycle + state.partial_tick;
186 state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1);
187 nticks = delta >> FIX_SHIFT;
188
aa02cd2d
PZ
189 if (nticks)
190 do_timer(nticks);
1da177e4 191
1da177e4 192 write_sequnlock(&xtime_lock);
aa02cd2d
PZ
193
194#ifndef CONFIG_SMP
195 while (nticks--)
196 update_process_times(user_mode(get_irq_regs()));
197#endif
198
979f8671
MC
199 if (test_perf_event_pending()) {
200 clear_perf_event_pending();
201 perf_event_do_pending();
202 }
203
1da177e4
LT
204 return IRQ_HANDLED;
205}
206
ebaf4fc1 207void __init
1da177e4
LT
208common_init_rtc(void)
209{
210 unsigned char x;
211
212 /* Reset periodic interrupt frequency. */
213 x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
214 /* Test includes known working values on various platforms
215 where 0x26 is wrong; we refuse to change those. */
216 if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
217 printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x);
218 CMOS_WRITE(0x26, RTC_FREQ_SELECT);
219 }
220
221 /* Turn on periodic interrupts. */
222 x = CMOS_READ(RTC_CONTROL);
223 if (!(x & RTC_PIE)) {
224 printk("Turning on RTC interrupts.\n");
225 x |= RTC_PIE;
226 x &= ~(RTC_AIE | RTC_UIE);
227 CMOS_WRITE(x, RTC_CONTROL);
228 }
229 (void) CMOS_READ(RTC_INTR_FLAGS);
230
231 outb(0x36, 0x43); /* pit counter 0: system timer */
232 outb(0x00, 0x40);
233 outb(0x00, 0x40);
234
235 outb(0xb6, 0x43); /* pit counter 2: speaker */
236 outb(0x31, 0x42);
237 outb(0x13, 0x42);
238
239 init_rtc_irq();
240}
241
5f7dc5d7
IK
242unsigned int common_get_rtc_time(struct rtc_time *time)
243{
244 return __get_rtc_time(time);
245}
246
247int common_set_rtc_time(struct rtc_time *time)
248{
249 return __set_rtc_time(time);
250}
1da177e4
LT
251
252/* Validate a computed cycle counter result against the known bounds for
253 the given processor core. There's too much brokenness in the way of
254 timing hardware for any one method to work everywhere. :-(
255
256 Return 0 if the result cannot be trusted, otherwise return the argument. */
257
258static unsigned long __init
259validate_cc_value(unsigned long cc)
260{
261 static struct bounds {
262 unsigned int min, max;
263 } cpu_hz[] __initdata = {
264 [EV3_CPU] = { 50000000, 200000000 }, /* guess */
265 [EV4_CPU] = { 100000000, 300000000 },
266 [LCA4_CPU] = { 100000000, 300000000 }, /* guess */
267 [EV45_CPU] = { 200000000, 300000000 },
268 [EV5_CPU] = { 250000000, 433000000 },
269 [EV56_CPU] = { 333000000, 667000000 },
270 [PCA56_CPU] = { 400000000, 600000000 }, /* guess */
271 [PCA57_CPU] = { 500000000, 600000000 }, /* guess */
272 [EV6_CPU] = { 466000000, 600000000 },
273 [EV67_CPU] = { 600000000, 750000000 },
274 [EV68AL_CPU] = { 750000000, 940000000 },
275 [EV68CB_CPU] = { 1000000000, 1333333333 },
276 /* None of the following are shipping as of 2001-11-01. */
277 [EV68CX_CPU] = { 1000000000, 1700000000 }, /* guess */
278 [EV69_CPU] = { 1000000000, 1700000000 }, /* guess */
279 [EV7_CPU] = { 800000000, 1400000000 }, /* guess */
280 [EV79_CPU] = { 1000000000, 2000000000 }, /* guess */
281 };
282
283 /* Allow for some drift in the crystal. 10MHz is more than enough. */
284 const unsigned int deviation = 10000000;
285
286 struct percpu_struct *cpu;
287 unsigned int index;
288
289 cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
290 index = cpu->type & 0xffffffff;
291
292 /* If index out of bounds, no way to validate. */
25c8716c 293 if (index >= ARRAY_SIZE(cpu_hz))
1da177e4
LT
294 return cc;
295
296 /* If index contains no data, no way to validate. */
297 if (cpu_hz[index].max == 0)
298 return cc;
299
300 if (cc < cpu_hz[index].min - deviation
301 || cc > cpu_hz[index].max + deviation)
302 return 0;
303
304 return cc;
305}
306
307
308/*
309 * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
310 * arch/i386/time.c.
311 */
312
313#define CALIBRATE_LATCH 0xffff
314#define TIMEOUT_COUNT 0x100000
315
316static unsigned long __init
317calibrate_cc_with_pit(void)
318{
319 int cc, count = 0;
320
321 /* Set the Gate high, disable speaker */
322 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
323
324 /*
325 * Now let's take care of CTC channel 2
326 *
327 * Set the Gate high, program CTC channel 2 for mode 0,
328 * (interrupt on terminal count mode), binary count,
329 * load 5 * LATCH count, (LSB and MSB) to begin countdown.
330 */
331 outb(0xb0, 0x43); /* binary, mode 0, LSB/MSB, Ch 2 */
332 outb(CALIBRATE_LATCH & 0xff, 0x42); /* LSB of count */
333 outb(CALIBRATE_LATCH >> 8, 0x42); /* MSB of count */
334
335 cc = rpcc();
336 do {
337 count++;
338 } while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
339 cc = rpcc() - cc;
340
341 /* Error: ECTCNEVERSET or ECPUTOOFAST. */
342 if (count <= 1 || count == TIMEOUT_COUNT)
343 return 0;
344
345 return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
346}
347
348/* The Linux interpretation of the CMOS clock register contents:
349 When the Update-In-Progress (UIP) flag goes from 1 to 0, the
350 RTC registers show the second which has precisely just started.
351 Let's hope other operating systems interpret the RTC the same way. */
352
353static unsigned long __init
354rpcc_after_update_in_progress(void)
355{
356 do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
357 do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
358
359 return rpcc();
360}
361
9ce34c8f
JS
362#ifndef CONFIG_SMP
363/* Until and unless we figure out how to get cpu cycle counters
364 in sync and keep them there, we can't use the rpcc. */
365static cycle_t read_rpcc(struct clocksource *cs)
366{
367 cycle_t ret = (cycle_t)rpcc();
368 return ret;
369}
370
371static struct clocksource clocksource_rpcc = {
372 .name = "rpcc",
373 .rating = 300,
374 .read = read_rpcc,
375 .mask = CLOCKSOURCE_MASK(32),
376 .flags = CLOCK_SOURCE_IS_CONTINUOUS
377};
378
379static inline void register_rpcc_clocksource(long cycle_freq)
380{
381 clocksource_calc_mult_shift(&clocksource_rpcc, cycle_freq, 4);
382 clocksource_register(&clocksource_rpcc);
383}
384#else /* !CONFIG_SMP */
385static inline void register_rpcc_clocksource(long cycle_freq)
386{
387}
388#endif /* !CONFIG_SMP */
389
1da177e4
LT
390void __init
391time_init(void)
392{
1e871be1 393 unsigned int cc1, cc2;
1da177e4
LT
394 unsigned long cycle_freq, tolerance;
395 long diff;
396
397 /* Calibrate CPU clock -- attempt #1. */
398 if (!est_cycle_freq)
399 est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
400
4c2e6f6a 401 cc1 = rpcc();
1da177e4
LT
402
403 /* Calibrate CPU clock -- attempt #2. */
404 if (!est_cycle_freq) {
4c2e6f6a 405 cc1 = rpcc_after_update_in_progress();
1da177e4
LT
406 cc2 = rpcc_after_update_in_progress();
407 est_cycle_freq = validate_cc_value(cc2 - cc1);
408 cc1 = cc2;
409 }
410
411 cycle_freq = hwrpb->cycle_freq;
412 if (est_cycle_freq) {
413 /* If the given value is within 250 PPM of what we calculated,
414 accept it. Otherwise, use what we found. */
415 tolerance = cycle_freq / 4000;
416 diff = cycle_freq - est_cycle_freq;
417 if (diff < 0)
418 diff = -diff;
419 if ((unsigned long)diff > tolerance) {
420 cycle_freq = est_cycle_freq;
421 printk("HWRPB cycle frequency bogus. "
422 "Estimated %lu Hz\n", cycle_freq);
423 } else {
424 est_cycle_freq = 0;
425 }
426 } else if (! validate_cc_value (cycle_freq)) {
427 printk("HWRPB cycle frequency bogus, "
428 "and unable to estimate a proper value!\n");
429 }
430
431 /* From John Bowman <bowman@math.ualberta.ca>: allow the values
432 to settle, as the Update-In-Progress bit going low isn't good
433 enough on some hardware. 2ms is our guess; we haven't found
434 bogomips yet, but this is close on a 500Mhz box. */
435 __delay(1000000);
436
1da177e4
LT
437
438 if (HZ > (1<<16)) {
439 extern void __you_loose (void);
440 __you_loose();
441 }
442
9ce34c8f
JS
443 register_rpcc_clocksource(cycle_freq);
444
1da177e4
LT
445 state.last_time = cc1;
446 state.scaled_ticks_per_cycle
447 = ((unsigned long) HZ << FIX_SHIFT) / cycle_freq;
1da177e4
LT
448 state.partial_tick = 0L;
449
450 /* Startup the timer source. */
451 alpha_mv.init_rtc();
452}
453
1da177e4
LT
454/*
455 * In order to set the CMOS clock precisely, set_rtc_mmss has to be
456 * called 500 ms after the second nowtime has started, because when
457 * nowtime is written into the registers of the CMOS clock, it will
458 * jump to the next second precisely 500 ms later. Check the Motorola
459 * MC146818A or Dallas DS12887 data sheet for details.
460 *
461 * BUG: This routine does not handle hour overflow properly; it just
462 * sets the minutes. Usually you won't notice until after reboot!
463 */
464
465
466static int
467set_rtc_mmss(unsigned long nowtime)
468{
469 int retval = 0;
470 int real_seconds, real_minutes, cmos_minutes;
471 unsigned char save_control, save_freq_select;
472
473 /* irq are locally disabled here */
474 spin_lock(&rtc_lock);
475 /* Tell the clock it's being set */
476 save_control = CMOS_READ(RTC_CONTROL);
477 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
478
479 /* Stop and reset prescaler */
480 save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
481 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
482
483 cmos_minutes = CMOS_READ(RTC_MINUTES);
484 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
18b1bd05 485 cmos_minutes = bcd2bin(cmos_minutes);
1da177e4
LT
486
487 /*
488 * since we're only adjusting minutes and seconds,
489 * don't interfere with hour overflow. This avoids
490 * messing with unknown time zones but requires your
491 * RTC not to be off by more than 15 minutes
492 */
493 real_seconds = nowtime % 60;
494 real_minutes = nowtime / 60;
495 if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) {
496 /* correct for half hour time zone */
497 real_minutes += 30;
498 }
499 real_minutes %= 60;
500
501 if (abs(real_minutes - cmos_minutes) < 30) {
502 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
18b1bd05
AB
503 real_seconds = bin2bcd(real_seconds);
504 real_minutes = bin2bcd(real_minutes);
1da177e4
LT
505 }
506 CMOS_WRITE(real_seconds,RTC_SECONDS);
507 CMOS_WRITE(real_minutes,RTC_MINUTES);
508 } else {
509 printk(KERN_WARNING
510 "set_rtc_mmss: can't update from %d to %d\n",
511 cmos_minutes, real_minutes);
512 retval = -1;
513 }
514
515 /* The following flags have to be released exactly in this order,
516 * otherwise the DS12887 (popular MC146818A clone with integrated
517 * battery and quartz) will not reset the oscillator and will not
518 * update precisely 500 ms later. You won't find this mentioned in
519 * the Dallas Semiconductor data sheets, but who believes data
520 * sheets anyway ... -- Markus Kuhn
521 */
522 CMOS_WRITE(save_control, RTC_CONTROL);
523 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
524 spin_unlock(&rtc_lock);
525
526 return retval;
527}